浏览全部资源
扫码关注微信
北京化工大学 北京软物质科学与工程高精尖创新中心, 北京 100029
Published:05 August 2023,
Received:09 March 2023,
Revised:28 March 2023,
扫 描 看 全 文
韩冰,庆轶朝,周志明等.非铅金属卤化物类钙钛矿发光材料研究进展[J].发光学报,2023,44(08):1344-1368.
HAN Bing,QING Yizhao,ZHOU Zhiming,et al.Recent Progress of Lead-free Metal Halide Perovskite Variant Luminescent Materials[J].Chinese Journal of Luminescence,2023,44(08):1344-1368.
韩冰,庆轶朝,周志明等.非铅金属卤化物类钙钛矿发光材料研究进展[J].发光学报,2023,44(08):1344-1368. DOI: 10.37188/CJL.20230058.
HAN Bing,QING Yizhao,ZHOU Zhiming,et al.Recent Progress of Lead-free Metal Halide Perovskite Variant Luminescent Materials[J].Chinese Journal of Luminescence,2023,44(08):1344-1368. DOI: 10.37188/CJL.20230058.
铅基卤化物钙钛矿发光材料因具有荧光量子产率高、发射光谱窄、发射波长可调等优异性能优势而备受关注。但金属铅的毒性和钙钛矿的稳定性是其未来在显示与照明领域实际应用中需要解决的问题。因此,探索与铅基卤化物钙钛矿光电性质相当、但更绿色环保的非铅金属卤化物类钙钛矿发光材料是势在必行的趋势。近年来,非铅金属卤化物类钙钛矿发光材料的研究取得了显著进展。本文总结了非铅金属卤化物类钙钛矿材料的晶体结构、制备方法和发光机理。归纳了影响非铅金属卤化物类钙钛矿光电性能的因素,并列举了在光致和电致发光器件领域的应用。最后,就如何进一步提升非铅金属卤化物钙钛矿发光材料的性能做了总结和展望。
Lead halide perovskite luminescent materials have attracted much attention due to their unique optoelectronic advantages such as high fluorescence quantum yield, narrow emission spectrum, and adjustable emission wavelength. However, the toxicity of metal lead and the stability of perovskite are the problems that need to be solved in the practical application in the field of flat-panel display and solid-state lighting in the future. Therefore, it is an imperative trend to explore more green and environment-friendly lead-free metal halide perovskite luminescent materials with the same optoelectronic properties as lead-based counterparts. In recent years, significant progress has been made in the research of lead-free metal halide perovskite variant (LFMHPV) luminescent materials. In this review, the crystal structure, preparation methods and luminescent mechanism of LFMHPVs are summarized. The factors affecting the photoelectric properties of these materials are discussed, and their applications in the field of photoluminescence and electroluminescence devices are categorized. Finally, how to further improve the performance of LFMHPV luminescent materials is summarized and prospected, which is conceived to provide useful guidelines for further design and application of novel metal halides with high performance.
金属卤化物类钙钛矿材料发光材料电致发光器件光致发光器件
metal halideperovskite variantluminescent materialsphotoluminescence deviceselectroluminescence devices
LI X, GAO X P, ZHANG X T, et al. Lead-free halide perovskites for light emission: recent advances and perspectives [J]. Adv. Sci., 2021, 8(4): 2003334-1-33. doi: 10.1002/advs.202003334http://dx.doi.org/10.1002/advs.202003334
WELLS H L. Über die Cäsium- und kalium-bleihalogenide [J]. Z. Anorg. Chem., 1893, 3(1): 195-210. doi: 10.1002/zaac.18930030124http://dx.doi.org/10.1002/zaac.18930030124
WEBER D. Das Perowskitsystem CH3NH3[Pb, Sn1-nX3](X = Cl, Br, I) / The perovskite system CH3NH3[PbnSn1-nX3] (X=C1, Br, I) [J]. Z. Naturforsch. B, 1979, 34(7): 939-941. doi: 10.1515/znb-1979-0712http://dx.doi.org/10.1515/znb-1979-0712
DIETER W. CH3NH3SnBrxI3-x(x = 0-3), a Sn(Ⅱ)-system with cubic perovskite structure [J]. Z. Naturforsch. B, 1978, 33(8): 862-865. doi: 10.1515/znb-1978-0809http://dx.doi.org/10.1515/znb-1978-0809
WEBER D. CH3NH3PbX3, a Pb(Ⅱ)-system with cubic perovskite structure [J]. Z. Naturforsch. B, 1978, 33(12): 1443-1445. doi: 10.1515/znb-1978-1214http://dx.doi.org/10.1515/znb-1978-1214
MITZI D B, FEILD C A, HARRISON W T A, et al. Conducting tin halides with a layered organic-based perovskite structure [J]. Nature, 1994, 369(6480): 467-469. doi: 10.1038/369467a0http://dx.doi.org/10.1038/369467a0
MITZI D B, CHONDROUDIS K, KAGAN C R. Organic-inorganic electronics [J]. IBM J. Res. Dev., 2001, 45(1): 29-45. doi: 10.1147/rd.451.0029http://dx.doi.org/10.1147/rd.451.0029
KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells [J]. J. Am. Chem. Soc., 2009, 131(17): 6050-6051. doi: 10.1021/ja809598rhttp://dx.doi.org/10.1021/ja809598r
KIM H S, LEE C R, IM J H. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9% [J]. Sci. Rep., 2012, 2: 591-1-7. doi: 10.1038/srep00591http://dx.doi.org/10.1038/srep00591
TAN Z K, MOGHADDAM R S, LAI M L, et al. Bright light-emitting diodes based on organometal halide perovskite [J]. Nat. Nanotechnol., 2014, 9(9): 687-692. doi: 10.1038/nnano.2014.149http://dx.doi.org/10.1038/nnano.2014.149
KIM Y H, KIM S, KAKEKHANI A, et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes [J]. Nat. Photonics, 2021, 15(2): 148-155. doi: 10.1038/s41566-020-00732-4http://dx.doi.org/10.1038/s41566-020-00732-4
CHIBA T, HAYASHI Y, EBE H, et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices [J]. Nat. Photonics, 2018, 12(11): 681-687. doi: 10.1038/s41566-018-0260-yhttp://dx.doi.org/10.1038/s41566-018-0260-y
CAO Y, WANG N N, TIAN H, et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures [J]. Nature, 2018, 562(7726): 249-253. doi: 10.1038/s41586-018-0576-2http://dx.doi.org/10.1038/s41586-018-0576-2
JIANG J, CHU Z M, YIN Z G, et al. Red perovskite light-emitting diodes with efficiency exceeding 25% realized by co-spacer cations [J]. Adv. Mater., 2022, 34(36): 2204460-1-8. doi: 10.1002/adma.202204460http://dx.doi.org/10.1002/adma.202204460
LIU Z, QIU W D, PENG X M, et al. Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation [J]. Adv. Mater., 2021, 33(43): 2103268-1-9. doi: 10.1002/adma.202103268http://dx.doi.org/10.1002/adma.202103268
HAILEGNAW B, KIRMAYER S, EDRI E, et al. Rain on methylammonium lead iodide based perovskites: possible environmental effects of perovskite solar cells [J]. J. Phys. Chem. Lett., 2015, 6(9): 1543-1547. doi: 10.1021/acs.jpclett.5b00504http://dx.doi.org/10.1021/acs.jpclett.5b00504
WANG K, LIANG Z Q, WANG X Q, et al. Lead replacement in CH3NH3PbI3 perovskites [J]. Adv. Electron. Mater., 2015, 1(10): 1500089. doi: 10.1002/aelm.201500089http://dx.doi.org/10.1002/aelm.201500089
ISHII A, HASEGAWA M. An interfacial europium complex on SiO2 nanoparticles: reduction-induced blue emission system [J]. Sci. Rep., 2015, 5: 11714-1-8. doi: 10.1038/srep11714http://dx.doi.org/10.1038/srep11714
JIA H R, SHI H F, YU R N, et al. Biuret induced tin-anchoring and crystallization-regulating for efficient lead-free tin halide perovskite light-emitting diodes [J]. Small, 2022, 18(17): 2200036. doi: 10.1002/smll.202200036http://dx.doi.org/10.1002/smll.202200036
SAPAROV B, HONG F, SUN J P, et al. Thin-film preparation and characterization of Cs3Sb2I9: a lead-free layered perovskite semiconductor [J]. Chem. Mater., 2015, 27(16): 5622-5632. doi: 10.1021/acs.chemmater.5b01989http://dx.doi.org/10.1021/acs.chemmater.5b01989
SINGH A, CHIU N C, BOOPATHI K M, et al. Lead-free antimony-based light-emitting diodes through the vapor-anion-exchange method [J]. ACS Appl. Mater. Interfaces, 2019, 11(38): 35088-35094. doi: 10.1021/acsami.9b10602http://dx.doi.org/10.1021/acsami.9b10602
MA Z Z, SHI Z F, YANG D W, et al. Electrically-driven violet light-emitting devices based on highly stable lead-free perovskite Cs3Sb2Br9 quantum dots [J]. ACS Energy Lett., 2020, 5(2): 385-394. doi: 10.1021/acsenergylett.9b02096http://dx.doi.org/10.1021/acsenergylett.9b02096
LIN R C, GUO Q L, ZHU Q, et al. All-inorganic CsCu2I3 single crystal with high-PLQY (≈15.7%) intrinsic white-light emission via strongly localized 1D excitonic recombination [J]. Adv. Mater., 2019, 31(46): 1905079-1-7. doi: 10.1002/adma.201905079http://dx.doi.org/10.1002/adma.201905079
MA Z Z, JI X Z, WANG M, et al. Carbazole-containing polymer-assisted trap passivation and hole-injection promotion for efficient and stable CsCu2I3-based yellow LEDs [J]. Adv. Sci., 2022, 9(27): 2202408-1-12. doi: 10.1002/advs.202202408http://dx.doi.org/10.1002/advs.202202408
LIU X Y, YUAN F, ZHU C R, et al. Near-unity blue luminance from lead-free copper halides for light-emitting diodes [J]. Nano Energy, 2022, 91: 106664. doi: 10.1016/j.nanoen.2021.106664http://dx.doi.org/10.1016/j.nanoen.2021.106664
CHANG X Q, MARONGIU D, SARRITZU V, et al. Layered germanium hybrid perovskite bromides: insights from experiments and first-principles calculations [J]. Adv. Funct. Mater., 2019, 29(31): 1903528-1-9. doi: 10.1002/adfm.201903528http://dx.doi.org/10.1002/adfm.201903528
JU M G, DAI J, MA L, et al. Lead-free mixed tin and germanium perovskites for photovoltaic application [J]. J. Am. Chem. Soc., 2017, 139(23): 8038-8043. doi: 10.1021/jacs.7b04219http://dx.doi.org/10.1021/jacs.7b04219
YANG B, CHEN J S, YANG S Q, et al. Lead-free silver-bismuth halide double perovskite nanocrystals [J]. Angew. Chem. Int. Ed., 2018, 57(19): 5359-5363. doi: 10.1002/anie.201800660http://dx.doi.org/10.1002/anie.201800660
ZHANG R L, MAO X, YANG Y, et al. Air-stable, lead-free zero-dimensional mixed bismuth-antimony perovskite single crystals with ultra-broadband emission [J]. Angew. Chem. Int. Ed., 2019, 58(9): 2725-2729. doi: 10.1002/anie.201812865http://dx.doi.org/10.1002/anie.201812865
LENG M Y, YANG Y, ZENG K, et al. All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability [J]. Adv. Funct. Mater., 2018, 28(1): 1704446-1-11. doi: 10.1002/adfm.201704446http://dx.doi.org/10.1002/adfm.201704446
PAL J, MANNA S, MONDAL A, et al. Colloidal synthesis and photophysics of M3Sb2I9 (M=Cs and Rb) nanocrystals: lead-free perovskites [J]. Angew. Chem. Int. Ed., 2017, 56(45): 14187-14191. doi: 10.1002/anie.201709040http://dx.doi.org/10.1002/anie.201709040
CREUTZ S E, CRITES E N, DE SIENA M C, et al. Colloidal nanocrystals of lead-free double-perovskite (elpasolite) semiconductors: synthesis and anion exchange to access new materials [J]. Nano Lett., 2018, 18(2): 1118-1123. doi: 10.1021/acs.nanolett.7b04659http://dx.doi.org/10.1021/acs.nanolett.7b04659
LUO J J, WANG X M, LI S R, et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites [J]. Nature, 2018, 563(7732): 541-545. doi: 10.1038/s41586-018-0691-0http://dx.doi.org/10.1038/s41586-018-0691-0
ABDELBAR M F, EL-KEMARY M, FUKATA N. Downshifting of highly energetic photons and energy transfer by Mn-doped perovskite CsPbCl3 nanocrystals in hybrid organic/silicon nanostructured solar cells [J]. Nano Energy, 2020, 77: 105163-1-9. doi: 10.1016/j.nanoen.2020.105163http://dx.doi.org/10.1016/j.nanoen.2020.105163
YANG J, YUAN X, FAN L, et al. Enhancing Mn emission of CsPbCl3 perovskite nanocrystals via incorporation of rubidium ions [J]. Mater. Res. Bull., 2021, 133: 111080-1-7. doi: 10.1016/j.materresbull.2020.111080http://dx.doi.org/10.1016/j.materresbull.2020.111080
YONG Z J, GUO S Q, MA J P, et al. Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield [J]. J. Am. Chem. Soc., 2018, 140(31): 9942-9951. doi: 10.1021/jacs.8b04763http://dx.doi.org/10.1021/jacs.8b04763
CHENG P F, FENG L, LIU Y F, et al. Doped zero-dimensional cesium zinc halides for high-efficiency blue light emission [J]. Angew. Chem. Int. Ed., 2020, 59(48): 21414-21418. doi: 10.1002/anie.202008098http://dx.doi.org/10.1002/anie.202008098
JENA A K, KULKARNI A, MIYASAKA T. Halide perovskite photovoltaics: background, status, and future prospects [J]. Chem. Rev., 2019, 119(5): 3036-3103. doi: 10.1021/acs.chemrev.8b00539http://dx.doi.org/10.1021/acs.chemrev.8b00539
SUN Y, PENG J J, CHEN Y N, et al. Triple-cation mixed-halide perovskites: towards efficient, annealing-free and air-stable solar cells enabled by Pb(SCN)2 additive [J]. Sci. Rep., 2017, 7: 46193-1-7. doi: 10.1038/srep46193http://dx.doi.org/10.1038/srep46193
SIDDIQUE Z, PAYNE J L, IRVINE J T S, et al. Effect of halide-mixing on tolerance factor and charge-carrier dynamics in (CH3NH3PbBr3-xClx) perovskites powders [J]. J. Mater. Sci. Mater. Electron., 2020, 31(21): 19415-19428. doi: 10.1007/s10854-020-04475-4http://dx.doi.org/10.1007/s10854-020-04475-4
GHOSH S, PRADHAN B. Lead-free metal halide perovskite nanocrystals: challenges, applications, and future aspects [J]. ChemNanoMat, 2019, 5(3): 300-312. doi: 10.1002/cnma.201800645http://dx.doi.org/10.1002/cnma.201800645
BI C H, WANG S X, LI Q, et al. Thermally stable copper(Ⅱ)-doped cesium lead halide perovskite quantum dots with strong blue emission [J]. J. Phys. Chem. Lett., 2019, 10(5): 943-952. doi: 10.1021/acs.jpclett.9b00290http://dx.doi.org/10.1021/acs.jpclett.9b00290
HOEFLER S F, TRIMMEL G, RATH T. Progress on lead-free metal halide perovskites for photovoltaic applications: a review [J]. Monatsh. Chem. Chem. Mon., 2017, 148(5): 795-826. doi: 10.1007/s00706-017-1933-9http://dx.doi.org/10.1007/s00706-017-1933-9
JIN Z X, ZHANG Z, XIU J W, et al. A critical review on bismuth and antimony halide based perovskites and their derivatives for photovoltaic applications: recent advances and challenges [J]. J. Mater. Chem. A, 2020, 8(32): 16166-16188. doi: 10.1039/d0ta05433jhttp://dx.doi.org/10.1039/d0ta05433j
ZHAO T X, XIN J W, JIANG Y N, et al. A novel strategy to synthesize dual blue fluorescent-magnetic EuCl2 nanocrystals via one-pot method with controlled morphologies using urea [J]. Part. Part. Syst. Charact., 2018, 35(9): 1800106-1-6. doi: 10.1002/ppsc.201800106http://dx.doi.org/10.1002/ppsc.201800106
KHAN S A, LI C, JALIL A, et al. Development of structure and tuning ability of the luminescence of lead-free halide perovskite nanocrystals (NCs) [J]. Chem. Eng. J., 2021, 420: 127603-1-29. doi: 10.1016/j.cej.2020.127603http://dx.doi.org/10.1016/j.cej.2020.127603
DI J Y, CHANG J J, LIU S Z. Recent progress of two-dimensional lead halide perovskite single crystals: crystal growth, physical properties, and device applications [J]. EcoMat, 2020, 2(3): e12036-1-24. doi: 10.1002/eom2.12036http://dx.doi.org/10.1002/eom2.12036
AKKERMAN Q A, MANNA L. What defines a halide perovskite? [J]. ACS Energy Lett., 2020, 5(2): 604-610. doi: 10.1021/acsenergylett.0c00039http://dx.doi.org/10.1021/acsenergylett.0c00039
JEON M G, YUN S, KIRAKOSYAN A, et al. Scale-up synthesis of organometal halide perovskite nanocrystals (MAPbX3, X = Cl, Br, and I) [J]. ACS Sustainable Chem. Eng., 2019, 7(24): 19369-19374. doi: 10.1021/acssuschemeng.9b03153http://dx.doi.org/10.1021/acssuschemeng.9b03153
AKIN S, AKMAN E, SONMEZOGLU S. FAPbI3-based perovskite solar cells employing hexyl-based ionic liquid with an efficiency over 20% and excellent long-term stability [J]. Adv. Funct. Mater., 2020, 30(28): 2002964-1-8. doi: 10.1002/adfm.202002964http://dx.doi.org/10.1002/adfm.202002964
LI X M, CAO F, YU D J, et al. All inorganic halide perovskites nanosystem: synthesis, structural features, optical properties and optoelectronic applications [J]. Small, 2017, 13(9): 1603996-1-24. doi: 10.1002/smll.201603996http://dx.doi.org/10.1002/smll.201603996
QUAN L N, DE ARQUER F P G, SABATINI R P, et al. Perovskites for light emission [J]. Adv. Mater., 2018, 30(45): 1801996. doi: 10.1002/adma.201801996http://dx.doi.org/10.1002/adma.201801996
STEELE J A, LAI M L, ZHANG Y, et al. Phase transitions and anion exchange in all-inorganic halide perovskites [J]. Acc. Mater. Res., 2020, 1(1): 3-15. doi: 10.1021/accountsmr.0c00009http://dx.doi.org/10.1021/accountsmr.0c00009
LUO J J, HU M C, NIU G D, et al. Lead-free halide perovskites and perovskite variants as phosphors toward light-emitting applications [J]. ACS Appl. Mater. Interfaces, 2019, 11(35): 31575-31584. doi: 10.1021/acsami.9b08407http://dx.doi.org/10.1021/acsami.9b08407
PARK B W, PHILIPPE B, ZHANG X L, et al. Bismuth based hybrid perovskites A3Bi2I9 (A: methylammonium or cesium) for solar cell application [J]. Adv. Mater., 2015, 27(43): 6806-6813. doi: 10.1002/adma.201501978http://dx.doi.org/10.1002/adma.201501978
MCCLURE E T, BALL M R, WINDL W, et al. Cs2AgBiX6 (X = Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductors [J]. Chem. Mater., 2016, 28(5): 1348-1354. doi: 10.1002/chin.201620017http://dx.doi.org/10.1002/chin.201620017
JUN T, SIM K, IIMURA S, et al. Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure [J]. Adv. Mater., 2018, 30(43): 1804547-1-6. doi: 10.1002/adma.201804547http://dx.doi.org/10.1002/adma.201804547
GUO Z H, LI J Z, PAN R K, et al. All-inorganic copper(ⅰ)-based ternary metal halides: promising materials toward optoelectronics [J]. Nanoscale, 2020, 12(29): 15560-15576. doi: 10.1039/d0nr04220jhttp://dx.doi.org/10.1039/d0nr04220j
SMITH M D, KARUNADASA H I. White-light emission from layered halide perovskites [J]. Acc. Chem. Res., 2018, 51(3): 619-627. doi: 10.1021/acs.accounts.7b00433http://dx.doi.org/10.1021/acs.accounts.7b00433
YANG B, YIN L X, NIU G D, et al. Lead-free halide Rb2CuBr3 as sensitive X-ray scintillator [J]. Adv. Mater., 2019, 31(44): 1904711-1-8. doi: 10.1002/adma.201904711http://dx.doi.org/10.1002/adma.201904711
STADLER W, HOFMANN D M, ALT H C, et al. Optical investigations of defects in Cd1-xZnxTe [J]. Phys. Rev. B, 1995, 51(16): 10619-10630. doi: 10.1103/physrevb.51.10619http://dx.doi.org/10.1103/physrevb.51.10619
YAO J S, WANG J J, YANG J N, et al. Modulation of metal halide structural units for light emission [J]. Acc. Chem. Res., 2021, 54(2): 441-451. doi: 10.1021/acs.accounts.0c00707http://dx.doi.org/10.1021/acs.accounts.0c00707
TANG H D, XU Y Q, HU X B, et al. Lead-free halide double perovskite nanocrystals for light-emitting applications: strategies for boosting efficiency and stability [J]. Adv. Sci., 2021, 8(7): 2004118-1-23. doi: 10.1002/advs.202004118http://dx.doi.org/10.1002/advs.202004118
LI S R, LUO J J, LIU J, et al. Self-trapped excitons in all-inorganic halide perovskites: fundamentals, status, and potential applications [J]. J. Phys. Chem. Lett., 2019, 10(8): 1999-2007. doi: 10.1021/acs.jpclett.8b03604http://dx.doi.org/10.1021/acs.jpclett.8b03604
SHINADA M, SUGANO S. Interband optical transitions in extremely anisotropic semiconductors. Ⅰ. bound and unbound exciton absorption [J]. J. Phys. Soc. Japan, 1966, 21(10): 1936-1946. doi: 10.1143/jpsj.21.1936http://dx.doi.org/10.1143/jpsj.21.1936
SAIDAMINOV M I, MOHAMMED O F, BAKR O M. Low-dimensional-networked metal halide perovskites: the next big thing [J]. ACS Energy Lett., 2017, 2(4): 889-896. doi: 10.1021/acsenergylett.6b00705http://dx.doi.org/10.1021/acsenergylett.6b00705
KOUTSELAS I B, DUCASSE L, PAPAVASSILIOU G C. Electronic properties of three- and low-dimensional semiconducting materials with Pb halide and Sn halide units [J]. J. Phys.: Condens. Matter, 1996, 8(9): 1217-1227. doi: 10.1088/0953-8984/8/9/012http://dx.doi.org/10.1088/0953-8984/8/9/012
YANG X L, ZHANG X W, DENG J X, et al. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation [J]. Nat. Commun., 2018, 9(1): 570-1-8. doi: 10.1038/s41467-018-02978-7http://dx.doi.org/10.1038/s41467-018-02978-7
VELDHUIS S A, BOIX P P, YANTARA N, et al. Perovskite materials for light-emitting diodes and lasers [J]. Adv. Mater., 2016, 28(32): 6804-6834. doi: 10.1002/adma.201600669http://dx.doi.org/10.1002/adma.201600669
ZOU W, LI R Z, ZHANG S T, et al. Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes [J]. Nat. Commun., 2018, 9(1): 608-1-7. doi: 10.1038/s41467-018-03049-7http://dx.doi.org/10.1038/s41467-018-03049-7
MILOT R L, SUTTON R J, EPERON G E, et al. Charge-carrier dynamics in 2D hybrid metal-halide perovskites [J]. Nano Lett., 2016, 16(11): 7001-7007. doi: 10.1021/acs.nanolett.6b03114http://dx.doi.org/10.1021/acs.nanolett.6b03114
FAKHARUDDIN A, GANGISHETTY M K, ABDI-JALEBI M, et al. Perovskite light-emitting diodes [J]. Nat. Electron., 2022, 5(4): 203-216. doi: 10.1038/s41928-022-00745-7http://dx.doi.org/10.1038/s41928-022-00745-7
LENG M Y, YANG Y, CHEN Z W, et al. Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission [J]. Nano Lett., 2018, 18(9): 6076-6083. doi: 10.1021/acs.nanolett.8b03090http://dx.doi.org/10.1021/acs.nanolett.8b03090
KIM J, PARK J, NAM S W, et al. Determining the chemical origin of the photoluminescence of cesium-bismuth-bromide perovskite nanocrystals and improving the luminescence via metal chloride additives [J]. ACS Appl. Energy Mater., 2020, 3(5): 4650-4657. doi: 10.1021/acsaem.0c00299http://dx.doi.org/10.1021/acsaem.0c00299
KAR M R, SAHOO M R, NAYAK S K, et al. Synthesis and properties of lead-free formamidinium bismuth bromide perovskites [J]. Mater. Today Chem., 2021, 20: 100449-1-6. doi: 10.1016/j.mtchem.2021.100449http://dx.doi.org/10.1016/j.mtchem.2021.100449
LI H, SUN Y Q, XU L, et al. Tunable luminescence in full color region based on CdSe/EuxSey hybrid nanocrystals [J]. RSC Adv., 2013, 3(45): 22849-22852. doi: 10.1039/c3ra42970ahttp://dx.doi.org/10.1039/c3ra42970a
GONG X Y, LIU Z Q, YAN D, et al. EuS-CdS and EuS-ZnS heterostructured nanocrystals constructed by co-thermal decomposition of molecular precursors in the solution phase [J]. J. Mater. Chem. C, 2015, 3(16): 3902-3907. doi: 10.1039/c5tc00312ahttp://dx.doi.org/10.1039/c5tc00312a
JIA C, LI H, MENG X W, et al. CsPbX3/Cs4PbX6 core/shell perovskite nanocrystals [J]. Chem. Commun., 2018, 54(49): 6300-6303. doi: 10.1039/c8cc02802hhttp://dx.doi.org/10.1039/c8cc02802h
LENG M Y, CHEN Z W, YANG Y, et al. Lead-free, blue emitting bismuth halide perovskite quantum dots [J]. Angew. Chem. Int. Ed., 2016, 55(48): 15012-15016. doi: 10.1002/anie.201608160http://dx.doi.org/10.1002/anie.201608160
HAN P G, LUO C, YANG S Q, et al. All-inorganic lead-free 0D perovskites by a doping strategy to achieve a PLQY boost from <2% to 90% [J]. Angew. Chem. Int. Ed., 2020, 59(31): 12709-12713. doi: 10.1002/anie.202003234http://dx.doi.org/10.1002/anie.202003234
Nila Nandha K., Angshuman N. Synthesis and luminescence of Mn-doped Cs2AgInCl6 double perovskites[J] Chem. Commun., 2018,54(41), 5205-5208. doi: 10.1039/c8cc01982ghttp://dx.doi.org/10.1039/c8cc01982g
LOCARDI F, CIRIGNANO M, BARANOV D, et al. Colloidal synthesis of double perovskite Cs2AgInCl6 and Mn-doped Cs2AgInCl6 nanocrystals [J]. J. Am. Chem. Soc., 2018, 140(40): 12989-12995. doi: 10.1021/jacs.8b07983http://dx.doi.org/10.1021/jacs.8b07983
YANG B, MAO X, HONG F, et al. Lead-free direct band gap double-perovskite nanocrystals with bright dual-color emission [J]. J. Am. Chem. Soc., 2018, 140(49): 17001-17006. doi: 10.1021/jacs.8b07424http://dx.doi.org/10.1021/jacs.8b07424
LIU Y, JING Y Y, ZHAO J, et al. Design optimization of lead-free perovskite Cs2AgInCl6∶Bi nanocrystals with 11.4% photoluminescence quantum yield [J]. Chem. Mater., 2019, 31(9): 3333-3339. doi: 10.1021/acs.chemmater.9b00410http://dx.doi.org/10.1021/acs.chemmater.9b00410
LEE W, HONG S, KIM S. Colloidal synthesis of lead-free silver⁃indium double-perovskite Cs2AgInCl6 nanocrystals and their doping with lanthanide ions [J]. J. Phys. Chem. C, 2019, 123(4): 2665-2672. doi: 10.1021/acs.jpcc.8b12146http://dx.doi.org/10.1021/acs.jpcc.8b12146
LIU R X, ZHANG W J, LIU W J, et al. Synthesis of a Bi3+-doped Cs2HfCl6 double perovskite with highly efficient blue light emission at room temperature [J]. Inorg. Chem., 2021, 60(14): 10451-10458. doi: 10.1021/acs.inorgchem.1c01054http://dx.doi.org/10.1021/acs.inorgchem.1c01054
LIU S P, YANG B, CHEN J S, et al. Efficient thermally activated delayed fluorescence from all-inorganic cesium zirconium halide perovskite nanocrystals [J]. Angew. Chem. Int. Ed., 2020, 59(49): 21925-21929. doi: 10.1002/anie.202009101http://dx.doi.org/10.1002/anie.202009101
ABFALTERER A, SHAMSI J, KUBICKI D J, et al. Colloidal synthesis and optical properties of perovskite-inspired cesium zirconium halide nanocrystals [J]. ACS Materials Lett., 2020, 2(12): 1644-1652. doi: 10.1021/acsmaterialslett.0c00393http://dx.doi.org/10.1021/acsmaterialslett.0c00393
ZHANG J, YANG Y, DENG H, et al. High quantum yield blue emission from lead-free inorganic antimony halide perovskite colloidal quantum dots [J]. ACS Nano, 2017, 11(9): 9294-9302. doi: 10.1021/acsnano.7b04683http://dx.doi.org/10.1021/acsnano.7b04683
YANG S, GUO W H, TANG Z Y, et al. Long-persistent luminescence from double self-defect states in undoped Cs3In2Cl9 nanocrystals for bioimaging and display technologies [J]. ACS Appl. Nano Mater., 2022, 5(7): 9469-9477. doi: 10.1021/acsanm.2c01738http://dx.doi.org/10.1021/acsanm.2c01738
ROCCANOVA R, YANGUI A, SEO G, et al. Bright luminescence from nontoxic CsCu2X3 (X = Cl, Br, I) [J]. ACS Materials Lett., 2019, 1(4): 459-465. doi: 10.1021/acsmaterialslett.9b00274http://dx.doi.org/10.1021/acsmaterialslett.9b00274
LIU S D, LIU H L, ZHOU G F, et al. Water-induced crystal phase transformation of stable lead-free Cu-based perovskite nanocrystals prepared by one-pot method [J]. Chem. Eng. J., 2022, 427: 131430-1-9. doi: 10.1016/j.cej.2021.131430http://dx.doi.org/10.1016/j.cej.2021.131430
GAO F, ZHU X N, FENG Q S, et al. Deep-blue emissive Cs3Cu2I5 perovskites nanocrystals with 96.6% quantum yield via InI3-assisted synthesis for light-emitting device and fluorescent ink applications [J]. Nano Energy, 2022, 98: 107270. doi: 10.1016/j.nanoen.2022.107270http://dx.doi.org/10.1016/j.nanoen.2022.107270
HUANG J M, LEI T, SIRON M, et al. Lead-free cesium europium halide perovskite nanocrystals [J]. Nano Lett., 2020, 20(5): 3734-3739. doi: 10.1021/acs.nanolett.0c00692http://dx.doi.org/10.1021/acs.nanolett.0c00692
LUO J J, YANG L B, TAN Z F, et al. Efficient blue light emitting diodes based on europium halide perovskites [J]. Adv. Mater., 2021, 33(38): 2101903. doi: 10.1002/adma.202101903http://dx.doi.org/10.1002/adma.202101903
WANG A F, YAN X X, ZHANG M, et al. Controlled synthesis of lead-free and stable perovskite derivative Cs2SnI6 nanocrystals via a facile hot-injection process [J]. Chem. Mater., 2016, 28(22): 8132-8140. doi: 10.1021/acs.chemmater.6b01329http://dx.doi.org/10.1021/acs.chemmater.6b01329
TAN Z F, LI J H, ZHANG C, et al. Highly efficient blue-emitting Bi-doped Cs2SnCl6 perovskite variant: photoluminescence induced by impurity doping [J]. Adv. Funct. Mater., 2018, 28(29): 1801131-1-10. doi: 10.1002/adfm.201801131http://dx.doi.org/10.1002/adfm.201801131
YANG B, CHEN J S, HONG F, et al. Lead-free, air-stable all-inorganic cesium bismuth halide perovskite nanocrystals [J]. Angew. Chem. Int. Ed., 2017, 56(41): 12471-12475. doi: 10.1002/anie.201704739http://dx.doi.org/10.1002/anie.201704739
SHEN Y L, YIN J, CAI B, et al. Lead-free, stable, high-efficiency (52%) blue luminescent FA3Bi2Br9 perovskite quantum dots [J]. Nanoscale Horiz., 2020, 5(3): 580-585. doi: 10.1039/c9nh00685khttp://dx.doi.org/10.1039/c9nh00685k
CHEN N, CAI T, LI W H, et al. Yb- and Mn-doped lead-free double perovskite Cs2AgBiX6 (X = Cl-, Br-) nanocrystals [J]. ACS Appl. Mater. Interfaces, 2019, 11(18): 16855-16863. doi: 10.1021/acsami.9b02367http://dx.doi.org/10.1021/acsami.9b02367
HU Q S, NIU G D, ZHENG Z, et al. Tunable color temperatures and efficient white emission from Cs2Ag1-xNaxIn1-yBiyCl6 double perovskite nanocrystals [J]. Small, 2019, 15(44): 1903496-1-7. doi: 10.1002/smll.201903496http://dx.doi.org/10.1002/smll.201903496
HAN P G, MAO X, YANG S Q, et al. Lead-free sodium-indium double perovskite nanocrystals through doping silver cations for bright yellow emission [J]. Angew. Chem. Int. Ed., 2019, 58(48): 17231-17235. doi: 10.1002/anie.201909525http://dx.doi.org/10.1002/anie.201909525
CHENG P F, SUN L, FENG L, et al. Colloidal synthesis and optical properties of all-inorganic low-dimensional cesium copper halide nanocrystals [J]. Angew. Chem. Int. Ed., 2019, 58(45): 16087-16091. doi: 10.1002/anie.201909129http://dx.doi.org/10.1002/anie.201909129
LUO Z S, LI Q, ZHANG L M, et al. 0D Cs3Cu2X5(X = I, Br, and Cl) nanocrystals: colloidal syntheses and optical properties [J]. Small, 2020, 16(3): 1905226-1-5. doi: 10.1002/smll.201905226http://dx.doi.org/10.1002/smll.201905226
ZHANG F, JI X Z, LIANG W Q, et al. Room-temperature synthesis of blue-emissive zero-dimensional cesium indium halide quantum dots for temperature-stable down-conversion white light-emitting diodes with a half-lifetime of 186 h [J]. Mater. Horiz., 2021, 8(12): 3432-3442. doi: 10.1039/d1mh01370jhttp://dx.doi.org/10.1039/d1mh01370j
ZHANG F, YANG D W, SHI Z F, et al. Stable zero-dimensional cesium indium bromide hollow nanocrystals emitting blue light from self-trapped excitons [J]. Nano Today, 2021, 38: 101153-1-10. doi: 10.1016/j.nantod.2021.101153http://dx.doi.org/10.1016/j.nantod.2021.101153
PAN W C, WU H D, LUO J J, et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit [J]. Nat. Photonics, 2017, 11(11): 726-732. doi: 10.1038/s41566-017-0012-4http://dx.doi.org/10.1038/s41566-017-0012-4
SLAVNEY A H, HU T, LINDENBERG A M, et al. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications [J]. J. Am. Chem. Soc., 2016, 138(7): 2138-2141. doi: 10.1021/jacs.5b13294http://dx.doi.org/10.1021/jacs.5b13294
VOLONAKIS G, FILIP M R, HAGHIGHIRAD A A, et al. Lead-free halide double perovskites via heterovalent substitution of noble metals [J]. J. Phys. Chem. Lett., 2016, 7(7): 1254-1259. doi: 10.1021/acs.jpclett.6b00376http://dx.doi.org/10.1021/acs.jpclett.6b00376
GREUL E, PETRUS M L, BINEK A, et al. Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applications [J]. J. Mater. Chem. A, 2017, 5(37): 19972-19981. doi: 10.1039/c7ta06816fhttp://dx.doi.org/10.1039/c7ta06816f
KARLIN K K. Progress in inorganic chemistry, Vol.48. [J. Am. Chem. Soc.1999, 121, 8970] (Book Review) [J]. J. Am. Chem. Soc., 1999, 121(50): 11934.
FILIP M R, HILLMAN S, HAGHIGHIRAD A A, et al. Band gaps of the lead-free halide double perovskites Cs2BiAgCl6 and Cs2BiAgBr6 from theory and experiment [J]. J. Phys. Chem. Lett., 2016, 7(13): 2579-2585. doi: 10.1021/acs.jpclett.6b01041http://dx.doi.org/10.1021/acs.jpclett.6b01041
HUANG D Y, XIAO H, LIU D J, et al. All-inorganic tin-doped Cs2BiAgCl6 double perovskites with stable blue photoluminescence for WLEDs [J]. J. Mater. Chem. C, 2021, 9(28): 8862-8873. doi: 10.1039/d1tc02168khttp://dx.doi.org/10.1039/d1tc02168k
WANG M, ZENG P, WANG Z H, et al. Vapor-deposited Cs2AgBiCl6 double perovskite films toward highly selective and stable ultraviolet photodetector [J]. Adv. Sci., 2020, 7(11): 1903662-1-7. doi: 10.1002/advs.201903662http://dx.doi.org/10.1002/advs.201903662
ZHOU L, XU Y F, CHEN B X, et al. Synthesis and photocatalytic application of stable lead-free Cs2AgBiBr6 perovskite nanocrystals [J]. Small, 2018, 14(11): 1703762-1-7. doi: 10.1002/smll.201703762http://dx.doi.org/10.1002/smll.201703762
VOLONAKIS G, HAGHIGHIRAD A A, MILOT R L, et al. Cs2InAgCl6: a new lead-free halide double perovskite with direct band gap [J]. J. Phys. Chem. Lett., 2017, 8(4): 772-778. doi: 10.1021/acs.jpclett.6b02682http://dx.doi.org/10.1021/acs.jpclett.6b02682
TRAN T T, PANELLA J R, CHAMORRO J R, et al. Designing indirect⁃direct bandgap transitions in double perovskites [J]. Mater. Horizons, 2017, 4(4): 688-693. doi: 10.1039/c7mh00239dhttp://dx.doi.org/10.1039/c7mh00239d
ZHANG G Y, WANG D Y, LOU B B, et al. Efficient broadband near-infrared emission from lead-free halide double perovskite single crystal [J]. Angew. Chem. Int. Ed., 2022, 61(33): e202207454-1-9. doi: 10.1002/anie.202207454http://dx.doi.org/10.1002/anie.202207454
SAIKIA S, JOSHI A, ARFIN H, et al. Sb3+-Er3+ -codoped Cs2NaInCl6 for emitting blue and short-wave infrared radiation [J]. Angew. Chem. Int. Ed., 2022, 61(32): e202201628-1-8. doi: 10.1002/anie.202201628http://dx.doi.org/10.1002/anie.202201628
JANA M K, JANKE S M, DIRKES D J, et al. Direct-bandgap 2D silver-bismuth iodide double perovskite: the structure-directing influence of an oligothiophene spacer cation [J]. J. Am. Chem. Soc., 2019, 141(19): 7955-7964. doi: 10.1021/jacs.9b02909http://dx.doi.org/10.1021/jacs.9b02909
FANG Y Y, ZHANG L, WU L W, et al. Pressure-induced emission (PIE) and phase transition of a two-dimensional halide double perovskite (BA)4AgBiBr8 (BA=CH3(CH2)3NH3+) [J]. Angew. Chem. Int. Ed., 2019, 58(43): 15249-15253. doi: 10.1002/anie.201906311http://dx.doi.org/10.1002/anie.201906311
LU P, LU M, WANG H, et al. Metal halide perovskite nanocrystals and their applications in optoelectronic devices [J]. InfoMat, 2019, 1(4): 430-459. doi: 10.1002/inf2.12031http://dx.doi.org/10.1002/inf2.12031
LIU Y, RONG X M, LI M Z, et al. Incorporating rare-earth terbium(Ⅲ) ions into Cs2AgInCl6∶Bi nanocrystals toward tunable photoluminescence [J]. Angew. Chem. Int. Ed., 2020, 59(28): 11634-11640. doi: 10.1002/anie.202004562http://dx.doi.org/10.1002/anie.202004562
CONNOR B A, LEPPERT L, SMITH M D, et al. Layered halide double perovskites: dimensional reduction of Cs2AgBiBr6 [J]. J. Am. Chem. Soc., 2018, 140(15): 5235-5240. doi: 10.1021/jacs.8b01543http://dx.doi.org/10.1021/jacs.8b01543
VARGAS B, RAMOS E, PÉREZ-GUTIÉRREZ E, et al. A direct bandgap copper-antimony halide perovskite [J]. J. Am. Chem. Soc., 2017, 139(27): 9116-9119. doi: 10.1021/jacs.7b04119http://dx.doi.org/10.1021/jacs.7b04119
HOLZAPFEL N P, MAJHER J D, STROM T A, et al. Cs4Cd1-xMnxBi2Cl12—a vacancy-ordered halide perovskite phosphor with high-efficiency orange-red emission [J]. Chem. Mater., 2020, 32(8): 3510-3516. doi: 10.1021/acs.chemmater.0c00454http://dx.doi.org/10.1021/acs.chemmater.0c00454
LAI C F, CHANG Y C, TIEN Y C. Stable lead-free cesium tin halide double-perovskite nanocrystals embedded in polydimethylsiloxane for candlelight light-emitting diodes [J]. ACS Appl. Nano Mater., 2021, 4(2): 1924-1931. doi: 10.1021/acsanm.0c03273http://dx.doi.org/10.1021/acsanm.0c03273
LIN T W, SU C, LIN C C. Phase transition and energy transfer of lead-free Cs2SnCl6 perovskite nanocrystals by controlling the precursors and doping manganese ions [J]. J. Inf. Disp., 2019, 20(4): 209-216. doi: 10.1080/15980316.2019.1655493http://dx.doi.org/10.1080/15980316.2019.1655493
GONG S F, WU R R, YANG S, et al. Tuning the luminous properties and optical thermometry of Cs2SnCl6 phosphor microcrystals via Bi and Sb codoping [J]. Photonics Res., 2021, 9(11): 2182-2189. doi: 10.1364/prj.431672http://dx.doi.org/10.1364/prj.431672
YAN A P, LI K, ZHOU Y, et al. Tuning the optical properties of Cs2SnCl6∶Bi and Cs2SnCl6∶Sb lead-free perovskites via post-annealing for white LEDs [J]. J. Alloys Compd., 2020, 822: 153528-1-8. doi: 10.1016/j.jallcom.2019.153528http://dx.doi.org/10.1016/j.jallcom.2019.153528
CHEN C H, XIANG J M, CHEN Y H, et al. White-light emission lead-free perovskite phosphor Cs2ZrCl6∶Sb3+ [J]. Ceram. Int., 2022, 48(2): 1851-1856. doi: 10.1016/j.ceramint.2021.09.268http://dx.doi.org/10.1016/j.ceramint.2021.09.268
MA Z Z, SHI Z F, WANG L T, et al. Water-induced fluorescence enhancement of lead-free cesium bismuth halide quantum dots by 130% for stable white light-emitting devices [J]. Nanoscale, 2020, 12(6): 3637-3645. doi: 10.1039/c9nr10075jhttp://dx.doi.org/10.1039/c9nr10075j
GAN W J, LOU S Q, WANG J. Colloidal synthesis of lead-free all-inorganic Cs3Sb2BrxI9-x nanocrystals [J]. J. Inf. Disp., 2019, 20(4): 201-207. doi: 10.1080/15980316.2019.1664651http://dx.doi.org/10.1080/15980316.2019.1664651
SU B B, LI M Z, SONG E H, et al. Sb3+-doping in cesium zinc halides single crystals enabling high-efficiency near-infrared emission [J]. Adv. Funct. Mater., 2021, 31(40): 2105316-1-10. doi: 10.1002/adfm.202105316http://dx.doi.org/10.1002/adfm.202105316
DU M H. Emission trend of multiple self-trapped excitons in luminescent 1D copper halides [J]. ACS Energy Lett., 2020, 5(1): 464-469. doi: 10.1021/acsenergylett.9b02688http://dx.doi.org/10.1021/acsenergylett.9b02688
HUANG J L, PENG Y H, JIN J C, et al. Unveiling white light emission of a one-dimensional Cu(Ⅰ)-based organometallic halide toward single-phase light-emitting diode applications [J]. J. Phys. Chem. Lett., 2021, 12(51): 12345-12351. doi: 10.1021/acs.jpclett.1c03767http://dx.doi.org/10.1021/acs.jpclett.1c03767
ZHANG M Y, ZHU J S, YANG B, et al. Oriented-structured CsCu2I3 film by close-space sublimation and nanoscale seed screening for high-resolution X-ray imaging [J]. Nano Lett., 2021, 21(3): 1392-1399. doi: 10.1021/acs.nanolett.0c04197http://dx.doi.org/10.1021/acs.nanolett.0c04197
ROCCANOVA R, YANGUI A, NHALIL H, et al. Near-unity photoluminescence quantum yield in blue-emitting Cs3Cu2Br5-xIx (0≤x≤5) [J]. ACS Appl. Electron. Mater., 2019, 1(3): 269-274. doi: 10.1021/acsaelm.9b00015http://dx.doi.org/10.1021/acsaelm.9b00015
FANG S F, WANG Y, LI H X, et al. Rapid synthesis and mechanochemical reactions of cesium copper halides for convenient chromaticity tuning and efficient white light emission [J]. J. Mater. Chem. C, 2020, 8(14): 4895-4901. doi: 10.1039/d0tc00015ahttp://dx.doi.org/10.1039/d0tc00015a
FAN R R, FANG S F, LIANG C C, et al. Controllable one-step doping synthesis for the white-light emission of cesium copper iodide perovskites [J]. Photonics Res., 2021, 9(5): 694-700. doi: 10.1364/prj.415015http://dx.doi.org/10.1364/prj.415015
YANG Z W, JIANG Z, LIU X Y, et al. Bright blue light-emitting doped cesium bromide nanocrystals: alternatives of lead-free perovskite nanocrystals for white LEDs [J]. Adv. Opt. Mater., 2019, 7(10): 1900108-1-8. doi: 10.1002/adom.201900108http://dx.doi.org/10.1002/adom.201900108
ZHU D X, ZAFFALON M L, PINCHETTI V, et al. Bright blue emitting Cu-doped Cs2ZnCl4 colloidal nanocrystals [J]. Chem. Mater., 2020, 32(13): 5897-5903. doi: 10.1021/acs.chemmater.0c02017http://dx.doi.org/10.1021/acs.chemmater.0c02017
SUN J, YANG J, LEE J I, et al. Lead-free perovskite nanocrystals for light-emitting devices [J]. J. Phys. Chem. Lett., 2018, 9(7): 1573-1583. doi: 10.1021/acs.jpclett.8b00301http://dx.doi.org/10.1021/acs.jpclett.8b00301
LU L, PAN X, LUO J H, et al. Recent advances and optoelectronic applications of lead-free halide double perovskites [J]. Chem. Eur. J., 2020, 26(71): 16975-16984. doi: 10.1002/chem.202000788http://dx.doi.org/10.1002/chem.202000788
WANG Y, ZHANG F, MA J L, et al. Toward eco-friendly and stable halide perovskite-inspired materials for light-emitting devices applications by dimension classification: recent advances and opportunities [J]. EcoMat, 2022, 4(1): e12160-1-32. doi: 10.1002/eom2.12160http://dx.doi.org/10.1002/eom2.12160
REN Z W, WANG K, SUN X W, et al. Strategies toward efficient blue perovskite light-emitting diodes [J]. Adv. Funct. Mater., 2021, 31(30): 2100516-1-22. doi: 10.1002/adfm.202100516http://dx.doi.org/10.1002/adfm.202100516
SARKAR S. All‐inorganic halide perovskite nanocrystals: future prospects and challenges to go lead free [J]. Phys. Status. Solidi A, 2021, 218(14): 2100185-1-38. doi: 10.1002/pssa.202100185http://dx.doi.org/10.1002/pssa.202100185
GRAY M B, HARIYANI S, STROM T A, et al. High-efficiency blue photoluminescence in the Cs2NaInCl6∶Sb3+ double perovskite phosphor [J]. J. Mater. Chem. C, 2020, 8(20): 6797-6803. doi: 10.1039/d0tc01037ehttp://dx.doi.org/10.1039/d0tc01037e
ZHANG Y Q, ZHANG Z H, YU W J, et al. Lead-free double perovskite Cs2AgIn0.9Bi0.1Cl6 quantum dots for white light-emitting diodes [J]. Adv. Sci., 2022, 9(2): 2102895. doi: 10.1002/advs.202102895http://dx.doi.org/10.1002/advs.202102895
WANG L T, SHI Z F, MA Z Z, et al. Colloidal synthesis of ternary copper halide nanocrystals for high-efficiency deep-blue light-emitting diodes with a half-lifetime above 100 h [J]. Nano Lett., 2020, 20(5): 3568-3576. doi: 10.1021/acs.nanolett.0c00513http://dx.doi.org/10.1021/acs.nanolett.0c00513
MA Z Z, SHI Z F, QIN C C, et al. Stable yellow light-emitting devices based on ternary copper halides with broadband emissive self-trapped excitons [J]. ACS Nano, 2020, 14(4): 4475-4486. doi: 10.1021/acsnano.9b10148http://dx.doi.org/10.1021/acsnano.9b10148
SEO G, JUNG H, CREASON T D, et al. Lead-free halide light-emitting diodes with external quantum efficiency exceeding 7% using host⁃dopant strategy [J]. ACS Energy Lett., 2021, 6(7): 2584-2593. doi: 10.1021/acsenergylett.1c01117http://dx.doi.org/10.1021/acsenergylett.1c01117
0
Views
454
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution