浏览全部资源
扫码关注微信
1.吉林师范大学 物理学院, 吉林 四平 136000
2.吉林师范大学 功能材料物理与化学教育部重点实验室, 吉林 长春 130022
Published:05 August 2023,
Received:24 March 2023,
Revised:11 April 2023,
扫 描 看 全 文
刘雪婷,刘禹成,赵子昂等.新型二维SiO2结构及面内应变对其光电性质影响的第一性原理研究[J].发光学报,2023,44(08):1496-1504.
LIU Xueting,LIU Yucheng,ZHAO Ziang,et al.A Novel Two-dimensional SiO2 Structure and Influence of In-plane Strain on Its Photoelectric Properties: First-principles Study[J].Chinese Journal of Luminescence,2023,44(08):1496-1504.
刘雪婷,刘禹成,赵子昂等.新型二维SiO2结构及面内应变对其光电性质影响的第一性原理研究[J].发光学报,2023,44(08):1496-1504. DOI: 10.37188/CJL.20230072.
LIU Xueting,LIU Yucheng,ZHAO Ziang,et al.A Novel Two-dimensional SiO2 Structure and Influence of In-plane Strain on Its Photoelectric Properties: First-principles Study[J].Chinese Journal of Luminescence,2023,44(08):1496-1504. DOI: 10.37188/CJL.20230072.
SiO
2
通常以三维晶体或无定形结构存在,限制了其在新技术如新一代集成电路中的应用,因此二维SiO
2
的研究引起了越来越多的关注。本文通过删除三维层状CaAl
2
Si
2
O
8
结构中的Ca和Al原子,直接构建出新的二维SiO
2
构型。采用基于密度泛函理论的第一性原理计算,结构优化获得的新型2D SiO
2
具有
P⁃
62
m
对称性,群号189。通过结合能、弹性系数、分子动力学模拟和声子谱计算,发现新型2D SiO
2
具有高机械稳定性、热力学稳定性和动力学稳定性。电子性质和光学性质计算发现,2D SiO
2
是带隙为6.08 eV绝缘体,且具有良好的光透射率和光导率。此外,通过研究面内双轴应变对2D SiO
2
电子和光学性质的影响,发现2D SiO
2
的带隙和介电函数受面内拉伸应变的影响较压缩应变略大,不过其整体光学性质受应变影响不大,保证了其在实际应用中电子性质和光学性质的稳定性。
SiO
2
usually exists in three-dimensional crystal or amorphous structure, which limits its application in new technologies such as new integrated circuits, so the research on two-dimensional SiO
2
has attracted more and more attention. In this paper, a new two-dimensional SiO
2
configuration is constructed directly by removing Ca and Al atoms from the three-dimensional layered CaAl
2
Si
2
O
8
structure. Using the first principles calculation based on density functional theory, the structure optimization results in the new 2D SiO
2
with
P⁃62m
symmetry and group number 189. Through calculating binding energy, elastic coefficient, molecular dynamics simulation and phonon spectrum, it is found that the new 2D SiO
2
has high mechanical, thermodynamic and dynamic stability. Further calculations of electronic and optical properties show that 2D SiO
2
is an insulator with band gap of 6.08 eV, and has good optical transmittance and optical conductivity. In addition, by studying the effect of in-plane biaxial strain on the electronic and optical properties of 2D SiO
2
, it is shown that the band gap and dielectric function of 2D SiO
2
are slightly more affected by the in-plane tensile strain than by the compression strain, but the strain impact on the overall optical properties of 2D SiO
2
is modest, which ensures the stability of the electronic and optical properties in practical applications.
二维SiO2电子性质光学性质第一性原理计算
two-dimensional SiO2electronic propertiesoptical propertiesfirst-principles calculations
SCHINDLE C, WEIDES M, KOZICKI M N, et al. Ultra-low current resistive memory based on Cu-SiO2 [C]. Proceedings of 2008 IEEE Silicon Nanoelectronics Workshop, Honolulu, 2008: 1-2. doi: 10.1109/snw.2008.5418475http://dx.doi.org/10.1109/snw.2008.5418475
LIU S R, LUO S T, WU X D, et al. Application of silica-alumina as hydrothermally stable supports for Pt catalysts for acid-assisted soot oxidation [J]. Rare Met., 2023, 42(5): 1614-1623. doi: 10.1007/s12598-022-02199-4http://dx.doi.org/10.1007/s12598-022-02199-4
KIM S G, SHIN H, PARK J S, et al. Effect of SiO2 addition to BaO-ZnO-B2O3 glass on dielectric and thermal properties for application to barrier ribs of plasma display panels [J]. J. Electroceram., 2005, 15(2): 129-134. doi: 10.1007/s10832-005-1397-xhttp://dx.doi.org/10.1007/s10832-005-1397-x
HU G J, XIAO Y X, YING J. Nano-SiO2 and silane coupling agent co-decorated graphene oxides with enhanced anti-corrosion performance of epoxy composite coatings [J]. Int. J. Mol. Sci., 2021, 22(20): 11087-1-12. doi: 10.3390/ijms222011087http://dx.doi.org/10.3390/ijms222011087
WANG H, CHEN Z W, DENG X Y, et al. Template-free synthesis of macroporous SiO2 catalyst supports for diesel soot combustion [J]. Ind. Eng. Chem. Res., 2018, 57(34): 11600-11607. doi: 10.1021/acs.iecr.8b02746http://dx.doi.org/10.1021/acs.iecr.8b02746
YU X H, ZHAO Z, WEI Y C, et al. Three-dimensionally ordered macroporous SiO2-supported transition metal oxide catalysts: facile synthesis and high catalytic activity for diesel soot combustion [J]. RSC Adv., 2015, 5(61): 49780-49790. doi: 10.1039/c5ra07078chttp://dx.doi.org/10.1039/c5ra07078c
SCHROEDER T, ADELT M, RICHTER B, et al. Epitaxial growth of SiO2 on Mo(112) [J]. Surf. Rev. Lett., 2000, 7(1-2): 7-14.
HEYDE M, SHAIKHUTDINOV S, FREUND H J, et al. Two-dimensional silica: crystalline and vitreous [J]. Chem. Phys. Lett., 2012, 550: 1-7. doi: 10.1016/j.cplett.2012.08.063http://dx.doi.org/10.1016/j.cplett.2012.08.063
NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666-669. doi: 10.1126/science.1102896http://dx.doi.org/10.1126/science.1102896
LIU L, PARK J, SIEGEL D A, et al. Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges [J]. Science, 2014, 343(6167): 163-167. doi: 10.1126/science.1246137http://dx.doi.org/10.1126/science.1246137
ROBERTSON J, LIU X, YUE C L, et al. Wafer-scale synthesis of monolayer and few-layer MoS2 via thermal vapor sulfurization [J]. 2D Mater., 2017, 4(4): 045007-1-21. doi: 10.1088/2053-1583/aa8678http://dx.doi.org/10.1088/2053-1583/aa8678
LEE K, KIM S W, TODA Y, et al. Dicalcium nitride as a two-dimensional electride with an anionic electron layer [J]. Nature, 2013, 494(7437): 336-340. doi: 10.1038/nature11812http://dx.doi.org/10.1038/nature11812
江涛, 黄迪, 宋仁康, 等. 二维材料非线性光学显微 [J]. 光学 精密工程, 2022, 30(21): 2711-2736. doi: 10.37188/ope.20223021.2711http://dx.doi.org/10.37188/ope.20223021.2711
JIANG T, HUANG D, SONG R K, et al. Nonlinear optical microscopy in two-dimensional materials [J]. Opt. Precision Eng., 2022, 30(21): 2711-2736. (in Chinese). doi: 10.37188/ope.20223021.2711http://dx.doi.org/10.37188/ope.20223021.2711
陈哲学, 王卫彪, 梁程, 等. 二维量子片及其光学研究进展 [J]. 中国光学, 2021, 14(1): 1-17. doi: 10.37188/CO.2020-0176http://dx.doi.org/10.37188/CO.2020-0176
CHEN Z X, WANG W B, LIANG C, et al. Progress on two-dimensional quantum sheets and their optics [J]. Chin. Opt., 2021, 14(1): 1-7. (in Chinese). doi: 10.37188/CO.2020-0176http://dx.doi.org/10.37188/CO.2020-0176
林述锋, 沈田子. 氧化石墨烯液晶的光电特性与显示应用 [J]. 液晶与显示, 2020, 35(7): 733-740. doi: 10.37188/YJYXS20203507.0733http://dx.doi.org/10.37188/YJYXS20203507.0733
LIN S F, SHEN T Z. Electrical-optical properties of graphene oxide liquid crystal and its applications [J]. Chin. J. Liq. Crys. Disp., 2020, 35(7): 733-740. (in Chinese). doi: 10.37188/YJYXS20203507.0733http://dx.doi.org/10.37188/YJYXS20203507.0733
夏风梁, 石凯熙, 赵东旭, 等. 二维WSe2场效应晶体管光电性能 [J]. 发光学报, 2021, 42(2): 257-263. doi: 10.37188/cjl.20200374http://dx.doi.org/10.37188/cjl.20200374
XIA F L, SHI K X, ZHAO D X, et al. Optoelectronic performance of 2D WSe2 field effect transistor [J]. Chin. J. Lumin., 2021, 42(2): 257-263. (in Chinese). doi: 10.37188/cjl.20200374http://dx.doi.org/10.37188/cjl.20200374
TODOROVA T K, SIERKA M, SAUER J, et al. Atomic structure of a thin silica film on a Mo(112) substrate: a combined experimental and theoretical study [J]. Phys. Rev. B, 2006, 73(16): 165414-1-9. doi: 10.1103/physrevb.73.249902http://dx.doi.org/10.1103/physrevb.73.249902
SEIFERT J, BLAUTH D, WINTER H. Evidence for 2D-network structure of monolayer silica film on Mo(112) [J]. Phys. Rev. Lett., 2009, 103(1): 017601-1-4. doi: 10.1103/physrevlett.103.017601http://dx.doi.org/10.1103/physrevlett.103.017601
LÖFFLER D, UHLRICH J J, BARON M, et al. Growth and structure of crystalline silica sheet on Ru(0001) [J]. Phys. Rev. Lett., 2010, 105(14): 146104-1-4. doi: 10.1103/physrevlett.105.146104http://dx.doi.org/10.1103/physrevlett.105.146104
GAO Z B, DONG X, LI N B, et al. Novel two-dimensional silicon dioxide with in-plane negative poisson’s ratio [J]. Nano Lett., 2017, 17(2): 772-777. doi: 10.1021/acs.nanolett.6b03921http://dx.doi.org/10.1021/acs.nanolett.6b03921
KAJIYAMA S, SZABOVA L, SODEYAMA K. Sodium-ion intercalation mechanism in MXene nanosheets [J]. ACS Nano, 2016, 10(3): 3334-3341. doi: 10.1021/acsnano.5b06958http://dx.doi.org/10.1021/acsnano.5b06958
SUN N, YANG B Y, ZHENG J C, et al. Effect of synthesis temperature on the phase structure, morphology and electrochemical performance of Ti3C2 as an anode material for Li-ion batteries [J]. Ceram. Int., 2018, 44(14): 16214-16218. doi: 10.1016/j.ceramint.2018.05.267http://dx.doi.org/10.1016/j.ceramint.2018.05.267
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77(18): 3865-3868. doi: 10.1103/physrevlett.77.3865http://dx.doi.org/10.1103/physrevlett.77.3865
KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Phys. Rev. B, 1999, 59(3): 1758-1775. doi: 10.1103/physrevb.59.1758http://dx.doi.org/10.1103/physrevb.59.1758
GRIMME S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction [J]. J. Comput. Chem., 2006, 27(15): 1787-1799. doi: 10.1002/jcc.20495http://dx.doi.org/10.1002/jcc.20495
PAYNE M C, TETER M P, ALLAN D C, et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients [J]. Rev. Mod. Phys., 1992, 64(4): 1045-1097. doi: 10.1103/revmodphys.64.1045http://dx.doi.org/10.1103/revmodphys.64.1045
MARTYNA G J, KLEIN M L, TUCKERMAN M E. Nosé⁃Hoover chains: the canonical ensemble via continuous dynamics [J]. J. Chem. Phys., 1992, 97(4): 2635-2643. doi: 10.1063/1.463940http://dx.doi.org/10.1063/1.463940
BARONI S, GIANNOZZI P, TESTA A. Green's-function approach to linear response in solids [J]. Phys. Rev. Lett., 1987, 58(18): 1861-1864. doi: 10.1103/physrevlett.58.1861http://dx.doi.org/10.1103/physrevlett.58.1861
GONZE X. Perturbation expansion of variational principles at arbitrary order [J]. Phys. Rev. A, 1995, 52(2): 1086-1095. doi: 10.1103/physreva.52.1086http://dx.doi.org/10.1103/physreva.52.1086
WEISSENRIEDER J, KAYA S, LU J L, et al. Atomic structure of a thin silica film on a Mo(112) substrate: a two-dimensional network of SiO4 tetrahedra [J]. Phys. Rev. Lett., 2005, 95(7): 076103-1-4. doi: 10.1103/physrevlett.95.076103http://dx.doi.org/10.1103/physrevlett.95.076103
DAS D K, SARKAR J. Comparison of mechanical properties of silicene estimated using different testing procedures: a molecular dynamics study [J]. J. Appl. Phys., 2018, 123(4): 044304-1-9. doi: 10.1063/1.5009084http://dx.doi.org/10.1063/1.5009084
TIWARI A, BAHADURSHA N, PALEPU J, et al. Comparative analysis of boron, nitrogen, and phosphorous doping in monolayer of semi-metallic xenes(graphene, silicene, and germanene): a first principle calculation based approach [J]. Mat. Sci. Semicon. Proc., 2023, 153: 107121-1-5. doi: 10.1016/j.mssp.2022.107121http://dx.doi.org/10.1016/j.mssp.2022.107121
濮春英, 李春萍, 吕林霞, 等. 二维BCN的新结构及光电性质的第一性原理研究 [J]. 发光学报, 2020, 41(10): 1294-1301. doi: 10.37188/CJL.20200179http://dx.doi.org/10.37188/CJL.20200179
PU C Y, LI C P, LYU L X, et al. Structure and optoelectronic properties for two dimensional BCN from first-principles calculations [J]. Chin. J. Lumin., 2020, 41(10): 1294-1301. (in Chinese). doi: 10.37188/CJL.20200179http://dx.doi.org/10.37188/CJL.20200179
0
Views
79
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution