浏览全部资源
扫码关注微信
1.中国科学院长春光学精密机械与物理研究所 发光学及应用国家重点实验室, 吉林 长春 130033
2.中国科学院大学, 北京 100049
Received:27 March 2023,
Revised:11 April 2023,
Published:05 August 2023
移动端阅览
吴晗,陈浩然,解小雨等.Er3+/Tm3+分区掺杂结构的比率型光子上转换低温探针[J].发光学报,2023,44(08):1335-1343.
WU Han,CHEN Haoran,XIE Xiaoyu,et al.Ratiometric Photon-upconversion Cryometer Based on Er3+/Tm3+ Partition Doped Nanostructure[J].Chinese Journal of Luminescence,2023,44(08):1335-1343.
吴晗,陈浩然,解小雨等.Er3+/Tm3+分区掺杂结构的比率型光子上转换低温探针[J].发光学报,2023,44(08):1335-1343. DOI: 10.37188/CJL.20230073.
WU Han,CHEN Haoran,XIE Xiaoyu,et al.Ratiometric Photon-upconversion Cryometer Based on Er3+/Tm3+ Partition Doped Nanostructure[J].Chinese Journal of Luminescence,2023,44(08):1335-1343. DOI: 10.37188/CJL.20230073.
利用溶剂热法制备了六角相NaYF
4
∶20%Yb,2%Er@NaYF
4
@NaYbF
4
∶0.5%Tm@NaYF
4
多层核壳结构稀土掺杂上转换纳米粒子,研究其在低温场(10~295 K)及980 nm激发下分别来自于Er
3+
的绿色与红色以及Tm
3+
的蓝色发光的上转换发光性质。结果显示,绿光强度随温度升高呈现出先增后降的变化趋势,而蓝光强度随温度升高呈现热衰减的趋势。本工作利用发光强度比的测温方法实现了精准的温度测量,相对灵敏度可达3.2%·K
-1
。并通过改变外层发光壳层的厚度调节发光强度比,进一步应用于低温场光学防伪。
Hexagonal phase NaYF
4
∶20%Yb,2%Er@NaYF
4
@NaYbF
4
∶0.5%Tm@NaYF
4
lanthanide-doped nano⁃particles with the core@multishell structure were synthesized by solvothermal method. The upconversion luminescence (UCL) properties of the materials at temperature from 10 K to 295 K were studied under 980 nm excitation. Green and red UCL from Er
3+
and blue UCL from Tm
3+
were observed in the visible light range. The luminescence intensity of green UCL first increased and then decreased, while the luminescence intensity of blue light showed a thermal attenuation trend with the temperature increase. The method of temperature-dependent luminescence intensity ratio (LIR) can be used in accurate temperature measurement, and the relative sensitivity is up to 3.2%·K
-1
. With various thicknesses of the outer luminescent shell, the different tendencies of LIR can be realized, which can be applied to cryogenic field anticounterfeiting.
RING E F J . The historical development of temperature measurement in medicine [J]. Infrared Phys. Technol. , 2007 , 49 ( 3 ): 297 - 301 . doi: 10.1016/j.infrared.2006.06.029 http://dx.doi.org/10.1016/j.infrared.2006.06.029
LI H Y , WEI F , LI Y Z , et al . Optical fiber sensor based on upconversion nanoparticles for internal temperature monitoring of Li-ion batteries [J]. J. Mater. Chem. C , 2021 , 9 ( 41 ): 14757 - 14765 . doi: 10.1039/d1tc03701c http://dx.doi.org/10.1039/d1tc03701c
XU M , ZOU X M , SU Q Q , et al . Ratiometric nanothermometer in vivo based on triplet sensitized upconversion [J]. Nat. Commun. , 2018 , 9 ( 1 ): 2698-1-7 . doi: 10.1038/s41467-018-05160-1 http://dx.doi.org/10.1038/s41467-018-05160-1
WANG X F , LIU Q , BU Y Y , et al . Optical temperature sensing of rare-earth ion doped phosphors [J]. RSC Adv. , 2015 , 5 ( 105 ): 86219 - 86236 . doi: 10.1039/c5ra16986k http://dx.doi.org/10.1039/c5ra16986k
MI C , ZHOU J J , WANG F , et al . Ultrasensitive ratiometric nanothermometer with large dynamic range and photostability [J]. Chem. Mater. , 2019 , 31 ( 22 ): 9480 - 9487 . doi: 10.1021/acs.chemmater.9b03466 http://dx.doi.org/10.1021/acs.chemmater.9b03466
WANG Q , LIAO M , LIN Q M , et al . A review on fluorescence intensity ratio thermometer based on rare-earth and transition metal ions doped inorganic luminescent materials [J]. J. Alloys Compd. , 2021 , 850 : 156744-1 - 14 . doi: 10.1016/j.jallcom.2020.156744 http://dx.doi.org/10.1016/j.jallcom.2020.156744
XIE X Y , WANG W , CHEN H R , et al . CaGdF 5 based heterogeneous core@shell upconversion nanoparticles for sensitive temperature measurement [J]. RSC Adv. , 2023 , 13 ( 13 ): 8535 - 8539 . doi: 10.1039/d3ra00716b http://dx.doi.org/10.1039/d3ra00716b
PEIJZEL P S , MEIJERINK A , WEGH R T , et al . A complete 4 f n energy level diagram for all trivalent lanthanide ions [J]. J. Solid State Chem. , 2005 , 178 ( 2 ): 448 - 453 . doi: 10.1016/j.jssc.2004.07.046 http://dx.doi.org/10.1016/j.jssc.2004.07.046
NIE J H , YING W T , FAN X M , et al . Cryogenic dependent energy manipulation in nonthermally coupled levels for multicolor upconversion luminescence [J]. J. Phy. Chem. C , 2021 , 125 ( 34 ): 19040 - 19047 . doi: 10.1021/acs.jpcc.1c06701 http://dx.doi.org/10.1021/acs.jpcc.1c06701
TU L P , WU K F , LUO Y S , et al . Significant enhancement of the upconversion emission in highly Er 3+ -doped nanoparticles at cryogenic temperatures [J]. Angew. Chem. Int. Ed. , 2023 , 62 ( 7 ): e202217100 . doi: 10.1002/anie.202217100 http://dx.doi.org/10.1002/anie.202217100
SUO H , ZHU Q , ZHANG X , et al . High-security anti-counterfeiting through upconversion luminescence [J]. Mater. Today Phys. , 2021 , 21 : 100520 . doi: 10.1016/j.mtphys.2021.100520 http://dx.doi.org/10.1016/j.mtphys.2021.100520
LIU H M , YAN L , HUANG J S , et al . Ultrasensitive thermochromic upconversion in core-shell-shell nanoparticles for nanothermometry and anticounterfeiting [J]. J. Phys. Chem. Lett. , 2022 , 13 ( 10 ): 2306 - 2312 . doi: 10.1021/acs.jpclett.2c00005 http://dx.doi.org/10.1021/acs.jpclett.2c00005
ZHOU S S , DENG K M , WEI X T , et al . Upconversion luminescence of NaYF 4 ∶Yb 3+ , Er 3+ for temperature sensing [J]. Opt. Commun. , 2013 , 291 : 138 - 142 . doi: 10.1016/j.optcom.2012.11.005 http://dx.doi.org/10.1016/j.optcom.2012.11.005
SUYVER J F , GRIMM J , KRÄMER K W , et al . Highly efficient near-infrared to visible up-conversion process in NaYF 4 ∶Er 3+ , Yb 3+ [J]. J. Lumin. , 2005 , 114 ( 1 ): 53 - 59 . doi: 10.1016/j.jlumin.2004.11.012 http://dx.doi.org/10.1016/j.jlumin.2004.11.012
XIE X Y , LI Q Q , CHEN H , et al . Manipulating the injected energy flux via host-sensitized nanostructure for improving multiphoton upconversion luminescence of Tm 3+ [J]. Nano Lett. , 2022 , 22 ( 13 ): 5339 - 5347 . doi: 10.1021/acs.nanolett.2c01324 http://dx.doi.org/10.1021/acs.nanolett.2c01324
WANG X F , WANG Y , MARQUES-HUESO J , et al . Improving optical temperature sensing performance of Er 3+ doped Y 2 O 3 microtubes via co-doping and controlling excitation power [J]. Sci. Rep. , 2017 , 7 ( 1 ): 758-1-13 . doi: 10.1038/s41598-017-00838-w http://dx.doi.org/10.1038/s41598-017-00838-w
LU H Y , MENG R , HAO H Y , et al . Stark sublevels of Er 3+ -Yb 3+ codoped Gd 2 (WO 4 ) 3 phosphor for enhancing the sensitivity of a luminescent thermometer [J]. RSC Adv. , 2016 , 6 ( 62 ): 57667 - 57671 . doi: 10.1039/c6ra10138k http://dx.doi.org/10.1039/c6ra10138k
ZHENG S H , CHEN W B , TAN D Z , et al . Lanthanide-doped NaGdF 4 core-shell nanoparticles for non-contact self-referencing temperature sensors [J]. Nanoscale , 2014 , 6 ( 11 ): 5675 - 5679 . doi: 10.1039/c4nr00432a http://dx.doi.org/10.1039/c4nr00432a
KACZMAREK A M , LIU Y Y , WANG C H , et al . Grafting of a Eu 3+ -tfac complex on to a Tb 3+ -metal organic framework for use as a ratiometric thermometer [J]. Dalton Trans. , 2017 , 46 ( 37 ): 12717 - 12723 . doi: 10.1039/c7dt02042b http://dx.doi.org/10.1039/c7dt02042b
HAOUARI M , MAAOUI A , SAAD N , et al . Optical temperature sensing using green emissions of Er 3+ doped fluoro-tellurite glass [J]. Sens. Actuators A: Phys. , 2017 , 261 : 235 - 242 . doi: 10.1016/j.sna.2017.04.012 http://dx.doi.org/10.1016/j.sna.2017.04.012
KACZMAREK A M , KACZMAREK M K , VAN DEUN R . Er 3+ -to-Yb 3+ and Pr 3+ -to-Yb 3+ energy transfer for highly efficient near-infrared cryogenic optical temperature sensing [J]. Nanoscale , 2019 , 11 ( 3 ): 833 - 837 . doi: 10.1039/c8nr08348g http://dx.doi.org/10.1039/c8nr08348g
0
Views
289
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution