1.吉林师范大学 物理学院, 吉林 四平 136000
2.吉林师范大学 功能材料物理与化学教育部重点实验室, 吉林 长春 130022
扫 描 看 全 文
LIU Xueting, LIU Yucheng, ZHAO Ziang, et al. A Novel Two-dimensional SiO2 Structure and Influence of In-plane Strain on Its Photoelectric Properties: First-principles Study. [J]. Chinese Journal of Luminescence 44(8):1496-1504(2023)
LIU Xueting, LIU Yucheng, ZHAO Ziang, et al. A Novel Two-dimensional SiO2 Structure and Influence of In-plane Strain on Its Photoelectric Properties: First-principles Study. [J]. Chinese Journal of Luminescence 44(8):1496-1504(2023) DOI: 10.37188/CJL.20230072.
SiO,2,通常以三维晶体或无定形结构存在,限制了其在新技术如新一代集成电路中的应用,因此二维SiO,2,的研究引起了越来越多的关注。本文通过删除三维层状CaAl,2,Si,2,O,8,结构中的Ca和Al原子,直接构建出新的二维SiO,2,构型。采用基于密度泛函理论的第一性原理计算,结构优化获得的新型2D SiO,2,具有,P⁃,62,m,对称性,群号189。通过结合能、弹性系数、分子动力学模拟和声子谱计算,发现新型2D SiO,2,具有高机械稳定性、热力学稳定性和动力学稳定性。电子性质和光学性质计算发现,2D SiO,2,是带隙为6.08 eV绝缘体,且具有良好的光透射率和光导率。此外,通过研究面内双轴应变对2D SiO,2,电子和光学性质的影响,发现2D SiO,2,的带隙和介电函数受面内拉伸应变的影响较压缩应变略大,不过其整体光学性质受应变影响不大,保证了其在实际应用中电子性质和光学性质的稳定性。
SiO,2, usually exists in three-dimensional crystal or amorphous structure, which limits its application in new technologies such as new integrated circuits, so the research on two-dimensional SiO,2, has attracted more and more attention. In this paper, a new two-dimensional SiO,2, configuration is constructed directly by removing Ca and Al atoms from the three-dimensional layered CaAl,2,Si,2,O,8, structure. Using the first principles calculation based on density functional theory, the structure optimization results in the new 2D SiO,2, with ,P⁃62m, symmetry and group number 189. Through calculating binding energy, elastic coefficient, molecular dynamics simulation and phonon spectrum, it is found that the new 2D SiO,2, has high mechanical, thermodynamic and dynamic stability. Further calculations of electronic and optical properties show that 2D SiO,2, is an insulator with band gap of 6.08 eV, and has good optical transmittance and optical conductivity. In addition, by studying the effect of in-plane biaxial strain on the electronic and optical properties of 2D SiO,2,, it is shown that the band gap and dielectric function of 2D SiO,2, are slightly more affected by the in-plane tensile strain than by the compression strain, but the strain impact on the overall optical properties of 2D SiO,2, is modest, which ensures the stability of the electronic and optical properties in practical applications.
二维SiO2电子性质光学性质第一性原理计算
two-dimensional SiO2electronic propertiesoptical propertiesfirst-principles calculations
SCHINDLE C, WEIDES M, KOZICKI M N, et al. Ultra-low current resistive memory based on Cu-SiO2 [C]. Proceedings of 2008 IEEE Silicon Nanoelectronics Workshop, Honolulu, 2008: 1-2. doi: 10.1109/snw.2008.5418475http://dx.doi.org/10.1109/snw.2008.5418475
LIU S R, LUO S T, WU X D, et al. Application of silica-alumina as hydrothermally stable supports for Pt catalysts for acid-assisted soot oxidation [J]. Rare Met., 2023, 42(5): 1614-1623. doi: 10.1007/s12598-022-02199-4http://dx.doi.org/10.1007/s12598-022-02199-4
KIM S G, SHIN H, PARK J S, et al. Effect of SiO2 addition to BaO-ZnO-B2O3 glass on dielectric and thermal properties for application to barrier ribs of plasma display panels [J]. J. Electroceram., 2005, 15(2): 129-134. doi: 10.1007/s10832-005-1397-xhttp://dx.doi.org/10.1007/s10832-005-1397-x
HU G J, XIAO Y X, YING J. Nano-SiO2 and silane coupling agent co-decorated graphene oxides with enhanced anti-corrosion performance of epoxy composite coatings [J]. Int. J. Mol. Sci., 2021, 22(20): 11087-1-12. doi: 10.3390/ijms222011087http://dx.doi.org/10.3390/ijms222011087
WANG H, CHEN Z W, DENG X Y, et al. Template-free synthesis of macroporous SiO2 catalyst supports for diesel soot combustion [J]. Ind. Eng. Chem. Res., 2018, 57(34): 11600-11607. doi: 10.1021/acs.iecr.8b02746http://dx.doi.org/10.1021/acs.iecr.8b02746
YU X H, ZHAO Z, WEI Y C, et al. Three-dimensionally ordered macroporous SiO2-supported transition metal oxide catalysts: facile synthesis and high catalytic activity for diesel soot combustion [J]. RSC Adv., 2015, 5(61): 49780-49790. doi: 10.1039/c5ra07078chttp://dx.doi.org/10.1039/c5ra07078c
SCHROEDER T, ADELT M, RICHTER B, et al. Epitaxial growth of SiO2 on Mo(112) [J]. Surf. Rev. Lett., 2000, 7(1-2): 7-14.
HEYDE M, SHAIKHUTDINOV S, FREUND H J, et al. Two-dimensional silica: crystalline and vitreous [J]. Chem. Phys. Lett., 2012, 550: 1-7. doi: 10.1016/j.cplett.2012.08.063http://dx.doi.org/10.1016/j.cplett.2012.08.063
NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666-669. doi: 10.1126/science.1102896http://dx.doi.org/10.1126/science.1102896
LIU L, PARK J, SIEGEL D A, et al. Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges [J]. Science, 2014, 343(6167): 163-167. doi: 10.1126/science.1246137http://dx.doi.org/10.1126/science.1246137
ROBERTSON J, LIU X, YUE C L, et al. Wafer-scale synthesis of monolayer and few-layer MoS2 via thermal vapor sulfurization [J]. 2D Mater., 2017, 4(4): 045007-1-21. doi: 10.1088/2053-1583/aa8678http://dx.doi.org/10.1088/2053-1583/aa8678
LEE K, KIM S W, TODA Y, et al. Dicalcium nitride as a two-dimensional electride with an anionic electron layer [J]. Nature, 2013, 494(7437): 336-340. doi: 10.1038/nature11812http://dx.doi.org/10.1038/nature11812
江涛, 黄迪, 宋仁康, 等. 二维材料非线性光学显微 [J]. 光学 精密工程, 2022, 30(21): 2711-2736. doi: 10.37188/ope.20223021.2711http://dx.doi.org/10.37188/ope.20223021.2711
JIANG T, HUANG D, SONG R K, et al. Nonlinear optical microscopy in two-dimensional materials [J]. Opt. Precision Eng., 2022, 30(21): 2711-2736. (in Chinese). doi: 10.37188/ope.20223021.2711http://dx.doi.org/10.37188/ope.20223021.2711
陈哲学, 王卫彪, 梁程, 等. 二维量子片及其光学研究进展 [J]. 中国光学, 2021, 14(1): 1-17. doi: 10.37188/CO.2020-0176http://dx.doi.org/10.37188/CO.2020-0176
CHEN Z X, WANG W B, LIANG C, et al. Progress on two-dimensional quantum sheets and their optics [J]. Chin. Opt., 2021, 14(1): 1-7. (in Chinese). doi: 10.37188/CO.2020-0176http://dx.doi.org/10.37188/CO.2020-0176
林述锋, 沈田子. 氧化石墨烯液晶的光电特性与显示应用 [J]. 液晶与显示, 2020, 35(7): 733-740. doi: 10.37188/YJYXS20203507.0733http://dx.doi.org/10.37188/YJYXS20203507.0733
LIN S F, SHEN T Z. Electrical-optical properties of graphene oxide liquid crystal and its applications [J]. Chin. J. Liq. Crys. Disp., 2020, 35(7): 733-740. (in Chinese). doi: 10.37188/YJYXS20203507.0733http://dx.doi.org/10.37188/YJYXS20203507.0733
夏风梁, 石凯熙, 赵东旭, 等. 二维WSe2场效应晶体管光电性能 [J]. 发光学报, 2021, 42(2): 257-263. doi: 10.37188/cjl.20200374http://dx.doi.org/10.37188/cjl.20200374
XIA F L, SHI K X, ZHAO D X, et al. Optoelectronic performance of 2D WSe2 field effect transistor [J]. Chin. J. Lumin., 2021, 42(2): 257-263. (in Chinese). doi: 10.37188/cjl.20200374http://dx.doi.org/10.37188/cjl.20200374
TODOROVA T K, SIERKA M, SAUER J, et al. Atomic structure of a thin silica film on a Mo(112) substrate: a combined experimental and theoretical study [J]. Phys. Rev. B, 2006, 73(16): 165414-1-9. doi: 10.1103/physrevb.73.249902http://dx.doi.org/10.1103/physrevb.73.249902
SEIFERT J, BLAUTH D, WINTER H. Evidence for 2D-network structure of monolayer silica film on Mo(112) [J]. Phys. Rev. Lett., 2009, 103(1): 017601-1-4. doi: 10.1103/physrevlett.103.017601http://dx.doi.org/10.1103/physrevlett.103.017601
LÖFFLER D, UHLRICH J J, BARON M, et al. Growth and structure of crystalline silica sheet on Ru(0001) [J]. Phys. Rev. Lett., 2010, 105(14): 146104-1-4. doi: 10.1103/physrevlett.105.146104http://dx.doi.org/10.1103/physrevlett.105.146104
GAO Z B, DONG X, LI N B, et al. Novel two-dimensional silicon dioxide with in-plane negative poisson’s ratio [J]. Nano Lett., 2017, 17(2): 772-777. doi: 10.1021/acs.nanolett.6b03921http://dx.doi.org/10.1021/acs.nanolett.6b03921
KAJIYAMA S, SZABOVA L, SODEYAMA K. Sodium-ion intercalation mechanism in MXene nanosheets [J]. ACS Nano, 2016, 10(3): 3334-3341. doi: 10.1021/acsnano.5b06958http://dx.doi.org/10.1021/acsnano.5b06958
SUN N, YANG B Y, ZHENG J C, et al. Effect of synthesis temperature on the phase structure, morphology and electrochemical performance of Ti3C2 as an anode material for Li-ion batteries [J]. Ceram. Int., 2018, 44(14): 16214-16218. doi: 10.1016/j.ceramint.2018.05.267http://dx.doi.org/10.1016/j.ceramint.2018.05.267
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77(18): 3865-3868. doi: 10.1103/physrevlett.77.3865http://dx.doi.org/10.1103/physrevlett.77.3865
KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Phys. Rev. B, 1999, 59(3): 1758-1775. doi: 10.1103/physrevb.59.1758http://dx.doi.org/10.1103/physrevb.59.1758
GRIMME S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction [J]. J. Comput. Chem., 2006, 27(15): 1787-1799. doi: 10.1002/jcc.20495http://dx.doi.org/10.1002/jcc.20495
PAYNE M C, TETER M P, ALLAN D C, et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients [J]. Rev. Mod. Phys., 1992, 64(4): 1045-1097. doi: 10.1103/revmodphys.64.1045http://dx.doi.org/10.1103/revmodphys.64.1045
MARTYNA G J, KLEIN M L, TUCKERMAN M E. Nosé⁃Hoover chains: the canonical ensemble via continuous dynamics [J]. J. Chem. Phys., 1992, 97(4): 2635-2643. doi: 10.1063/1.463940http://dx.doi.org/10.1063/1.463940
BARONI S, GIANNOZZI P, TESTA A. Green's-function approach to linear response in solids [J]. Phys. Rev. Lett., 1987, 58(18): 1861-1864. doi: 10.1103/physrevlett.58.1861http://dx.doi.org/10.1103/physrevlett.58.1861
GONZE X. Perturbation expansion of variational principles at arbitrary order [J]. Phys. Rev. A, 1995, 52(2): 1086-1095. doi: 10.1103/physreva.52.1086http://dx.doi.org/10.1103/physreva.52.1086
WEISSENRIEDER J, KAYA S, LU J L, et al. Atomic structure of a thin silica film on a Mo(112) substrate: a two-dimensional network of SiO4 tetrahedra [J]. Phys. Rev. Lett., 2005, 95(7): 076103-1-4. doi: 10.1103/physrevlett.95.076103http://dx.doi.org/10.1103/physrevlett.95.076103
DAS D K, SARKAR J. Comparison of mechanical properties of silicene estimated using different testing procedures: a molecular dynamics study [J]. J. Appl. Phys., 2018, 123(4): 044304-1-9. doi: 10.1063/1.5009084http://dx.doi.org/10.1063/1.5009084
TIWARI A, BAHADURSHA N, PALEPU J, et al. Comparative analysis of boron, nitrogen, and phosphorous doping in monolayer of semi-metallic xenes(graphene, silicene, and germanene): a first principle calculation based approach [J]. Mat. Sci. Semicon. Proc., 2023, 153: 107121-1-5. doi: 10.1016/j.mssp.2022.107121http://dx.doi.org/10.1016/j.mssp.2022.107121
濮春英, 李春萍, 吕林霞, 等. 二维BCN的新结构及光电性质的第一性原理研究 [J]. 发光学报, 2020, 41(10): 1294-1301. doi: 10.37188/CJL.20200179http://dx.doi.org/10.37188/CJL.20200179
PU C Y, LI C P, LYU L X, et al. Structure and optoelectronic properties for two dimensional BCN from first-principles calculations [J]. Chin. J. Lumin., 2020, 41(10): 1294-1301. (in Chinese). doi: 10.37188/CJL.20200179http://dx.doi.org/10.37188/CJL.20200179
0
Views
18
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution