Ratiometric Photon-upconversion Cryometer Based on Er3+/Tm3+ Partition Doped Nanostructure
返回论文页
Cover Story|更新时间:2023-09-06
|
Ratiometric Photon-upconversion Cryometer Based on Er3+/Tm3+ Partition Doped Nanostructure
增强出版
Chinese Journal of LuminescenceVol. 44, Issue 8, Pages: 1335-1343(2023)
作者机构:
1.中国科学院长春光学精密机械与物理研究所 发光学及应用国家重点实验室, 吉林 长春 130033
2.中国科学院大学, 北京 100049
作者简介:
基金信息:
the National Key Research and Development Program of China(2021YFA0715603);The National Natural Science Foundation of China(62075217);Project of Science and Technology Agency, Jilin Province(20210101148JC;202512JC010475440;20230508104RC);The State Key Laboratory of Luminescence and Applications(SKLA⁃2019⁃02;SKLA⁃2020⁃09)
lanthanide-doped nano⁃particles with the core@multishell structure were synthesized by solvothermal method. The upconversion luminescence (UCL) properties of the materials at temperature from 10 K to 295 K were studied under 980 nm excitation. Green and red UCL from Er
3+
and blue UCL from Tm
3+
were observed in the visible light range. The luminescence intensity of green UCL first increased and then decreased, while the luminescence intensity of blue light showed a thermal attenuation trend with the temperature increase. The method of temperature-dependent luminescence intensity ratio (LIR) can be used in accurate temperature measurement, and the relative sensitivity is up to 3.2%·K
-1
. With various thicknesses of the outer luminescent shell, the different tendencies of LIR can be realized, which can be applied to cryogenic field anticounterfeiting.
RING E F J. The historical development of temperature measurement in medicine [J]. Infrared Phys. Technol., 2007, 49(3): 297-301. doi: 10.1016/j.infrared.2006.06.029http://dx.doi.org/10.1016/j.infrared.2006.06.029
LI H Y, WEI F, LI Y Z, et al. Optical fiber sensor based on upconversion nanoparticles for internal temperature monitoring of Li-ion batteries [J]. J. Mater. Chem. C, 2021, 9(41): 14757-14765. doi: 10.1039/d1tc03701chttp://dx.doi.org/10.1039/d1tc03701c
XU M, ZOU X M, SU Q Q, et al. Ratiometric nanothermometer in vivo based on triplet sensitized upconversion [J]. Nat. Commun., 2018, 9(1): 2698-1-7. doi: 10.1038/s41467-018-05160-1http://dx.doi.org/10.1038/s41467-018-05160-1
WANG X F, LIU Q, BU Y Y, et al. Optical temperature sensing of rare-earth ion doped phosphors [J]. RSC Adv., 2015, 5(105): 86219-86236. doi: 10.1039/c5ra16986khttp://dx.doi.org/10.1039/c5ra16986k
MI C, ZHOU J J, WANG F, et al. Ultrasensitive ratiometric nanothermometer with large dynamic range and photostability [J]. Chem. Mater., 2019, 31(22): 9480-9487. doi: 10.1021/acs.chemmater.9b03466http://dx.doi.org/10.1021/acs.chemmater.9b03466
WANG Q, LIAO M, LIN Q M, et al. A review on fluorescence intensity ratio thermometer based on rare-earth and transition metal ions doped inorganic luminescent materials [J]. J. Alloys Compd., 2021, 850: 156744-1-14. doi: 10.1016/j.jallcom.2020.156744http://dx.doi.org/10.1016/j.jallcom.2020.156744
XIE X Y, WANG W, CHEN H R, et al. CaGdF5 based heterogeneous core@shell upconversion nanoparticles for sensitive temperature measurement [J]. RSC Adv., 2023, 13(13): 8535-8539. doi: 10.1039/d3ra00716bhttp://dx.doi.org/10.1039/d3ra00716b
PEIJZEL P S, MEIJERINK A, WEGH R T, et al. A complete 4fn energy level diagram for all trivalent lanthanide ions [J]. J. Solid State Chem., 2005, 178(2): 448-453. doi: 10.1016/j.jssc.2004.07.046http://dx.doi.org/10.1016/j.jssc.2004.07.046
NIE J H, YING W T, FAN X M, et al. Cryogenic dependent energy manipulation in nonthermally coupled levels for multicolor upconversion luminescence [J]. J. Phy. Chem. C, 2021, 125(34): 19040-19047. doi: 10.1021/acs.jpcc.1c06701http://dx.doi.org/10.1021/acs.jpcc.1c06701
TU L P, WU K F, LUO Y S, et al. Significant enhancement of the upconversion emission in highly Er3+-doped nanoparticles at cryogenic temperatures [J]. Angew. Chem. Int. Ed., 2023, 62(7): e202217100. doi: 10.1002/anie.202217100http://dx.doi.org/10.1002/anie.202217100
SUO H, ZHU Q, ZHANG X, et al. High-security anti-counterfeiting through upconversion luminescence [J]. Mater. Today Phys., 2021, 21: 100520. doi: 10.1016/j.mtphys.2021.100520http://dx.doi.org/10.1016/j.mtphys.2021.100520
LIU H M, YAN L, HUANG J S, et al. Ultrasensitive thermochromic upconversion in core-shell-shell nanoparticles for nanothermometry and anticounterfeiting [J]. J. Phys. Chem. Lett., 2022, 13(10): 2306-2312. doi: 10.1021/acs.jpclett.2c00005http://dx.doi.org/10.1021/acs.jpclett.2c00005
ZHOU S S, DENG K M, WEI X T, et al. Upconversion luminescence of NaYF4∶Yb3+, Er3+ for temperature sensing [J]. Opt. Commun., 2013, 291: 138-142. doi: 10.1016/j.optcom.2012.11.005http://dx.doi.org/10.1016/j.optcom.2012.11.005
SUYVER J F, GRIMM J, KRÄMER K W, et al. Highly efficient near-infrared to visible up-conversion process in NaYF4∶Er3+, Yb3+ [J]. J. Lumin., 2005, 114(1): 53-59. doi: 10.1016/j.jlumin.2004.11.012http://dx.doi.org/10.1016/j.jlumin.2004.11.012
XIE X Y, LI Q Q, CHEN H, et al. Manipulating the injected energy flux via host-sensitized nanostructure for improving multiphoton upconversion luminescence of Tm3+ [J]. Nano Lett., 2022, 22(13): 5339-5347. doi: 10.1021/acs.nanolett.2c01324http://dx.doi.org/10.1021/acs.nanolett.2c01324
WANG X F, WANG Y, MARQUES-HUESO J, et al. Improving optical temperature sensing performance of Er3+ doped Y2O3 microtubes via co-doping and controlling excitation power [J]. Sci. Rep., 2017, 7(1): 758-1-13. doi: 10.1038/s41598-017-00838-whttp://dx.doi.org/10.1038/s41598-017-00838-w
LU H Y, MENG R, HAO H Y, et al. Stark sublevels of Er3+-Yb3+ codoped Gd2(WO4)3 phosphor for enhancing the sensitivity of a luminescent thermometer [J]. RSC Adv., 2016, 6(62): 57667-57671. doi: 10.1039/c6ra10138khttp://dx.doi.org/10.1039/c6ra10138k
ZHENG S H, CHEN W B, TAN D Z, et al. Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors [J]. Nanoscale, 2014, 6(11): 5675-5679. doi: 10.1039/c4nr00432ahttp://dx.doi.org/10.1039/c4nr00432a
KACZMAREK A M, LIU Y Y, WANG C H, et al. Grafting of a Eu3+-tfac complex on to a Tb3+-metal organic framework for use as a ratiometric thermometer [J]. Dalton Trans., 2017, 46(37): 12717-12723. doi: 10.1039/c7dt02042bhttp://dx.doi.org/10.1039/c7dt02042b
HAOUARI M, MAAOUI A, SAAD N, et al. Optical temperature sensing using green emissions of Er3+ doped fluoro-tellurite glass [J]. Sens. Actuators A: Phys., 2017, 261: 235-242. doi: 10.1016/j.sna.2017.04.012http://dx.doi.org/10.1016/j.sna.2017.04.012
KACZMAREK A M, KACZMAREK M K, VAN DEUN R. Er3+-to-Yb3+ and Pr3+-to-Yb3+ energy transfer for highly efficient near-infrared cryogenic optical temperature sensing [J]. Nanoscale, 2019, 11(3): 833-837. doi: 10.1039/c8nr08348ghttp://dx.doi.org/10.1039/c8nr08348g