浏览全部资源
扫码关注微信
南京信息工程大学 化学与材料学院, 江苏 南京 210044
Published:05 October 2023,
Received:14 April 2023,
Revised:06 May 2023,
扫 描 看 全 文
杨成,胡欣,陶涛.含苯甲酸乙酯结构的共轭材料对硝基芳烃爆炸物的荧光检测[J].发光学报,2023,44(10):1862-1871.
YANG Cheng,HU Xin,TAO Tao.Conjugated Materials Containing Ethyl Benzoate Structure for Fluorescent Detection of Nitroaromatic Explosives[J].Chinese Journal of Luminescence,2023,44(10):1862-1871.
杨成,胡欣,陶涛.含苯甲酸乙酯结构的共轭材料对硝基芳烃爆炸物的荧光检测[J].发光学报,2023,44(10):1862-1871. DOI: 10.37188/CJL.20230084.
YANG Cheng,HU Xin,TAO Tao.Conjugated Materials Containing Ethyl Benzoate Structure for Fluorescent Detection of Nitroaromatic Explosives[J].Chinese Journal of Luminescence,2023,44(10):1862-1871. DOI: 10.37188/CJL.20230084.
以苯甲酸乙酯为骨架,在不同位置引入不同数量的三苯乙烯和四苯乙烯,制备了含苯甲酸乙酯结构的系列共轭化合物
EB1~EB4
。紫外‐可见吸收光谱和荧光发射光谱测试结果表明,所合成的四种共轭材料均具有明显的聚集诱导发光特性。将四种共轭材料作为荧光探针,成功用于硝基爆炸物的水相识别。荧光滴定结果表明,该系列共轭化合物对苦味酸(PA)具有潜在的传感性能,化合物
EB1~EB4
对溶液中PA的检测限分别为1.35 × 10
-6
,1.69 × 10
-6
,1.12 × 10
-6
,8.88 × 10
-7
mol/L;做成试纸检测器的裸眼检测限为1.14 ng/cm
2
。这类含苯甲酸乙酯结构的共轭材料及其衍生物为新型荧光材料的制造提供了重要思路。
A series of conjugated compounds
EB1-EB4
have been synthesized with different positions and numbers of triphenylethylene/tetraphenylethylene groups and the same ethyl benzoate (EB) skeleton
via
the Suzuki coupling reaction. The UV-Vis absorption and fluorescent emission experiment show that all four compounds exhibit obvious aggregation-induced emission (AIE) properties. More importantly, these materials can identify and recognize nitro explosives for the aqueous phase as fluorescent probes. The fluorescent titration results indicate compounds
EB1-EB4
possess the potential sensing properties for picric acid (PA), with a low detection limit of 1.35 × 10
-6
, 1.69 × 10
-6
, 1.12 × 10
-6
, 8.88 × 10
-7
mol/L, respectively. Interestingly, the best result of the test paper detector is 1.14 ng/cm
2
for PA. These conjugated compounds and their derivatives containing EB structure provide important ideas for the manufacture of future fluorescent materials.
苯甲酸乙酯三苯乙烯四苯乙烯聚集诱导发光硝基芳烃爆炸物
ethyl benzoatetriphenylethylenetetraphenylethyleneaggregation-induced emissionnitroaromatic explosives
ZENG G L, LIANG Z H, JIANG X, et al. An ESIPT-dependent AIE fluorophore based on HBT derivative: substituent positional impact on aggregated luminescence and its application for hydrogen peroxide detection [J]. Chem.⁃ Eur. J., 2022, 28(5): e202103241-1-9. doi: 10.1002/chem.202103241http://dx.doi.org/10.1002/chem.202103241
HAN C, SUN S B, JI X, et al. A novel fluorescent probe with ACQ-AIE conversion by alkyl chain engineering for simultaneous visualization of lipid droplets and lysosomes [J]. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2023, 285: 121884. doi: 10.1016/j.saa.2022.121884http://dx.doi.org/10.1016/j.saa.2022.121884
周璐璐, 吴斌, 李安泽, 等. 六硫苯六吡啶在有机相中的光控聚集诱导发光行为 [J]. 发光学报, 2021, 42(3): 296-302. doi: 10.37188/cjl.20200342http://dx.doi.org/10.37188/cjl.20200342
ZHOU L L, WU B, LI A Z, et al. Photocontrolled aggregation induced emission of hexathiobenzene hexapyridine in organic phase [J]. Chin. J. Lumin., 2021, 42(3): 296-302. (in Chinese). doi: 10.37188/cjl.20200342http://dx.doi.org/10.37188/cjl.20200342
MA Y Q, ZHANG Y Y, LIU X J, et al. AIE-active luminogen for highly sensitive and selective detection of picric acid in water samples: Pyridyl as an effective recognition group [J]. Dyes Pigm., 2019, 163: 1-8. doi: 10.1016/j.dyepig.2018.11.034http://dx.doi.org/10.1016/j.dyepig.2018.11.034
LUO J D, XIE Z L, LAM J W Y, et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole [J]. Chem. Commun., 2001(18): 1740-1741. doi: 10.1039/b105159hhttp://dx.doi.org/10.1039/b105159h
RAVOTTO L, CERONI P. Aggregation induced phosphorescence of metal complexes: From principles to applications [J]. Coord. Chem. Rev., 2017, 346: 62-76. doi: 10.1016/j.ccr.2017.01.006http://dx.doi.org/10.1016/j.ccr.2017.01.006
WU K L, ZHANG T, ZHAN L S, et al. Tailoring optoelectronic properties of phenanthroline-based thermally activated delayed fluorescence emitters through isomer engineering [J]. Adv. Opt. Mater., 2016, 4(10): 1558-1566. doi: 10.1002/adom.201600304http://dx.doi.org/10.1002/adom.201600304
LU N N, JIANG T, TAN H Q, et al. A red fluorescent turn-on chemosensor for Al3+ based on a dimethoxy triphenylamine benzothiadiazole derivative with aggregation-induced emission [J]. Anal. Methods, 2017, 9(18): 2689-2695. doi: 10.1039/c7ay00145bhttp://dx.doi.org/10.1039/c7ay00145b
WEN X Y, FAN Z F. A novel ‘turn-on’ fluorescence probe with aggregation-induced emission for the selective detection and bioimaging of Hg2+ in live cells [J]. Sens. Actuators B Chem., 2017, 247: 655-663. doi: 10.1016/j.snb.2017.03.062http://dx.doi.org/10.1016/j.snb.2017.03.062
NAIK V G, HIREMATH S D, THAKURI A, et al. A coumarin coupled tetraphenylethylene based multi-targeted AIEgen for cyanide ion and nitro explosive detection, and cellular imaging [J]. Analyst, 2022, 147(13): 2997-3006. doi: 10.1039/d2an00040ghttp://dx.doi.org/10.1039/d2an00040g
WANG J, MEI J, HU R R, et al. Click synthesis, aggregation-induced emission, E/Z isomerization, self-organization, and multiple chromisms of pure stereoisomers of a tetraphenylethene-cored luminogen [J]. J. Am. Chem. Soc., 2012, 134(24): 9956-9966. doi: 10.1021/ja208883hhttp://dx.doi.org/10.1021/ja208883h
SHI H P, XIN D H, GU X G, et al. The synthesis of novel AIE emitters with the triphenylethene-carbazole skeleton and para-/meta-substituted arylboron groups and their application in efficient non-doped OLEDs [J]. J. Mater. Chem. C, 2016, 4(6): 1228-1237. doi: 10.1039/c5tc04008fhttp://dx.doi.org/10.1039/c5tc04008f
NEENA K K, SUDHAKAR P, DIPAK K, et al. Diarylboryl-phenothiazine based multifunctional molecular siblings [J]. Chem. Commun., 2017, 53(26): 3641-3644. doi: 10.1039/c6cc09717khttp://dx.doi.org/10.1039/c6cc09717k
TSENG N W, LIU J Z, NG J C Y, et al. Deciphering mechanism of aggregation-induced emission (AIE): Is E-Z isomerisation involved in an AIE process? [J]. Chem. Sci., 2012, 3(2): 493-497. doi: 10.1039/c1sc00690hhttp://dx.doi.org/10.1039/c1sc00690h
CHU Z W, FAN Z X, ZHANG X, et al. A comparison of ACQ, AIE and AEE-based polymers loaded on polyurethane foams as sensors for explosives detection [J]. Sensors, 2018, 18(5): 1565-1-12. doi: 10.3390/s18051565http://dx.doi.org/10.3390/s18051565
WALDRON C, PANKAJAKSHAN A, QUAGLIO M, et al. Closed-loop model-based design of experiments for kinetic model discrimination and parameter estimation: benzoic acid esterification on a heterogeneous catalyst [J]. Ind. Eng. Chem. Res., 2019, 58(49): 22165-22177. doi: 10.1021/acs.iecr.9b04089http://dx.doi.org/10.1021/acs.iecr.9b04089
RAJALAKSHMI C, KRISHNAN A, SARANYA S, et al. A detailed theoretical investigation to unravel the molecular mechanism of the ligand-free copper-catalyzed Suzuki cross-coupling reaction [J]. Org. Biomol. Chem., 2022, 20(22): 4539-4552. doi: 10.1039/d2ob00371fhttp://dx.doi.org/10.1039/d2ob00371f
ZHANG X L, LI P H, JI Y, et al. An efficient and recyclable magnetic-nanoparticle-supported palladium catalyst for the Suzuki coupling reactions of organoboronic acids with alkynyl bromides [J]. Synthesis, 2011(18): 2975-2983. doi: 10.1055/s-0030-1260138http://dx.doi.org/10.1055/s-0030-1260138
SIEGEL R, GLAZIER S. TNT Sensor: Stern-Volmer analysis of luminescence quenching of ruthenium bipyridine [J]. J. Chem. Educ., 2021, 98(8): 2643-2648. doi: 10.1021/acs.jchemed.0c01221http://dx.doi.org/10.1021/acs.jchemed.0c01221
LIU Y C, HOU J Y, ZHANG Y L, et al. A simple AIE chemosensor based on diphenyl imidazole scaffold for 2, 4, 6-trinitrophenol detection and dye absorption [J]. Spectrochim. Acta. A Mol. Biomol. Spectrosc., 2023, 285: 121867-1-10. doi: 10.1016/j.saa.2022.121867http://dx.doi.org/10.1016/j.saa.2022.121867
PAN D Y, DON Y, LU Y H, et al. AIE fluorescent probe based on tetraphenylethylene and morpholine-thiourea structures for detection of HClO [J]. Anal. Chim. Acta, 2022, 1235: 340559-1-10. doi: 10.1016/j.aca.2022.340559http://dx.doi.org/10.1016/j.aca.2022.340559
ZHANG X N, WANG J K, ZHAO H T, et al. Efficient single benzene AIE system: Optical waveguide and invisible ink [J]. Dyes Pigm., 2023, 209: 110947-1-9. doi: 10.1016/j.dyepig.2022.110947http://dx.doi.org/10.1016/j.dyepig.2022.110947
YANG K, CHEN L, LIU D Y, et al. Quantitative prediction and ranking of the shock sensitivity of explosives via reactive molecular dynamics simulations [J]. Def. Technol., 2022, 18(5): 843-854. doi: 10.1016/j.dt.2022.01.002http://dx.doi.org/10.1016/j.dt.2022.01.002
KUBO M, YOSHIDA H. Electron affinities of small-molecule organic semiconductors: Comparison among cyclic voltammetry, conventional inverse photoelectron spectroscopy, and low-energy inverse photoelectron spectroscopy [J]. Org. Electron., 2022, 108: 106551-1-5. doi: 10.1016/j.orgel.2022.106551http://dx.doi.org/10.1016/j.orgel.2022.106551
FRISCH M J, TRUCKS G W, SCHLEGEL J, et al. Gaussian 09, revision C.01 [M]. Wallingford CT: Gaussian Inc, 2010.
DEL BENE J, PERSON W B, SZCZEPANIAK K. Properties of hydrogen-bonded complexes obtained from the B3LYP functional with 6-31G(d,p) and 6-31+G (d,p) basis sets: comparison with MP2/6-31+G(d,p) results and experimental data [J]. J. Phys. Chem., 1995, 99(27): 10705-10707. doi: 10.1021/j100027a005http://dx.doi.org/10.1021/j100027a005
CHIODO S, RUSSO N, SICILIA E. LANL2DZ basis sets recontracted in the framework of density functional theory [J]. J. Chem. Phys., 2006, 125(10): 104107-1-8. doi: 10.1063/1.2345197http://dx.doi.org/10.1063/1.2345197
WU K, HU J S, SHI S N, et al. A thermal stable pincer-MOF with high selective and sensitive nitro explosive TNP, metal ion Fe3+ and pH sensing in aqueous solution [J]. Dyes Pigm., 2020, 173: 107993-1-9. doi: 10.1016/j.dyepig.2019.107993http://dx.doi.org/10.1016/j.dyepig.2019.107993
DELENTE J M, UMADEVI D, SHANMUGARAJU S, et al. Aggregation induced emission (AIE) active 4-amino-1,8-naphthalimide-Tröger's base for the selective sensing of chemical explosives in competitive aqueous media [J]. Chem. Commun., 2020, 56(17): 2562-2565. doi: 10.1039/c9cc08457fhttp://dx.doi.org/10.1039/c9cc08457f
LIU H X, FU X M, HU J H. AIE based colorimetric and fluorescent sensor for the selective detection of CN- in aqueous media [J]. Inorg. Chem. Commun., 2022, 142: 109662-1-7. doi: 10.1016/j.inoche.2022.109662http://dx.doi.org/10.1016/j.inoche.2022.109662
HEMAMALINI P T. An explosive instability of Kelvin-Helmholtz flows in ferrofluids: Effect of periodic tangential magnetic field with rotation [J]. Indian J. Chem. Technol., 2019, 12(23): 1-7. doi: 10.17485/ijst/2019/v12i23/145366http://dx.doi.org/10.17485/ijst/2019/v12i23/145366
0
Views
94
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution