浏览全部资源
扫码关注微信
长春理工大学 高功率半导体激光国家重点实验室, 吉林 长春 130022
Published:05 September 2023,
Received:05 March 2023,
Revised:16 April 2023,
扫 描 看 全 文
杨静航,晏长岭,刘云等.红外波段超辐射发光二极管研究进展[J].发光学报,2023,44(09):1621-1635.
YANG Jinghang,YAN Changling,LIU Yun,et al.Research Progresses on Infrared Superluminescent Diodes[J].Chinese Journal of Luminescence,2023,44(09):1621-1635.
杨静航,晏长岭,刘云等.红外波段超辐射发光二极管研究进展[J].发光学报,2023,44(09):1621-1635. DOI: 10.37188/CJL.20230064.
YANG Jinghang,YAN Changling,LIU Yun,et al.Research Progresses on Infrared Superluminescent Diodes[J].Chinese Journal of Luminescence,2023,44(09):1621-1635. DOI: 10.37188/CJL.20230064.
超辐射发光二极管(SLD)具有高功率、宽光谱和低相干性等光学特性,在光纤通信、工业国防、生物影像和痕量气体检测等领域具有极高的应用价值。本文聚焦于SLD的输出功率与光谱宽度特性,综合评述了量子阱、量子点近红外SLD与量子级联中红外SLD的研究进展。详细介绍了InP基量子短线、混合量子点量子阱与异维量子点量子阱等新型有源结构,以及量子点掺杂与区域混杂等相关工艺技术。最后,概述了SLD的应用前景,并对SLD的潜在研究方向和技术发展应用趋势进行了展望。
Superluminescent diode (SLD) has optical characteristics such as high power, wide spectrum and low coherence, and has high application value in the fields of optical fiber communication, industrial defense, biological imaging and trace gas detection. This paper focuses on the output power and spectral bandwidth characteristics of SLD, and comprehensively reviews the research progress of quantum well, quantum dot near-infrared SLD and quantum cascade mid-infrared SLD. Among them, the novel active structure of InP based quantum dash, hybrid quantum well/ quantum dots and hybrid quantum well-dots, as well as quantum dot doping and selective area intermixing are introduced in detail. Finally, the application prospects of SLD are outlined, and the potential research directions and technological application trends of SLD are discussed.
超辐射发光二极管量子阱量子点量子级联光学相干层析成像
superluminescent diodequantum wellquantum dotquantum cascadeoptical coherence tomography
KURBATOV L N, SHAKHIDZHANOV S S, BYSTROVA L V, et al. Investigation of superluminescence emitted by a gallium arsenide diode [J]. Sov. Phys. Semicond., 1971, 5(4): 1739-1744.
LEE P T, BURRUS C, MILLER B. A stripe-geometry double-heterostructure amplified-spontaneous-emission (superluminescent) diode [J]. IEEE J. Quantum Elect., 1973, 9(8): 820-828. doi: 10.1109/jqe.1973.1077738http://dx.doi.org/10.1109/jqe.1973.1077738
MILANI N M, ABSALAN H, GOLZAN M M, et al. Effects of cavity parameters on the output characteristics of InGaN/GaN superluminescent light emitting diodes [J]. Iran. J. Sci. Technol. Trans. A Sci., 2021, 45(4): 1485-1490. doi: 10.1007/s40995-021-01095-3http://dx.doi.org/10.1007/s40995-021-01095-3
PARK J, XUN L. Theoretical and numerical analysis of superluminescent diodes [J]. J. Lightwave Technol., 2006, 24(6): 2473-2480. doi: 10.1109/jlt.2006.874601http://dx.doi.org/10.1109/jlt.2006.874601
CHEN T R, ENG L, ZHUANG Y H, et al. Quantum well superluminescent diode with very wide emission spectrum [J]. Appl. Phys. Lett., 1990, 56(14): 1345-1346. doi: 10.1063/1.102509http://dx.doi.org/10.1063/1.102509
SUN Z Z, DING D, GONG Q, et al. Quantum-dot superluminescent diode: a proposal for an ultra-wide output spectrum [J]. Opt. Quantum Electron., 1999, 31(12): 1235-1246. doi: 10.1023/a:1007030119338http://dx.doi.org/10.1023/a:1007030119338
BANERJEE D, SANKARANARAYANAN S, KHACHARIYA D, et al. Superluminescent light emitting diodes on naturally survived InGaN/GaN lateral nanowires [J]. Appl. Phys. Lett., 2016, 109(3): 031111-1-4. doi: 10.1063/1.4959562http://dx.doi.org/10.1063/1.4959562
FELTIN E, CASTIGLIA A, COSENDEY G, et al. Broadband blue superluminescent light-emitting diodes based on GaN [J]. Appl. Phys. Lett., 2009, 95(8): 081107-1-3. doi: 10.1063/1.3202786http://dx.doi.org/10.1063/1.3202786
XIONG W, HU L, LIU J P, et al. High power GaN-based blue superluminescent diodes with low spectral modulation [J]. AIP Adv., 2021, 11(4): 045202-1-5. doi: 10.1063/5.0042013http://dx.doi.org/10.1063/5.0042013
GOLDBERG G R, KIM D H, TAYLOR R J E, et al. Bandwidth enhancement in an InGaN/GaN three-section superluminescent diode for optical coherence tomography [J]. Appl. Phys. Lett., 2020, 117(6): 061106-1-5. doi: 10.1063/5.0010795http://dx.doi.org/10.1063/5.0010795
ANDREEVA E V, ANIKEEV A S, IL'CHENKO S N, et al. Highly efficient red single transverse mode superluminescent diodes [J]. Quantum Electron., 2017, 47(12): 1154-1157. doi: 10.1070/qel16533http://dx.doi.org/10.1070/qel16533
ANDREEVA E V, IL'CHENKO S N, KURNYAVKO Y V, et al. Highly reliable high-power superluminescent diodes with three single-mode active channels. [J]. Quantum Electron., 2016, 46(7): 594-596. doi: 10.1070/qel16082http://dx.doi.org/10.1070/qel16082
KOLBAS R M, ANDERSON N G, LAIDIG W D, et al. Strained-layer InGaAs-GaAs-AlGaAs photopumped and current injection lasers [J]. IEEE J. Quantum Electron., 1988, 24(8): 1605-1613. doi: 10.1109/3.7091http://dx.doi.org/10.1109/3.7091
SUEMUNE I. Theoretical study of differential gain in strained quantum well structures [J]. IEEE J. Quantum Electron., 1991, 27(5): 1149-1159. doi: 10.1109/3.83371http://dx.doi.org/10.1109/3.83371
ANDREEVA E V, BATRAK D V, BOGATOV A P, et al. High-power multimode superluminescent diode emitting at 840 nm [J]. Quantum Electron., 2007, 37(11): 996-1000. doi: 10.1070/qe2007v037n11abeh013556http://dx.doi.org/10.1070/qe2007v037n11abeh013556
WANG F F, JIN P, WU J, et al. Active multi-mode-interferometer broadband superluminescent diodes [J]. J. Semicond., 2016, 37(1): 014006-1-6. doi: 10.1088/1674-4926/37/1/014006http://dx.doi.org/10.1088/1674-4926/37/1/014006
AHO A T, VIHERIÄLÄ J, VIRTANEN H, et al. High power GaInNAs superluminescent diodes emitting over 400 mW in the 1.2 μm wavelength range [J]. Appl. Phys. Lett., 2019, 115(8): 081104-1-4. doi: 10.1063/1.5111012http://dx.doi.org/10.1063/1.5111012
CAUSA F, BURROW L. Ripple-free high-power super-luminescent diode arrays. [J] IEEE J. Quantum Electron., 2007, 43(11): 1055-1059. doi: 10.1109/jqe.2007.905291http://dx.doi.org/10.1109/jqe.2007.905291
OHGOH T, MUKAI A, YAGUCHI J, et al. Demonstration of 1.0 μm InGaAs high-power and broad spectral bandwidth superluminescent diodes by using dual quantum well structure [J]. Appl. Phys. Express, 2013, 6(1): 014101-1-5. doi: 10.7567/apex.6.014101http://dx.doi.org/10.7567/apex.6.014101
BEAL R, MOUMANIS K, AIMEZ V, et al. Enhanced spectrum superluminescent diodes fabricated by infrared laser rapid thermal annealing [J]. Opt. Laser Technol., 2013, 54: 401-406. doi: 10.1016/j.optlastec.2013.06.032http://dx.doi.org/10.1016/j.optlastec.2013.06.032
KHAN M Z M, ALHASHIM H H, NG T K, et al. High-power and high-efficiency 1.3 μm superluminescent diode with flat-top and ultrawide emission bandwidth [J]. IEEE Photonics J., 2015, 7(1): 1600308-1-9. doi: 10.1109/jphot.2015.2399442http://dx.doi.org/10.1109/jphot.2015.2399442
FAUGERON M, FORTIN C, ROBERT Y, et al. Wide optical bandwidth and high output power superluminescent diode covering C and L band [J]. IEEE Photonics Technol., 2014, 26(8): 841-844. doi: 10.1109/lpt.2014.2308973http://dx.doi.org/10.1109/lpt.2014.2308973
FU L, SCHWEIZER H, ZHANG Y S, et al. Design and realization of high-power ripple-free superluminescent diodes at 1 300 nm [J]. IEEE J. Quantum Electron., 2004, 40(9): 1270-1274. doi: 10.1109/jqe.2004.830178http://dx.doi.org/10.1109/jqe.2004.830178
PAOLI T L, THORNTON R L, BURNHAM R D, et al. High-power multiple-emitter AlGaAs superluminescent diodes [J]. Appl. Phys. Lett., 1985, 47(5): 450-452. doi: 10.1063/1.96143http://dx.doi.org/10.1063/1.96143
YAN Z H, ZHOU S. Bonding stress and reliability of low-polarization quantum-well superluminescent diode [J]. Phys. E Low⁃Dimens. Syst. Nanostruct., 2019, 109: 140-143. doi: 10.1016/j.physe.2019.01.013http://dx.doi.org/10.1016/j.physe.2019.01.013
OHGOH T, ASANO H, HAMAMOTO K. Reliability Improvement of superluminescent diodes emitting at 1.0 μm band using InGaAsP barrier structure [J]. Electron. Lett., 2013, 49(6): 409-410. doi: 10.1049/el.2013.0080http://dx.doi.org/10.1049/el.2013.0080
DUAN L H, FANG L, ZHANG J, et al. Fabrication and characteristics of high speed InGaAs/GaAs quantum-wells superluminescent diode emitting at 1 053 nm [J]. Semicond. Sci. Technol., 2014, 29(5): 055004-1-6. doi: 10.1088/0268-1242/29/5/055004http://dx.doi.org/10.1088/0268-1242/29/5/055004
KIETHE J, HEUER A, JECHOW A. Second-order coherence properties of amplified spontaneous emission from a high-power tapered superluminescent diode [J]. Laser Phys. Lett., 2017, 14(8): 086201-1-4. doi: 10.1088/1612-202x/aa772chttp://dx.doi.org/10.1088/1612-202x/aa772c
LIU S J, ZHOU Y, ZHOU S, et al. Structural design and fabrication of 830 nm GaAsP/AlGaAs low polarization superluminescent diode with tensile-strained wells [J]. J. Mater. Sci. Mater. Electron., 2018, 29(12): 10102-10108. doi: 10.1007/s10854-018-9055-7http://dx.doi.org/10.1007/s10854-018-9055-7
李辉, 王玉霞, 李梅, 等. 高功率850 nm宽光谱大光腔超辐射发光二极管 [J]. 中国激光, 2006, 33(5): 613-616. doi: 10.3321/j.issn:0258-7025.2006.05.008http://dx.doi.org/10.3321/j.issn:0258-7025.2006.05.008
LI H, WANG Y X, LI M, et al. High-power 850 nm large optical cavity wide spectrum superluminescent diode [J]. Chin. J. Lasers, 2006, 33(5): 613-616. (in Chinese). doi: 10.3321/j.issn:0258-7025.2006.05.008http://dx.doi.org/10.3321/j.issn:0258-7025.2006.05.008
李梅, 李辉, 王玉霞, 等. GaAlAs/GaAs非均匀阱宽多量子阱超辐射发光管材料制备及表征 [J]. 发光学报, 2007, 28(6): 885-889.
LI M, LI H, WANG Y X, et al. Research on material characteristics of GaAlAs/GaAs superluminence diodes [J]. Chin. J. Lumin., 2007, 28(6): 885-889. (in Chinese)
祝子翔, 张晶, 孙春明, 等. 增益钳制式850 nm波长超辐射发光二极管设计研究 [J]. 兵工学报, 2018, 39(2): 325-330. doi: 10.3969/j.issn.1000-1093.2018.02.015http://dx.doi.org/10.3969/j.issn.1000-1093.2018.02.015
ZHU Z X, ZHANG J, SUN C M, et al. Development of gain-clamped 850 nm superluminescent diode [J]. Acta Armament., 2018, 39(2): 325-330. (in Chinese). doi: 10.3969/j.issn.1000-1093.2018.02.015http://dx.doi.org/10.3969/j.issn.1000-1093.2018.02.015
刘帅男. 970 nm应变量子阱超辐射发光二极管的研究 [D]. 长春: 长春理工大学, 2022.
LIU S N. Study on 970 nm Strained Quantum Well Superluminescent Light Emitting Diode [D]. Changchun: Changchun University of Science and Technology, 2022. (in Chinese)
WANG D B, ZHANG J C, HOU C C, et al. High performance continuous-wave InP-based 2.1 μm superluminescent diode with InGaAsSb quantum well and cavity structure suppression [J]. Appl. Phys. Lett., 2018, 113(16): 161107-1-5. doi: 10.1063/1.5052056http://dx.doi.org/10.1063/1.5052056
王龙, 陈佳, 刘昊, 等. 1.3 μm铟磷基多量子阱激光器的制备及关键特性研究 [EB/OL]. 2017-05-16. http://www.paper.edu.cn/releasepaper/content/201705-926http://www.paper.edu.cn/releasepaper/content/201705-926.
WANG L, CHEN J, LIU H, et al. Preparation and key characteristics of 1.3 μm indium phosphorus-based multi-quantum well laser [EB/OL]. 2017-05-16. http://www.paper.edu.cn/releasepaper/content/201705-926.http://www.paper.edu.cn/releasepaper/content/201705-926.(in Chinese)
XU C D, DU G T, SONG J F, et al. Enhancement of the spectral width of high-power 1.5 μm integrated superluminescent light source by quantum well intermixing process [J]. Chin. Phys. Lett. 2004, 21(5): 963-965. doi: 10.1088/0256-307x/21/5/056http://dx.doi.org/10.1088/0256-307x/21/5/056
ZANG Z G, MINATO T, NAVARETTI P, et al. High-power (>110 mW) superluminescent diodes by using active multimode interferometer [J]. IEEE Photonics Technol. Lett., 2010, 22(10): 721-723. doi: 10.1109/lpt.2010.2044994http://dx.doi.org/10.1109/lpt.2010.2044994
SONG J H, CHO S H, HAN I K, et al. High-power broad-band superluminescent diode with low spectral modulation at 1.5 μm wavelength [J]. IEEE Photonics Technol. Lett., 2000, 12(7): 783-785. doi: 10.1109/68.853499http://dx.doi.org/10.1109/68.853499
VURGAFTMAN I, MEYER J R, RAM-MOHAN L R. Band parameters for III-V compound semiconductors and their alloys [J]. J. Appl. Phys., 2001, 89(11): 5815-5875. doi: 10.1063/1.1368156http://dx.doi.org/10.1063/1.1368156
SABITOV D R, SVETOGOROV V N, RYABOSHTAN Y L, et al. Compact superluminescent AlGaInAs/InP strain-compensated quantum-well diodes for fibre-optic gyroscopes [J]. Quantum Electron., 2022, 52(6): 577-579. doi: 10.1070/qel18069http://dx.doi.org/10.1070/qel18069
SABITOV D R, RYABOSHTAN Y L, SVETOGOROV V N, et al. Superluminescent diodes in the spectral range of 1.5-1.6 μm based on strain-compensated AlGaInAs/InP quantum wells [J]. Quantum Electron., 2020, 50(9): 830-833. doi: 10.1070/qel17376http://dx.doi.org/10.1070/qel17376
KOSTIN Y, CHAMOROVSKIY A, YAKUBOVICH S D. Broadband superluminescent diode light source at 1 330 nm with 180 nm spectral bandwidth [J]. Electron. Lett., 2015, 51(5): 408-409. doi: 10.1049/el.2014.3676http://dx.doi.org/10.1049/el.2014.3676
王拓, 陈红梅, 贾慧民, 等. 1 310 nm高功率超辐射发光二极管的制备及性能研究 [J]. 光子学报, 2021, 50(6): 0623002-1-9. doi: 10.3788/gzxb20215006.0623002http://dx.doi.org/10.3788/gzxb20215006.0623002
WANG T, CHEN H M, JIA H M, et al. Performance research and fabrication 1 310 nm superluminescent diodes with high power [J]. Acta Photon. Sinica, 2021, 50(6): 0623002-1-9. (in Chinese). doi: 10.3788/gzxb20215006.0623002http://dx.doi.org/10.3788/gzxb20215006.0623002
孙春明, 张晶, 祝子翔, 等. 利用三量子阱结构拓宽1 550 nm InGaAlAs超辐射发光管光谱 [J]. 固体电子学研究与进展, 2018, 38(2): 121-126.
SUN C M, ZHANG J, ZHU Z X, et al. Spectrum broadening of 1 550 nm InGaAlAs superluminescent diode using three-quantum well structure [J]. Res. Prog. SSE, 2018, 38(2): 121-126. (in Chinese)
BOHM K, MARTEN P, PETERMANN K, et al. Low-drift fibre gyro using a superluminescent diode [J]. Electron. Lett., 1981, 17(10): 352-353. doi: 10.1049/el:19810248http://dx.doi.org/10.1049/el:19810248
SEOIJIN P. 100 mW high-power depolarized-superluminescent diode at 1 550 nm wavelength [C/OL]. [2023-04-16]. https://doi.org/10.1117/12.646517https://doi.org/10.1117/12.646517.
周勇, 段利华, 张靖, 等. 低偏振高功率1 310 nm超辐射发光二极管的液相外延生长 [J]. 发光学报, 2015, 36(1): 69-74. doi: 10.3788/fgxb20153601.0069http://dx.doi.org/10.3788/fgxb20153601.0069
ZHOU Y, DUAN L H, ZHANG J, et al. 1 310 nm polarization-insensitive high power superluminescent diodes fabricated by liquid phase epitaxy [J]. Chin. J. Lumin., 2015, 36(1): 69-74. (in Chinese). doi: 10.3788/fgxb20153601.0069http://dx.doi.org/10.3788/fgxb20153601.0069
MA H, CHEN S H, YI X J, et al. High power polarization-insensitive 1.3 μm InGaAsP⁃InP quantum-well superluminescent emission diodes grown by MOVPE [J]. Semicond. Sci. Technol., 2004, 19(7): 823-827. doi: 10.1088/0268-1242/19/7/007http://dx.doi.org/10.1088/0268-1242/19/7/007
HSIAO C W, FANG Y H, CHEN Y J, et al. Fabrication of superluminescent diode (SLD) for gyro light source with broadband, high power, and large polarization-extinction ratio performance [C]. 2020 Opto⁃Electronics and Communications Conference (OECC), Taiwan, China, 2020. doi: 10.1109/oecc48412.2020.9273634http://dx.doi.org/10.1109/oecc48412.2020.9273634
SCHWERBTERGER R, GOLD D, REITHMAIER J P, et al. Long-wavelength InP-based quantum-dash lasers [J]. IEEE Photonics Technol. Lett., 2002, 14(6): 735-737. doi: 10.1109/lpt.2002.1003076http://dx.doi.org/10.1109/lpt.2002.1003076
GOSSET C, MERGHEM K, MARTINEZ A, et al. Subpicosecond pulse generation at 134 GHz using a quantum-dash-based fabry-perot laser emitting at 1.56 μm [J]. Appl. Phys. Lett., 2006, 88(24): 241105-1-3. doi: 10.1063/1.2213007http://dx.doi.org/10.1063/1.2213007
ZELLER W, LEGGE M, SOMERS A, et al. Singlemode emission at 2 μm wavelength with InP based quantum dash DFB lasers [J]. Electron. Lett., 2008, 44(5): 354-355. doi: 10.1049/el:20080088http://dx.doi.org/10.1049/el:20080088
OOI B S, SUSANTO DJIE H, WANG Y, et al. Quantum dashes on InP substrate for broadband emitter applications [J]. IEEE J. Sel. Top. Quantum Electron., 2008, 14(4): 1230-1238. doi: 10.1109/jstqe.2008.919277http://dx.doi.org/10.1109/jstqe.2008.919277
KHAN M Z M, MAJID M A, NG T K, et al. Simultaneous quantum dash-well emission in a chirped dash-in-well superluminescent diode with spectral bandwidth >700 nm [J]. Opt. Lett., 2013, 38(19): 3720-3723. doi: 10.1364/ol.38.003720http://dx.doi.org/10.1364/ol.38.003720
KHAN M Z M, NG T K, OOI B S. High-performance 1.55 µm superluminescent diode based on broad gain InAs/InGaAl⁃As/InP quantum dash active region [J]. IEEE Photonics J., 2014, 6(4): 1-8. doi: 10.1109/jphot.2014.2337892http://dx.doi.org/10.1109/jphot.2014.2337892
WOOTTEN M B, TAN J, CHIEN Y J, et al. Broadband 2.4 μm superluminescent GaInAsSb/AlGaAsSb quantum well diodes for optical sensing of biomolecules [J]. Semicond. Sci. Technol., 2014, 29(11): 115014-1-10. doi: 10.1088/0268-1242/29/11/115014http://dx.doi.org/10.1088/0268-1242/29/11/115014
ZIA N, VIHERÄLÄ J, KOSKINEN R, AHO A, et al. High power (60 mW) GaSb-based 1.9 µm superluminescent diode with cavity suppression element [J]. Appl. Phys. Lett., 2016, 109(23): 231102-1-3. doi: 10.1063/1.4971972http://dx.doi.org/10.1063/1.4971972
ZIA N, VIHERIÄLÄ J, KOIVUSALO E, et al. High-power single mode GaSb-based 2 μm superluminescent diode with double-pass gain [J]. Appl. Phys. Lett., 2019, 115(23): 231106-1-4. doi: 10.1063/1.5127407http://dx.doi.org/10.1063/1.5127407
VIZBARAS K, DVINELIS E, ŠIMONYTĖ I, et al. High power continuous-wave GaSb-based superluminescent diodes as gain chips for widely tunable laser spectroscopy in the 1.95-2.45 µm wavelength range [J]. Appl. Phys. Lett., 2015, 107(1): 011103-1-4. doi: 10.1063/1.4926367http://dx.doi.org/10.1063/1.4926367
ZIA N, VIHERIÄLÄ J, KOIVUSALO E, et al. GaSb superluminescent diodes with broadband emission at 2.55 μm [J]. Appl. Phys. Lett., 2018, 112(5): 051106-1-4. doi: 10.1063/1.5015974http://dx.doi.org/10.1063/1.5015974
KURKA M, DYKSIK M, SUOMALAINEN S, et al. GaInAsSb/AlGa(In)AsSb type I quantum wells emitting in 3 μm range for application in superluminescent diodes [J]. Opt. Mater., 2019, 91: 274-278. doi: 10.1016/j.optmat.2019.03.036http://dx.doi.org/10.1016/j.optmat.2019.03.036
UVIN S, KUMARI S, DE GROOTE A, et al. 1.3 μm InAs/GaAs quantum dot DFB laser integrated on a Si waveguide circuit by means of adhesive die-to-wafer bonding [J]. Opt. Express, 2018, 26(14): 18302-18309. doi: 10.1364/oe.26.018302http://dx.doi.org/10.1364/oe.26.018302
JIANG C, WANG H P, CHEN H M, et al. Broadband quantum dot superluminescent diode with simultaneous three-state emission [J]. Nanomaterials, 2022, 12(12): 1431-1-8. doi: 10.3390/nano12091431http://dx.doi.org/10.3390/nano12091431
MAJID M A, HUGUES M, CHILDS D T D, et al. Effect of deposition temperature on the opto-electronic properties of molecular beam epitaxy grown InAs quantum dot devices for broadband applications [J]. Jpn. J. Appl. Phys., 2012, 51(2S): 02BG09-1-5. doi: 10.1143/jjap.51.02bg09http://dx.doi.org/10.1143/jjap.51.02bg09
MAJID M A. High-performance GaAs-based superluminescent diode with 292-nm emission bandwidth using simple dot-in-a-well structures [J]. J. Nanophoton., 2018, 12(2): 026007-1-6. doi: 10.1117/1.jnp.12.026007http://dx.doi.org/10.1117/1.jnp.12.026007
LU Y, CAO V, LIAO M Y, et al. Electrically pumped continuous-wave O-band quantum-dot superluminescent diode on silicon [J]. Opt. Lett., 2020, 45(19): 5468-5471. doi: 10.1364/ol.401042http://dx.doi.org/10.1364/ol.401042
YOO Y C, HAN I K, LEE J I. High power broadband superluminescent diodes with chirped multiple quantum dots [J]. Electron. Lett., 2007, 43(19): 1045-1047. doi: 10.1049/el:20071583http://dx.doi.org/10.1049/el:20071583
OZAKI N, CHILDS D T D, SARMA J, et al. Superluminescent diode with a broadband gain based on self-assembled InAs quantum dots and segmented contacts for an optical coherence tomography light source [J]. J. Appl. Phys., 2016, 119(8): 083107-1-7. doi: 10.1063/1.4942640http://dx.doi.org/10.1063/1.4942640
TSUDA M, INOUE T, KITA T, et al. Broadband light sources using InAs quantum dots with InGaAs strain-reducing layers [J]. Phys. Status Solidi C, 2011, 8(2): 331-333. doi: 10.1002/pssc.201000517http://dx.doi.org/10.1002/pssc.201000517
FORREST A F, KRAKOWSKI M, BARDELLA P, et al. High-power quantum-dot superluminescent tapered diode under CW operation [J]. Opt. Express, 2019, 27(8): 10981-10990. doi: 10.1364/oe.27.010981http://dx.doi.org/10.1364/oe.27.010981
ZHANG Z Y, WANG Z G, XU B, et al. High-performance quantum-dot superluminescent diodes [J]. IEEE Photonics Technol. Lett., 2004, 16(1): 27-29. doi: 10.1109/lpt.2003.820481http://dx.doi.org/10.1109/lpt.2003.820481
CHEN S M, ZHOU K J, ZHANG Z Y, et al. Hybrid quantum well/quantum dot structure for broad spectral bandwidth emitters [J]. IEEE J. Select. Top. Quantum Electron., 2013, 19(4): 1900209-1-9. doi: 10.1109/jstqe.2012.2235175http://dx.doi.org/10.1109/jstqe.2012.2235175
CHEN S M, LI W, ZHANG Z Y, et al. GaAs-based superluminescent light-emitting diodes with 290-nm emission bandwidth by using hybrid quantum well/quantum dot structures [J]. Nanoscale Res. Lett., 2015, 10(1): 340-1-8. doi: 10.1186/s11671-015-1049-2http://dx.doi.org/10.1186/s11671-015-1049-2
PEYVAST N, CHEN S, ZHOU K, et al. Development of broad spectral bandwidth hybrid QW/QD structures from 1 000-1 400 nm [C]. Proceedings of the 9002, Novel In⁃plane Semiconductor Lasers , San Francisco, USA, 2014: 900204-1-6. doi: 10.1117/12.2039025http://dx.doi.org/10.1117/12.2039025
MINTAIROV S A, KALYUZHNYY N A, LANTRATOV V M, et al. Hybrid InGaAs quantum well-dots nanostructures for light-emitting and photo-voltaic applications [J]. Nanotechnology, 2015, 26(38): 385202-1-7. doi: 10.1088/0957-4484/26/38/385202http://dx.doi.org/10.1088/0957-4484/26/38/385202
MAXIMOV M V, GORDEEV N Y, SHERNYAKOV Y M, et al. Optoelectronic devices with active region based on InGaAs/GaAs quantum well-dots [C]. Proceedings of the 11356, Semiconductor Lasers and Laser Dynamics Ⅸ,Online, France 2020: 113560A-1-7. doi: 10.1117/12.2554728http://dx.doi.org/10.1117/12.2554728
WANG H, LV Z R, WANG S, et al. Broadband chirped InAs quantum-dot superluminescent diodes with a small spectral dip of 0.2 dB [J]. Chin. Phys. B, 2022, 31(9): 027501-1-6. doi: 10.1088/1674-1056/ac657fhttp://dx.doi.org/10.1088/1674-1056/ac657f
ZHANG Z Y, JIANG Q, LUXMOORE I J, et al. A p-type-doped quantum dot superluminescent LED with broadband and flat-topped emission spectra obtained by post-growth intermixing under a GaAs proximity cap [J]. Nanotechnology, 2009, 20(5): 055204-1-4. doi: 10.1088/0957-4484/20/5/055204http://dx.doi.org/10.1088/0957-4484/20/5/055204
LIU Q L, HOU C C, CHEN H M, et al. Effects of modulation P-doping on thermal stability of InAs/GaAs quantum dot superluminescent diodes [J]. J. Nanosci. Nanotechnol., 2018, 18(11): 7536-7541. doi: 10.1166/jnn.2018.16058http://dx.doi.org/10.1166/jnn.2018.16058
WANG H, LV Z R, ZHANG Z K, et al. Enhanced performance of InAs/GaAs quantum dot superluminescent diodes by direct Si-doping [J]. AIP Adv., 2020, 10(4): 045202-1-5. doi: 10.1063/1.5141160http://dx.doi.org/10.1063/1.5141160
ZHANG Z Y, JIANG Q, HOGG R A. Tunable interband and intersubband transitions in modulation C-doped InGaAs/GaAs quantum dot lasers by postgrowth annealing process [J]. Appl. Phys. Lett., 2008, 93(7): 071111-1-3. doi: 10.1063/1.2968191http://dx.doi.org/10.1063/1.2968191
ZHANG Z Y, JIANG Q, HOPKINSON M, et al. Effects of intermixing on modulation p-doped quantum dot superluminescent light emitting diodes [J]. Opt. Express, 2010, 18(7): 7055-7063. doi: 10.1364/oe.18.007055http://dx.doi.org/10.1364/oe.18.007055
ZHOU K J, JIANG Q, ZHANG Z Y, et al. Quantum dot selective area intermixing for broadband light sources [J]. Opt. Express, 2012, 20(24): 26950-26957. doi: 10.1364/oe.20.026950http://dx.doi.org/10.1364/oe.20.026950
CONSOLINO L, JUNG S, CAMPA A, et al. Spectral purity and tunability of terahertz quantum cascade laser sources based on intracavity difference-frequency generation [J]. Sci. Adv., 2017, 3(9): 1603317-1-8. doi: 10.1126/sciadv.1603317http://dx.doi.org/10.1126/sciadv.1603317
GMACHL C, SIVCO D L, COLOMBELLI R, et al. Ultra-broadband semiconductor laser [J]. Nature, 2002, 415(6874): 883-887. doi: 10.1038/415883ahttp://dx.doi.org/10.1038/415883a
ZIBIK E A, NG W H, REVIN D G, et al. Broadband 6 μm<λ<8 μm superluminescent quantum cascade light-emitting diodes [J]. Appl. Phys. Lett., 2006, 88(12): 121109-1-3. doi: 10.1063/1.2188371http://dx.doi.org/10.1063/1.2188371
AUNG N L, YU Z C W, YU Y, et al. High peak power (≥10 mW) quantum cascade superluminescent emitter [J]. Appl. Phys. Lett., 2014, 105(22): 221111-1-4. doi: 10.1063/1.4903349http://dx.doi.org/10.1063/1.4903349
ZHENG M C, AUNG N L, BASAK A, et al. High power spiral cavity quantum cascade superluminescent emitter [J]. Opt. Express, 2015, 23(3): 2713-2715. doi: 10.1364/oe.23.002713http://dx.doi.org/10.1364/oe.23.002713
HOU C C, SUN J L, NING J Q, et al. Room-temperature quantum cascade superluminescent light emitters with wide bandwidth and high temperature stability [J]. Opt. Express, 2018, 26(11): 13730-13739. doi: 10.1364/oe.26.013730http://dx.doi.org/10.1364/oe.26.013730
RIEDI S, CAPPELLI F, BLASER S, et al. Broadband superluminescence, 5.9 μm to 7.2 μm, of a quantum cascade gain device [J]. Opt. Express, 2015, 23(6): 7184-7187. doi: 10.1364/oe.23.007184http://dx.doi.org/10.1364/oe.23.007184
HOU C C, CHEN H M, ZHANG J C, et al. Near-infrared and mid-infrared semiconductor broadband light emitters [J]. Light: Sci. Appl., 2017, 7: 17170-1-7. doi: 10.1038/lsa.2017.170http://dx.doi.org/10.1038/lsa.2017.170
SUN J L, HOU C C, CHEN H M, et al. Quantum cascade superluminescent light emitters with high power and compact structure [J]. J. Semicond., 2020, 41(1): 012301-1-6. doi: 10.1088/1674-4926/41/1/012301http://dx.doi.org/10.1088/1674-4926/41/1/012301
WANG P H. 1.3 μm superluminescence diode with butterfly package for fiber gyroscope [J]. Semicond. Photonics Technol., 2001, 7(3): 155-157.
KIM J H, AN S K, LEE S J, et al. 1.55 μm InGaAsP/InP tapered stripe superluminescent diodes with potential optical sensor system applications [J]. Opt. Laser Technol., 2004, 36(3): 255-258. doi: 10.1016/j.optlastec.2003.09.008http://dx.doi.org/10.1016/j.optlastec.2003.09.008
KRAY S, LENZ M, SPÖLER F, et al. Increased tissue contrast by high resolution simultaneous dual-band optical coherence tomography in three dimensions [C]. European Conference on Biomedical Optics, Munich, Germany, 2011: 809209. doi: 10.1364/ecbo.2011.809209http://dx.doi.org/10.1364/ecbo.2011.809209
LI P, AN L, LAN G P, et al. Extended imaging depth to 12 mm for 1 050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate [J]. J. Biomed. Opt., 2013, 18(1): 016012-1-4. doi: 10.1117/1.jbo.18.1.016012http://dx.doi.org/10.1117/1.jbo.18.1.016012
BARAN U, CHOI W J, WANG R K. Potential use of OCT-based microangiography in clinical dermatology [J]. Skin. Res. Technol., 2016, 22(2): 238-246. doi: 10.1111/srt.12255http://dx.doi.org/10.1111/srt.12255
ISRAELSEN N M, PETERSEN C R, BARH A, et al. Real-time high-resolution mid-infrared optical coherence tomography [J]. Light: Sci. Appl., 2019, 8: 11-1-13. doi: 10.1038/s41377-019-0122-5http://dx.doi.org/10.1038/s41377-019-0122-5
COLLEY C S, HEBDEN J C, DELPY D T, et al. Mid-infrared optical coherence tomography [J]. Rev. Sci. Instrum., 2007, 78(12): 123108-1-7. doi: 10.1063/1.2821609http://dx.doi.org/10.1063/1.2821609
LÓPEZ-LORENTE Á I, MIZAIKOFF B. Mid-infrared spectroscopy for protein analysis: potential and challenges [J]. Anal. Bioanal. Chem., 2016, 408(11): 2875-2889. doi: 10.1007/s00216-016-9375-5http://dx.doi.org/10.1007/s00216-016-9375-5
MOLTER D, KOLANO M, VON FREYMANN G. Terahertz cross-correlation spectroscopy driven by incoherent light from a superluminescent diode [J]. Opt. Express, 2019, 27(9): 12659-12665. doi: 10.1364/oe.27.012659http://dx.doi.org/10.1364/oe.27.012659
TYBUSSEK K H, KOLPATZECK K, CHERNIAK V, et al. Spectral shaping of a superluminescent diode for terahertz cross-correlation spectroscopy [J]. Appl. Sci., 2022, 12(4): 1772-1787. doi: 10.3390/app12041772http://dx.doi.org/10.3390/app12041772
DIVYA K, SULOCHANA K, VASA N J. Superluminescent diode-based multiple-gas sensor for NH3 and H2O vapor monitoring [J]. IEEE J. Select. Top. Quantum Electron., 2012, 18(5): 1540-1546. doi: 10.1109/jstqe.2011.2179021http://dx.doi.org/10.1109/jstqe.2011.2179021
WEBBER M E, CLAPS R, ENGLICH F V, et al. Measurements of NH3 and CO2 with distributed-feedback diode lasers near 2.0 µm in bioreactor vent gases [J]. Appl. Opt., 2001, 40(24): 4395-4403. doi: 10.1364/ao.40.004395http://dx.doi.org/10.1364/ao.40.004395
HERBIN H, PICQUÉ N, GUELACHVILI G, et al. N2O weak lines observed between 3 900 and 4 050 cm-1 from long path absorption Spectra [J]. J. Mol. Spectrosc., 2006, 238(2): 256-259. doi: 10.1016/j.jms.2006.05.004http://dx.doi.org/10.1016/j.jms.2006.05.004
ROVATI L, CATTINI S, PALANISAMY N. Measurement of the fluid-velocity profile using a self-mixing superluminescent diode [J]. Meas. Sci. Technol., 2011, 22(2): 025402-1-9. doi: 10.1088/0957-0233/22/2/025402http://dx.doi.org/10.1088/0957-0233/22/2/025402
SMITH A, EASTON T, GUARRERA V, et al. Generation of optical potentials for ultracold atoms using a superluminescent diode [J]. Phys. Rev. Res., 2021, 3(3): 033241-1-7. doi: 10.1103/physrevresearch.3.033241http://dx.doi.org/10.1103/physrevresearch.3.033241
JANASSEK P, BLUMENSTEIN S, ELSÄßER W. Ghost spectroscopy with classical thermal light emitted by a superluminescent diode [J]. Phys. Rev. Appl., 2018, 9(2): 021001-1-6. doi: 10.1103/physrevapplied.9.021001http://dx.doi.org/10.1103/physrevapplied.9.021001
TAKAHASHI Y, FUJIMOTO M, KIKUNAGA K, et al. Detection of ionized air using a photonic-crystal nanocavity excited by broadband light from a superluminescent diode [J]. Opt. Express, 2022, 30(7): 10694-10708. doi: 10.1364/oe.454328http://dx.doi.org/10.1364/oe.454328
LIU X J, LI Y, CAI H W, et al. Optical rotation detection for atomic spin precession using a superluminescent diode [J]. Photonic Sens., 2019, 9(2): 135-141. doi: 10.1007/s13320-019-0539-8http://dx.doi.org/10.1007/s13320-019-0539-8
杨静航(1994-),女,吉林白山人,博士研究生,2020年于长春理工大学获得硕士学位,主要从半导体光电子器件的研究。. doi: 10.1007/s13320-019-0539-8http://dx.doi.org/10.1007/s13320-019-0539-8
0
Views
176
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution