浏览全部资源
扫码关注微信
吉林大学 电子科学与工程学院, 集成光电子学国家重点实验室, 吉林 长春 130012
Published:05 September 2023,
Received:12 April 2023,
Revised:02 May 2023,
扫 描 看 全 文
张浩洋,贾士鑫,银达等.基于岛⁃桥结构的可拉伸发光器件研究进展[J].发光学报,2023,44(09):1606-1620.
ZHANG Haoyang,JIA Shixin,YIN Da,et al.Research Progress of Stretchable Light-emitting Devices Based on Island-bridge Structure[J].Chinese Journal of Luminescence,2023,44(09):1606-1620.
张浩洋,贾士鑫,银达等.基于岛⁃桥结构的可拉伸发光器件研究进展[J].发光学报,2023,44(09):1606-1620. DOI: 10.37188/CJL.20230091.
ZHANG Haoyang,JIA Shixin,YIN Da,et al.Research Progress of Stretchable Light-emitting Devices Based on Island-bridge Structure[J].Chinese Journal of Luminescence,2023,44(09):1606-1620. DOI: 10.37188/CJL.20230091.
基于岛⁃桥结构的可拉伸发光器件阵列是当前实现可拉伸显示器的重要方案之一,受到广泛关注。本文汇总了过去十几年中关于岛⁃桥结构可拉伸发光器件阵列的相关研究内容,对各个器件的性能和特点进行综述。围绕器件的拉伸性、机械稳定性和显示质量等核心问题,重点介绍了发光单元之间可拉伸导线(互连桥)的形状设计与材料选择方案,并对已报道的高像素密度集成策略、阵列拉伸应变分布优化策略和阵列像素密度因拉伸度增大而降低问题的解决方案进行了总结。目前,基于岛⁃桥结构的可拉伸发光显示阵列研究还处于初级阶段,器件的设计、制备和实现高性能还面临许多挑战,本综述旨在通过对当前研究的总结,为推动可拉伸显示器的发展做出一些贡献。
As one of the most important schemes to realize the stretchable displays, the stretchable light-emitting device array based on the island-bridge structure has attracted much attention. In this paper, we introduce the research progress of stretchable light-emitting device array based on island-bridge structure in the past ten years, and summarize the performance and characteristics of each device. Focusing on the key issues such as stretchability, mechanical stability and display quality of the device, the shape design and material selection scheme of the stretchable wires (interconnect bridge) between luminous units are introduced. The common optimization strategy of high-density pixel integration, tensile strain distribution and the solution for decreased pixel density due to the increase of stretchability are summarized. At present, the research of the stretchable luminescent display array based on island-bridge structure is still in its initial stage. The design, fabrication and realization of high-performance devices still face many challenges. This review aims to make some contribution to advancing the development of stretchable displays by summarizing current research.
发光器件可拉伸岛-桥结构
light-emitting devicestretchableisland-bridge structure
BOWDEN N, BRITTAIN S, EVANS A G, et al. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer [J]. Nature, 1998, 393(6681): 146-149. doi: 10.1038/30193http://dx.doi.org/10.1038/30193
TRUNG T Q, LEE N E. Recent progress on stretchable electronic devices with intrinsically stretchable components [J]. Adv. Mater., 2017, 29(3): 1603167-1-29. doi: 10.1002/adma.201603167http://dx.doi.org/10.1002/adma.201603167
WANG S H, OH J Y, XU J, et al. Skin-inspired electronics: an emerging paradigm [J]. Acc. Chem. Res., 2018, 51(5): 1033-1045. doi: 10.1021/acs.accounts.8b00015http://dx.doi.org/10.1021/acs.accounts.8b00015
YIN H X, ZHU Y, YOUSSEF K, et al. Structures and materials in stretchable electroluminescent devices [J]. Adv. Mater., 2022, 34(22): 2106184-1-28. doi: 10.1002/adma.202106184http://dx.doi.org/10.1002/adma.202106184
KOO J H, KIM D C, SHIM H J, et al. Flexible and stretchable smart display: materials, fabrication, device design, and system integration [J]. Adv. Funct. Mater., 2018, 28(35): 1801834-1-23. doi: 10.1002/adfm.201801834http://dx.doi.org/10.1002/adfm.201801834
MORIKAWAU Y, AYUB S, PAUL O, et al. Highly stretchable kirigami structure with integrated LED chips and electrodes for optogenetic experiments on perfused hearts [C]. 20th International Conference on Solid⁃State Sensors, Actuators and Microsystems & Eurosensors ⅩⅩ (TRANSDUCERS & EUROSENSORS), Berlin, 2019: 2484-2487. doi: 10.1109/transducers.2019.8808221http://dx.doi.org/10.1109/transducers.2019.8808221
JANG B, WON S, KIM J, et al. Auxetic meta-display: stretchable display without image distortion [J]. Adv. Funct. Mater., 2022, 32(22): 2113299-1-10. doi: 10.1002/adfm.202113299http://dx.doi.org/10.1002/adfm.202113299
LEE Y, CHUNG J W, LEE G H, et al. Standalone real-time health monitoring patch based on a stretchable organic optoelectronic system [J]. Sci. Adv., 2021, 7(23): eabg9180-1-10. doi: 10.1126/sciadv.abg9180http://dx.doi.org/10.1126/sciadv.abg9180
LEE Y, KIM D S, JIN S W, et al. Stretchable array of CdSe/ZnS quantum-dot light emitting diodes for visual display of bio-signals [J]. Chem. Eng. J., 2022, 427: 130858-1-10. doi: 10.1016/j.cej.2021.130858http://dx.doi.org/10.1016/j.cej.2021.130858
SONG H L, LUO G Q, JI Z Y, et al. Highly-integrated, miniaturized, stretchable electronic systems based on stacked multilayer network materials [J]. Sci. Adv., 2022, 8(11): eabm3785-1-12. doi: 10.1126/sciadv.abm3785http://dx.doi.org/10.1126/sciadv.abm3785
BYUN J, LEE B, OH E, et al. Fully printable, strain-engineered electronic wrap for customizable soft electronics [J]. Sci. Rep., 2017, 7: 45328-1-11. doi: 10.1038/srep45328http://dx.doi.org/10.1038/srep45328
BYUN J, OH E, LEE B, et al. A single droplet-printed double-side universal soft electronic platform for highly integrated stretchable hybrid electronics [J]. Adv. Funct. Mater., 2017, 27(36): 1701912-1-12. doi: 10.1002/adfm.201701912http://dx.doi.org/10.1002/adfm.201701912
YU Z B, NIU X F, LIU Z T, et al. Intrinsically stretchable polymer light-emitting devices using carbon nanotube-polymer composite electrodes [J]. Adv. Mater., 2011, 23(34): 3989-3994. doi: 10.1002/adma.201101986http://dx.doi.org/10.1002/adma.201101986
LIANG J J, LI L, NIU X F, et al. Elastomeric polymer light-emitting devices and displays [J]. Nat. Photonics, 2013, 7(10): 817-824. doi: 10.1038/nphoton.2013.242http://dx.doi.org/10.1038/nphoton.2013.242
LIANG J J, LI L, TONG K, et al. Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes [J]. ACS Nano, 2014, 8(2): 1590-1600. doi: 10.1021/nn405887khttp://dx.doi.org/10.1021/nn405887k
LARSON C, PEELE B, LI S, et al. Highly stretchable electroluminescent skin for optical signaling and tactile sensing [J]. Science, 2016, 351(6277): 1071-1074. doi: 10.1126/science.aac5082http://dx.doi.org/10.1126/science.aac5082
WHITE M S, KALTENBRUNNER M, GLOWACKI E D, et al. Ultrathin, highly flexible and stretchable PLEDs [J]. Nat. Photonics, 2013, 7(10): 811-816. doi: 10.1038/nphoton.2013.188http://dx.doi.org/10.1038/nphoton.2013.188
YOKOTA T, ZALAR P, KALTENBRUNNER M, et al. Ultraflexible organic photonic skin [J]. Sci. Adv., 2016, 2(4): e1501856-1-8. doi: 10.1126/sciadv.1501856http://dx.doi.org/10.1126/sciadv.1501856
SHIN G, JUNG I, MALYARCHUK V, et al. Micromechanics and advanced designs for curved photodetector arrays in hemispherical electronic-eye cameras [J]. Small, 2010, 6(7): 851-856. doi: 10.1002/smll.200901350http://dx.doi.org/10.1002/smll.200901350
KIM D, SHIN G, KANG Y J, et al. Fabrication of a stretchable solid-state micro-supercapacitor array [J]. ACS Nano, 2013, 7(9): 7975-7982. doi: 10.1021/nn403068dhttp://dx.doi.org/10.1021/nn403068d
LIM Y, YOON J, YUN J, et al. Biaxially stretchable, integrated array of high performance microsupercapacitors [J]. ACS Nano, 2014, 8(11): 11639-11650. doi: 10.1021/nn504925shttp://dx.doi.org/10.1021/nn504925s
HONG S Y, LEE Y H, PARK H, et al. Stretchable active matrix temperature sensor array of polyaniline nanofibers for electronic skin [J]. Adv. Mater., 2016, 28(5): 930-935. doi: 10.1002/adma.201504659http://dx.doi.org/10.1002/adma.201504659
YIN L, SEO J K, KURNIAWAN J, et al. Highly stable battery pack via insulated, reinforced, buckling-enabled interconnect array [J]. Small, 2018, 14(43): 1800938-1-8. doi: 10.1002/smll.201800938http://dx.doi.org/10.1002/smll.201800938
ZHANG Y H, FU H R, XU S, et al. A hierarchical computational model for stretchable interconnects with fractal-inspired designs [J]. J. Mech. Phys. Sol., 2014, 72: 115-130. doi: 10.1016/j.jmps.2014.07.011http://dx.doi.org/10.1016/j.jmps.2014.07.011
WANG S D, SONG J Z, KIM D H, et al. Local versus global buckling of thin films on elastomeric substrates [J]. Appl. Phys. Lett., 2008, 93(2): 023126-1-3. doi: 10.1063/1.2956402http://dx.doi.org/10.1063/1.2956402
KO H C, SHIN G, WANG S D, et al. Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements [J]. Small, 2009, 5(23): 2703-2709. doi: 10.1002/smll.200900934http://dx.doi.org/10.1002/smll.200900934
JIANG H Q, KHANG D Y, SONG J Z, et al. Finite deformation mechanics in buckled thin films on compliant supports [J]. Proc. Natl. Acad. Sci. USA, 2007, 104(40): 15607-15612. doi: 10.1073/pnas.0702927104http://dx.doi.org/10.1073/pnas.0702927104
JIANG H Q, SUN Y G, ROGERS J A, et al. Post-buckling analysis for the precisely controlled buckling of thin film encapsulated by elastomeric substrates [J]. Int. J. Sol. Struct., 2008, 45(7-8): 2014-2023. doi: 10.1016/j.ijsolstr.2007.11.007http://dx.doi.org/10.1016/j.ijsolstr.2007.11.007
WANG C F, WANG C H, HUANG Z L, et al. Materials and structures toward soft electronics [J]. Adv. Mater., 2019, 30(50): 1801368-1-49. doi: 10.1002/adma.201801368http://dx.doi.org/10.1002/adma.201801368
SONG J, HUANG Y, XIAO J, et al. Mechanics of noncoplanar mesh design for stretchable electronic circuits [J]. J. Appl. Phys., 2009, 105(12): 123516-1-6. doi: 10.1063/1.3148245http://dx.doi.org/10.1063/1.3148245
PARK S I, XIONG Y J, KIM R H, et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays [J]. Science, 2009, 325(5943): 977-981. doi: 10.1126/science.1175690http://dx.doi.org/10.1126/science.1175690
YU S Q, DENG Y, CHEUNG Y K, et al. A biaxially stretchable and washable led display enabled by a wavy-structured metal grid [J]. J. Microelectromech. Syst., 2022, 31(5): 771-776. doi: 10.1109/jmems.2022.3191310http://dx.doi.org/10.1109/jmems.2022.3191310
ZHANG Y H, XU S, FU H R, et al. Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage [J]. Soft Matter, 2013, 9(33): 8062-8070. doi: 10.1039/c3sm51360bhttp://dx.doi.org/10.1039/c3sm51360b
WIDLUND T, YANG S X, HSU Y Y, et al. Stretchability and compliance of freestanding serpentine-shaped ribbons [J]. Int. J. Sol. Struct., 2014, 51(23-24): 4026-4037. doi: 10.1016/j.ijsolstr.2014.07.025http://dx.doi.org/10.1016/j.ijsolstr.2014.07.025
MAMIDANNA A, SONG Z M, LV C, et al. Printing stretchable spiral interconnects using reactive ink chemistries [J]. ACS Appl. Mater. Interfaces, 2016, 8(20): 12594-12598. doi: 10.1021/acsami.6b03922http://dx.doi.org/10.1021/acsami.6b03922
LI K, CHENG X, ZHU F, et al. A generic soft encapsulation strategy for stretchable electronics [J]. Adv. Funct. Mater., 2019, 29(8): 1806630-1-12. doi: 10.1002/adfm.201806630http://dx.doi.org/10.1002/adfm.201806630
ZHAO Q, LIANG Z W, LU B W, et al. Toothed substrate design to improve stretchability of serpentine interconnect for stretchable electronics [J]. Adv. Mater. Technol., 2018, 3(11): 1800169-1-10. doi: 10.1002/admt.201800169http://dx.doi.org/10.1002/admt.201800169
FAN J A, YEO W H, SU Y W, et al. Fractal design concepts for stretchable electronics [J]. Nat. Commun., 2014, 5: 3266-1-8. doi: 10.1038/ncomms4266http://dx.doi.org/10.1038/ncomms4266
KIM R H, KIM D H, XIAO J L, et al. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics [J]. Nat. Mater., 2010, 9(11): 929-937. doi: 10.1038/nmat2879http://dx.doi.org/10.1038/nmat2879
HU X L, KRULL P, DE GRAFF B, et al. Stretchable inorganic-semiconductor electronic systems [J]. Adv. Mater., 2011, 23(26): 2933-2936. doi: 10.1002/adma.201100144http://dx.doi.org/10.1002/adma.201100144
KIM R H, BAE M H, KIM D G, et al. Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates [J]. Nano Lett., 2011, 11(9): 3881-3886. doi: 10.1021/nl202000uhttp://dx.doi.org/10.1021/nl202000u
CHOI M, JANG B, LEE W, et al. Stretchable active matrix inorganic light-emitting diode display enabled by overlay-aligned roll-transfer printing [J]. Adv. Funct. Mater., 2017, 27(11): 1606005-1-10. doi: 10.1002/adfm.201606005http://dx.doi.org/10.1002/adfm.201606005
FUKUDA K, YU K, SOMEYA T. The future of flexible organic solar cells [J]. Adv. Energy Mater., 2020, 10(25): 2000765-1-10. doi: 10.1002/aenm.202000765http://dx.doi.org/10.1002/aenm.202000765
SUN Y, YE W J, CHEN Y, et al. Geometric design classification of kirigami-inspired metastructures and metamaterials [J]. Structures, 2021, 33: 3633-3643. doi: 10.1016/j.istruc.2021.06.072http://dx.doi.org/10.1016/j.istruc.2021.06.072
CHO Y, SHIN J H, COSTA A, et al. Engineering the shape and structure of materials by fractal cut [J]. Proc. Natl. Acad. Sci. USA, 2014, 111(49): 17390-17395. doi: 10.1073/pnas.1417276111http://dx.doi.org/10.1073/pnas.1417276111
TANG Y C, YIN J. Design of cut unit geometry in hierarchical kirigami-based auxetic metamaterials for high stretchability and compressibility [J]. Extreme Mech. Lett., 2017, 12: 77-85. doi: 10.1016/j.eml.2016.07.005http://dx.doi.org/10.1016/j.eml.2016.07.005
TANG Y C, LI Y B, HONG Y Y. Programmable active kirigami metasheets with more freedom of actuation [J]. Proc. Natl. Acad. Sci. USA, 2020, 116(52): 26407-26413. doi: 10.1073/pnas.1906435116http://dx.doi.org/10.1073/pnas.1906435116
SHYU T C, DAMASCENO P F, DODD P M, et al. A kirigami approach to engineering elasticity in nanocomposites through patterned defects [J]. Nat. Mater., 2015, 14(8): 785-789. doi: 10.1038/nmat4327http://dx.doi.org/10.1038/nmat4327
CHEN K, YUAN M, ZHENG H M, et al. On the determination and optimization of apparent “elastic limit” of kirigami metallic glasses [J]. Phys. B: Condens. Matter, 2021, 609: 412901-1-7. doi: 10.1016/j.physb.2021.412901http://dx.doi.org/10.1016/j.physb.2021.412901
QI Z N, CAMPBELL D K, PARK H S. Atomistic simulations of tension-induced large deformation and stretchability in graphene kirigami [J]. Phys. Rev. B, 2014, 90(24): 245437-1-7. doi: 10.1103/physrevb.90.245437http://dx.doi.org/10.1103/physrevb.90.245437
CHEN S H, CHAN K C, HAN D X, et al. Programmable super elastic kirigami metallic glasses [J]. Mater. Des., 2019, 169: 107687-1-6. doi: 10.1016/j.matdes.2019.107687http://dx.doi.org/10.1016/j.matdes.2019.107687
CASTLE T, CHO Y G, GONG X T, et al. Making the cut: lattice kirigami rules [J]. Phys. Rev. Lett., 2014, 113(24): 245502-1-5. doi: 10.1103/physrevlett.113.245502http://dx.doi.org/10.1103/physrevlett.113.245502
SUSSMAN D M, CHO Y, CASTLE T, et al. Algorithmic lattice kirigami: a route to pluripotent materials [J]. Proc. Natl. Acad. Sci. USA, 2015, 112(24): 7449-7453. doi: 10.1073/pnas.1506048112http://dx.doi.org/10.1073/pnas.1506048112
CASTLE T, SUSSMAN D M, TANIS M, et al. Additive lattice kirigami [J]. Sci. Adv., 2016, 2(9): e1601258-1-11. doi: 10.1126/sciadv.1601258http://dx.doi.org/10.1126/sciadv.1601258
SCHENK M, GUEST S D. Geometry of Miura-folded metamaterials [J]. Proc. Natl. Acad. Sci. USA, 2013, 110(9): 3276-3281. doi: 10.1073/pnas.1217998110http://dx.doi.org/10.1073/pnas.1217998110
WEI Z Y, GUO Z V, DUDTE L, et al. Geometric mechanics of periodic pleated origami [J]. Phys. Rev. Lett., 2013, 110(21): 215501-1-5. doi: 10.1103/physrevlett.110.215501http://dx.doi.org/10.1103/physrevlett.110.215501
EIDINI M, PAULINO G H. Unraveling metamaterial properties in zigzag-base folded sheets [J]. Sci. Adv., 2015, 1(8): e1500224-1-7. doi: 10.1126/sciadv.1500224http://dx.doi.org/10.1126/sciadv.1500224
EIDINI M. Zigzag-base folded sheet cellular mechanical metamaterials [J]. Extreme Mech. Lett., 2016, 6: 96-102. doi: 10.1016/j.eml.2015.12.006http://dx.doi.org/10.1016/j.eml.2015.12.006
LIU Z G, DU H F, LI J F, et al. Nano-kirigami with giant optical chirality [J]. Sci. Adv., 2018, 4(7): eaat4436-1-8. doi: 10.1126/sciadv.aat4436http://dx.doi.org/10.1126/sciadv.aat4436
LI J F, LIU Z G. Focused-ion-beam-based nano-kirigami: from art to photonics [J]. Nanophotonics, 2018, 7(10): 1637-1650. doi: 10.1515/nanoph-2018-0117http://dx.doi.org/10.1515/nanoph-2018-0117
TANG Y T, LIU Z G, DENG J H, et al. Nano-kirigami metasurface with giant nonlinear optical circular dichroism [J]. Laser Photonics Rev., 2020, 14(7): 2000085-1-6. doi: 10.1002/lpor.202000085http://dx.doi.org/10.1002/lpor.202000085
LIU Z G, XU Y, JI C Y, et al. Fano-enhanced circular dichroism in deformable stereo metasurfaces [J]. Adv. Mater., 2020, 32(8): 1907077-1-9. doi: 10.1002/adma.201907077http://dx.doi.org/10.1002/adma.201907077
TANG Y C, LIN G J, YANG S, et al. Programmable kiri-kirigami metamaterials [J]. Adv. Mater., 2017, 29(10): 1604262-1-9. doi: 10.1002/adma.201604262http://dx.doi.org/10.1002/adma.201604262
KANG D J, KIM JM. Hybrid patterning of metal nanowire/polymer composites based on selective photocuring-and-transfer and kirigami cutting techniques for stretchable circuit application [J]. J. Mater. Chem. C, 2022, 10(38): 14242-14254. doi: 10.1039/d2tc02008dhttp://dx.doi.org/10.1039/d2tc02008d
SEKITANI T, NAKAJIMA H, MAEDA H, et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors [J]. Nat. Mater., 2009, 8(6): 494-499. doi: 10.1038/nmat2459http://dx.doi.org/10.1038/nmat2459
LEE P, LEE J, LEE H, et al. Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network [J]. Adv. Mater., 2012, 24(25): 3326-3332. doi: 10.1002/adma.201200359http://dx.doi.org/10.1002/adma.201200359
SON D, KANG J, VARDOULIS O, et al. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network [J]. Nat. Nanotechnol., 2018, 13(11): 1057-1065. doi: 10.1038/s41565-018-0244-6http://dx.doi.org/10.1038/s41565-018-0244-6
KIM S, BYUN J, CHOI S, et al. Negatively strain-dependent electrical resistance of magnetically arranged nickel composites: application to highly stretchable electrodes and stretchable lighting devices [J]. Adv. Mater., 2014, 26(19): 3094-3099. doi: 10.1002/adma.201304686http://dx.doi.org/10.1002/adma.201304686
ROBINSON A, AZIZ A, LIU Q, et al. Hybrid stretchable circuits on silicone substrate [J]. J. Appl. Phys., 2014, 115(14): 143511-1-5. doi: 10.1063/1.4871279http://dx.doi.org/10.1063/1.4871279
DRACK M, GRAZ I, SEKITANI T, et al. An imperceptible plastic electronic wrap [J]. Adv. Mater., 2015, 27(1): 34-40. doi: 10.1002/adma.201403093http://dx.doi.org/10.1002/adma.201403093
YANG J C, LEE S, MA B S, et al. Geometrically engineered rigid island array for stretchable electronics capable of withstanding various deformation modes [J]. Sci. Adv., 2022, 8(22): eabn3863-1-11. doi: 10.1126/sciadv.abn3863http://dx.doi.org/10.1126/sciadv.abn3863
LEE Y, KIM B J, HU L, et al. Morphable 3D structure for stretchable display [J]. Mater. Today, 2022, 53: 51-57. doi: 10.1016/j.mattod.2022.01.017http://dx.doi.org/10.1016/j.mattod.2022.01.017
KIM T, LEE H, JO W, et al. Realizing stretchable OLEDs: a hybrid platform based on rigid island arrays on a stress-relieving bilayer structure [J]. Adv. Mater. Technol., 2020, 5(11): 2000494-1-7. doi: 10.1002/admt.202000494http://dx.doi.org/10.1002/admt.202000494
LIM M S, NAM M, CHOI S, et al. Two-dimensionally stretchable organic light-emitting diode with elastic pillar arrays for stress relief [J]. Nano Lett., 2020, 20(3): 1526-1535. doi: 10.1021/acs.nanolett.9b03657http://dx.doi.org/10.1021/acs.nanolett.9b03657
ROMEO A, LIU Q H, SUO Z G, et al. Elastomeric substrates with embedded stiff platforms for stretchable electronics [J]. Appl. Phys. Lett., 2013, 102(13): 131904-1-5. doi: 10.1063/1.4799653http://dx.doi.org/10.1063/1.4799653
GRAZ I M, COTTON D P J, ROBINSON A, et al. Silicone substrate with in situ strain relief for stretchable thin-film transistors [J]. Appl. Phys. Lett., 2011, 98(12): 124101-1-3. doi: 10.1063/1.3570661http://dx.doi.org/10.1063/1.3570661
LACOUR S P, WAGNER S, NARAYAN R J, et al. Stiff subcircuit islands of diamondlike carbon for stretchable electronics [J]. J. Appl. Phys., 2006, 100(1): 014913-1-6. doi: 10.1063/1.2210170http://dx.doi.org/10.1063/1.2210170
0
Views
176
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution