浏览全部资源
扫码关注微信
哈尔滨工业大学 材料科学与工程学院, 黑龙江 哈尔滨 150001
Published:05 August 2023,
Received:13 March 2023,
Revised:02 April 2023,
移动端阅览
韩鹏,刘鹤,国凤云等.BiI3修饰Cs3Bi2I9自供能光电化学型探测器制备及其性能[J].发光学报,2023,44(08):1471-1478.
HAN Peng,LIU He,GUO Fengyun,et al.Fabrication and Performance of Self-powered Photoelectrochemical Detectors Based on BiI3 Modified Cs3Bi2I9[J].Chinese Journal of Luminescence,2023,44(08):1471-1478.
韩鹏,刘鹤,国凤云等.BiI3修饰Cs3Bi2I9自供能光电化学型探测器制备及其性能[J].发光学报,2023,44(08):1471-1478. DOI: 10.37188/CJL.20230063.
HAN Peng,LIU He,GUO Fengyun,et al.Fabrication and Performance of Self-powered Photoelectrochemical Detectors Based on BiI3 Modified Cs3Bi2I9[J].Chinese Journal of Luminescence,2023,44(08):1471-1478. DOI: 10.37188/CJL.20230063.
在溶液法合成Cs
3
Bi
2
I
9
前驱体溶液的基础上,采用添加BiI
3
修饰Cs
3
Bi
2
I
9
溶液的方法后得到Cs
3
Bi
2
I
9
/BiI
3
薄膜并制备出具有自供能特性的Cs
3
Bi
2
I
9
/BiI
3
薄膜光电化学型探测器。结果表明,添加的BiI
3
以第二相形式存在于Cs
3
Bi
2
I
9
薄膜中,形成两相混合结构。在紫外光(365 nm)单色光照射下,Cs
3
Bi
2
I
9
/BiI
3
探测器的开关比达到3 198,响应度和探测率分别为2.85×10
-3
A/W和3.77×10
10
Jones。在绿光(530 nm)单色光照射下,Cs
3
Bi
2
I
9
/BiI
3
探测器的开关比达到1 172,响应度和探测率分别为6.9×10
-4
A/W和1.76×10
10
Jones,同时展现出红光波段(625 nm)的良好响应。相较于Cs
3
Bi
2
I
9
探测器,Cs
3
Bi
2
I
9
/BiI
3
器件探测性能均有大幅度提高,归因于BiI
3
对非辐射缺陷的钝化作用。本工作首次尝试将Cs
3
Bi
2
I
9
应用在光电化学型结构探测器中,通过BiI
3
的修饰成功提高了器件性能,为低毒铋基钙钛矿的光电探测应用性能提升提供了新思路。
Based on the synthesis of Cs
3
Bi
2
I
9
precursor solution by using solution method, Cs
3
Bi
2
I
9
/BiI
3
thin films were obtained by adding BiI
3
to modify Cs
3
Bi
2
I
9
solution, and the Cs
3
Bi
2
I
9
/BiI
3
photodetectors based on the device types of photoelectrochemical detectors with self-powered properties were also constructed. It is found that the added BiI
3
exists in the form of the second phase, forming a two-phase mixed structure. Under illumination of ultraviolet(365 nm) monochromatic light, Cs
3
Bi
2
I
9
/BiI
3
photodetectors show on-off ratio of 3 198, corresponding to a response of 2.85×10
-3
A/W and a detectivity of 3.77×10
10
Jones. While under illumination of green light(530 nm), the device also exhibits on-off ratio of 1 172, a response of 6.9×10
-4
A/W and a detectivity of 1.76×10
10
Jones. Compared with simple Cs
3
Bi
2
I
9
photodetectors, the detection performance of Cs
3
Bi
2
I
9
/BiI
3
photodetectors has been greatly improved, which is attributed to the passivation of BiI
3
on non-radiation defects. It is the first time to apply Cs
3
Bi
2
I
9
in the photoelectrochemical structure detector. The modification of BiI
3
successfully improves the device performance, which provides a new idea for improving the performance of low-toxic bismuth-based perovskite photodetection application.
Cs3Bi2I9光电化学型探测器自供能探测BiI3第二相
Cs3Bi2I9photoelectrochemical detectorsself-powered detectionBiI3second phase
GUAN H Y, MAO G J, ZHONG T Y, et al. A self-powered UV photodetector based on the hydrovoltaic and photoelectric coupling properties of ZnO nanowire arrays [J]. J. Alloys Compd., 2021, 867: 159073-1-8. doi: 10.1016/j.jallcom.2021.159073http://dx.doi.org/10.1016/j.jallcom.2021.159073
YANG L, TSAI W L, LI C S, et al. High-quality conformal homogeneous all-vacuum deposited CsPbCl3 thin films and their UV photodiode applications [J]. ACS Appl. Mater. Interfaces, 2019, 11(50): 47054-47062. doi: 10.1021/acsami.9b16264http://dx.doi.org/10.1021/acsami.9b16264
LI W J, LIU Y J, GAO Y X, et al. Tunneling-assisted highly sensitive and stable lead-free Cs3Bi2I9 perovskite photodetectors for diffuse reflection imaging [J]. J. Mater. Chem. C, 2021, 9(3): 1008-1013. doi: 10.1039/d0tc04485ghttp://dx.doi.org/10.1039/d0tc04485g
ISMAIL R A, ALWAN A M, AHMED A S. Preparation and characteristics study of nano-porous silicon UV photodetector [J]. Appl. Nanosc., 2017, 7(1-2): 9-15. doi: 10.1007/s13204-016-0544-9http://dx.doi.org/10.1007/s13204-016-0544-9
HU W, CONG H, HUANG W, et al. Germanium/perovskite heterostructure for high-performance and broadband photodetector from visible to infrared telecommunication band [J]. Light Sci. Appl., 2019, 8: 106-1-10. doi: 10.1038/s41377-019-0218-yhttp://dx.doi.org/10.1038/s41377-019-0218-y
方向明, 容萍, 任帅, 等. g-C3N4/Bi2S3复合材料宽光谱光电探测器制备及其性能研究 [J]. 光子学报, 2022, 51(2): 0251216-1-7.
FANG X M, RONG P, REN S, et al. Preparation and performance of g-C3N4/Bi2S3 composite broad-band photodetector [J]. Acta Photon. Sinica, 2022, 51(2): 0251216-1-7. (in Chinese)
LEE Y H, SONG I, KIM S H, et al. Perovskite granular wire photodetectors with ultrahigh photodetectivity [J]. Adv. Mater., 2020, 32(32): 2002357-1-10. doi: 10.1002/adma.202002357http://dx.doi.org/10.1002/adma.202002357
KHAZAEE M, SARDASHTI K, SUN J P, et al. A versatile thin-film deposition method for multidimensional semiconducting bismuth halides [J]. Chem. Mater., 2018, 30(10): 3538-3544. doi: 10.1021/acs.chemmater.8b01341http://dx.doi.org/10.1021/acs.chemmater.8b01341
ZHANG Y J, PATHAK R, ZHENG D P, et al. Synthesis of cesium bismuth iodide perovskite using toluene as anti-solvent with higher photocurrent response [J]. Mater. Lett., 2022, 310: 131514-1-4. doi: 10.1016/j.matlet.2021.131514http://dx.doi.org/10.1016/j.matlet.2021.131514
PARK B W, PHILIPPE B, ZHANG X L, et al. Bismuth based hybrid perovskites A3Bi2I9 (a: methylammonium or cesium) for solar cell application [J]. Adv. Mater., 2015, 27(43): 6806-6813. doi: 10.1002/adma.201501978http://dx.doi.org/10.1002/adma.201501978
BAI F, HU Y H, HU Y Q, et al. Lead-free, air-stable ultrathin Cs3Bi2I9 perovskite nanosheets for solar cells [J]. Solar Energy Mater. Solar Cells, 2018, 184: 15-21. doi: 10.1016/j.solmat.2018.04.032http://dx.doi.org/10.1016/j.solmat.2018.04.032
ZHANG Y X, LIU Y C, XU Z, et al. Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection [J]. Nat. Commun., 2020, 11(1): 2304-1-11. doi: 10.1038/s41467-020-16034-whttp://dx.doi.org/10.1038/s41467-020-16034-w
WANG J H, LI Y, MA L, et al. Air-stabilized lead-free hexagonal Cs3Bi2I9 nanocrystals for ultrahigh-performance optical detection [J]. Adv. Funct. Mater., 2022, 32(30): 2203072. doi: 10.1002/adfm.202203072http://dx.doi.org/10.1002/adfm.202203072
LI L J, YE G, LUO T Y, et al. Centimeter-sized stable zero-dimensional Cs3Bi2I9 single crystal for mid-infrared lead-free perovskite photodetector [J]. J. Phys. Chem. C, 2022, 126(7): 3646-3652. doi: 10.1021/acs.jpcc.1c08815http://dx.doi.org/10.1021/acs.jpcc.1c08815
GHOSH B, WU B, MULMUDI H K, et al. Limitations of Cs3Bi2I9 as lead-free photovoltaic absorber materials [J]. ACS Appl. Mater. Interfaces, 2018, 10(41): 35000-35007. doi: 10.1021/acsami.7b14735http://dx.doi.org/10.1021/acsami.7b14735
WU T, WANG D Z, LU Y, et al. Multifunctional perylenediimide-based cathode interfacial materials for high-performance inverted perovskite solar cells [J]. ACS Appl. Energy Mater., 2021, 4(12): 13657-13665. doi: 10.1021/acsaem.1c02339http://dx.doi.org/10.1021/acsaem.1c02339
WU T, WANG D Z, JIANG X J, et al. Molecular regulation of perylenediimide and fluorene-based cathode interfacial materials for efficient inverted perovskite solar cells [J]. Adv. Mater. Interfaces, 2022, 9(28): 2200923-1-9. doi: 10.1002/admi.202200923http://dx.doi.org/10.1002/admi.202200923
BOOPATHI K M, RAMAN S, MOHANRAMAN R, et al. Solution-processable bismuth iodide nanosheets as hole transport layers for organic solar cells [J]. Solar Energy Mater. Solar Cells, 2014, 121: 35-41. doi: 10.1016/j.solmat.2013.10.031http://dx.doi.org/10.1016/j.solmat.2013.10.031
JOHANSSON M B, ZHU H M, JOHANSSON E M J. Extended photo-conversion spectrum in low-toxic bismuth halide perovskite solar cells [J]. J. Phys. Chem. Lett., 2016, 7(17): 3467-3471. doi: 10.1021/acs.jpclett.6b01452http://dx.doi.org/10.1021/acs.jpclett.6b01452
ZHANG H J, XU Y D, SUN Q H, et al. Lead free halide perovskite Cs3Bi2I9 bulk crystals grown by a low temperature solution method [J]. CrystEngComm, 2018, 20(34): 4935-4941. doi: 10.1039/c8ce00925bhttp://dx.doi.org/10.1039/c8ce00925b
0
Views
125
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution