浏览全部资源
扫码关注微信
江苏大学 材料科学与工程学院, 江苏 镇江 212013
Published:05 August 2023,
Received:09 March 2023,
Revised:21 March 2023,
扫 描 看 全 文
吴春霞,贾瑞君.CsPbxSn1-xBr3/a⁃ZrP复合材料的光学性能及其在白色发光二极管中的应用[J].发光学报,2023,44(08):1413-1421.
WU Chunxia,JIA Ruijun.Optical Properties of CsPbxSn1-xBr3/a-ZrP Perovskite Quantum Dots for White Light-emitting Diodes[J].Chinese Journal of Luminescence,2023,44(08):1413-1421.
吴春霞,贾瑞君.CsPbxSn1-xBr3/a⁃ZrP复合材料的光学性能及其在白色发光二极管中的应用[J].发光学报,2023,44(08):1413-1421. DOI: 10.37188/CJL.20230056.
WU Chunxia,JIA Ruijun.Optical Properties of CsPbxSn1-xBr3/a-ZrP Perovskite Quantum Dots for White Light-emitting Diodes[J].Chinese Journal of Luminescence,2023,44(08):1413-1421. DOI: 10.37188/CJL.20230056.
钙钛矿量子点(PQDs)由于具有高量子效率、可调节带隙、高色纯度及低成本等优点,在光电领域具有良好的应用前景。然而,其较差的稳定性阻碍了钙钛矿量子点的应用。本文在室温条件下合成了CsPb
x
Sn
1-
x
Br
3
/ a⁃ZrP PQDs,与传统CsPbBr
3
PQDs对比,具有更好的光学性能及稳定性。由于a⁃ZrP对于Pb
2+
选择吸附性的固有特性以及与Cs
+
离子交换的能力,促进了量子点在a⁃ZrP表面的吸附锚定。因此,合成的CsPb
x
Sn
1-
x
Br
3
/a⁃ZrP PQDs具有更高的激子结合能和更强的环境稳定性。该复合材料为生产稳定高效的钙钛矿量子点提供了一种可行的方法,并表明CsPb
x
Sn
1-
x
Br
3
/a⁃ZrP PQDs是一种高效的下转换荧光材料,可用于高效发光二极管的制备。
Nowadays, perovskite (CsPb
X
3
,
X
=Cl, Br, I) quantum dots (PQDs) have been widely used in optical properties due to their high photoluminescence quantum yield (PLQY), adjustable band gap, high color purity, and low cost. However, due to its inherent instability, such as oxygen, heat, and moisture. It is still a problem to hinder the applications of lead halide perovskite. In this paper, we synthesize CsPb
x
Sn
1-
x
Br
3
/a-ZrP PQDs at room temperature. Compared with the original CsPbBr
3
PQDs, CsPb
x
Sn
1-
x
Br
3
/a-ZrP PQDs have better optical performance and stability. Due to the inherent characteristics of a-ZrP nanosheets for high Pb
2+
adsorptivity and good ability to exchange ions with Cs
+
, it promoted adsorption and anchoring of perovskite quantum dots on the surface of a-ZrP. Therefore, the synthesized CsPb
x
Sn
1-
x
Br
3
/a-ZrP PQDs have higher exciton binding energy and stronger environmental stability. The PQDs provide a feasible method for producing stable and efficient perovskite quantum dots, and show that CsPb
x
⁃
Sn
1-
x
Br
3
/a-ZrP PQDs are efficient down-conversion fluorescent materials for the preparation of high-efficiency LEDs.
钙钛矿量子点吸附掺杂Sn2+荧光增强白光发光二极管(WLED)
perovskitequantum dotsadsorptionSn2+ dopedphotoluminescence enhancedwhite light-emitting diodes
SETH S, AHMED T, DE A, et al. Tackling the defects, stability, and photoluminescence of CsPbX3 perovskite nanocrystals [J]. ACS Energy Lett., 2019, 4(7): 1610-1618. doi: 10.1021/acsenergylett.9b00849http://dx.doi.org/10.1021/acsenergylett.9b00849
JIANG Y, WANG X, PAN A L. Properties of excitons and photogenerated charge carriers in metal halide perovskites [J]. Adv. Mater., 2019, 31(47): 1806671-1-47. doi: 10.1002/adma.201806671http://dx.doi.org/10.1002/adma.201806671
YOO J J, SEO G, CHUA M R, et al. Efficient perovskite solar cells via improved carrier management [J]. Nature, 2021, 590(7847): 587-593. doi: 10.1038/s41586-021-03285-whttp://dx.doi.org/10.1038/s41586-021-03285-w
ZOU S H, LIU Y S, LI J H, et al. Stabilizing cesium lead halide perovskite lattice through Mn(Ⅱ) substitution for air-stable light-emitting diodes [J]. J. Am. Chem. Soc., 2017, 139(33): 11443-11450. doi: 10.1021/jacs.7b04000http://dx.doi.org/10.1021/jacs.7b04000
WU H, ZHANG Y, LU M, et al. Surface ligand modification of cesium lead bromide nanocrystals for improved light-emitting performance [J]. Nanoscale, 2018, 10(9): 4173-4178. doi: 10.1039/c7nr09126ehttp://dx.doi.org/10.1039/c7nr09126e
CHEN K Q, JIN W, ZHANG Y P, et al. High efficiency mesoscopic solar cells using CsPbI3 perovskite quantum dots enabled by chemical interface engineering [J]. J. Am. Chem. Soc., 2020, 142(8): 3775-3783. doi: 10.1021/jacs.9b10700http://dx.doi.org/10.1021/jacs.9b10700
LI Y, DONG L B, PATTERSON R, et al. Stabilizing CsPbBr3 perovskite quantum dots on zirconium phosphate nanosheets through an ion exchange/surface adsorption strategy [J]. Chem. Eng. J., 2020, 381: 122735-1-8. doi: 10.1016/j.cej.2019.122735http://dx.doi.org/10.1016/j.cej.2019.122735
WEI Y, XIAO H, XIE Z X, et al. Highly luminescent lead halide perovskite quantum dots in hierarchical CaF2 matrices with enhanced stability as phosphors for white light-emitting diodes [J]. Adv. Opt. Mater., 2018, 6(11): 1701343-1-8. doi: 10.1002/adom.201701343http://dx.doi.org/10.1002/adom.201701343
ZHU Y, PENG L L, FANG Z W, et al. Structural engineering of 2D nanomaterials for energy storage and catalysis [J]. Adv. Mater., 2018, 30(15): 1706347-1-19. doi: 10.1002/adma.201706347http://dx.doi.org/10.1002/adma.201706347
SANCHEZ J, RAMOS-GARCÉS M V, NARKEVICIUTE I, et al. Transition metal-modified zirconium phosphate electrocatalysts for the oxygen evolution reaction [J]. Catalysts, 2017, 7(5): 132-1-14. doi: 10.3390/catal7050132http://dx.doi.org/10.3390/catal7050132
ZHANG J B, JIANG P F, WANG Y, et al. In situ synthesis of ultrastable CsPbBr3 perovskite nanocrystals coated with polyimide in a CSTR system [J]. ACS Appl. Mater. Interfaces, 2020, 12(2): 3080-3085. doi: 10.1021/acsami.9b20880http://dx.doi.org/10.1021/acsami.9b20880
LI X M, WU Y, ZHANG S L, et al. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes [J]. Adv. Funct. Mater., 2016, 26(15): 2435-2445. doi: 10.1002/adfm.201600109http://dx.doi.org/10.1002/adfm.201600109
LAMBERTI F, LITTI L, DE BASTIANI M, et al. High-quality, ligands-free, mixed-halide perovskite nanocrystals inks for optoelectronic applications [J]. Adv. Energy Mater., 2017, 7(8): 1601703-1-5. doi: 10.1002/aenm.201601703http://dx.doi.org/10.1002/aenm.201601703
REN J, SINGER E A, SADIMIN E, et al. Statistical analysis of survival models using feature quantification on prostate cancer histopathological images [J]. J. Pathol. Inform., 2019, 10(1): 30. doi: 10.4103/jpi.jpi_85_18http://dx.doi.org/10.4103/jpi.jpi_85_18
WEI Y, LI K, CHENG Z Y, et al. Epitaxial growth of CsPbX3 (X = Cl, Br, I) perovskite quantum dots via surface chemical conversion of Cs2GeF6 double perovskites: a novel strategy for the formation of leadless hybrid perovskite phosphors with enhanced stability [J]. Adv. Mater., 2019, 31(16): 1807592-1-9. doi: 10.1002/adma.201807592http://dx.doi.org/10.1002/adma.201807592
DENG J D, WANG H R, XUN J, et al. Room-temperature synthesis of excellent-performance CsPb1-xSnxBr3 perovskite quantum dots and application in light emitting diodes [J]. Mater. Des., 2020, 185: 108246. doi: 10.1016/j.matdes.2019.108246http://dx.doi.org/10.1016/j.matdes.2019.108246
YANG D D, LI X M, ZHOU W H, et al. CsPbBr3 quantum dots 2.0: benzenesulfonic acid equivalent ligand awakens complete purification [J]. Adv. Mater., 2019, 31(30): 1900767-1-8. doi: 10.1002/adma.201900767http://dx.doi.org/10.1002/adma.201900767
LI Z C, KONG L, HUANG S Q, et al. Highly luminescent and ultrastable CsPbBr3 perovskite quantum dots incorporated into a silica/alumina monolith [J]. Angew. Chem., 2017, 129(28): 8246-8250. doi: 10.1002/ange.201703264http://dx.doi.org/10.1002/ange.201703264
刘春旭, 张继森, 陈泳屹, 等. CsPbBr3钙钛矿/Pt杂化纳米结构中等离激元-激子耦合引起的发光猝灭和辐射速率减小 [J]. 发光学报, 2017, 38(12): 1597-1604. doi: 10.3788/fgxb20173812.1597http://dx.doi.org/10.3788/fgxb20173812.1597
LIU C X, ZHANG J S, CHEN Y Y, et al. Luminescence lifetime enhanced by exciton-plasmon couple in hybrid CsPbBr3 perovskite/Pt nanostructure [J]. Chin. J. Lumin., 2017, 38(12): 1597-1604. (in Chinese). doi: 10.3788/fgxb20173812.1597http://dx.doi.org/10.3788/fgxb20173812.1597
WEI K, XU Z J, CHEN R Z, et al. Temperature-dependent excitonic photoluminescence excited by two-photon absorption in perovskite CsPbBr3 quantum dots [J]. Opt. Lett., 2016, 41(16): 3821-3824. doi: 10.1364/ol.41.003821http://dx.doi.org/10.1364/ol.41.003821
SARAN R, HEUER-JUNGEMANN A, KANARAS A G, et al. Giant bandgap renormalization and exciton-phonon scattering in perovskite nanocrystals [J]. Adv. Opt. Mater., 2017, 5(17): 1700231. doi: 10.1002/adom.201700231http://dx.doi.org/10.1002/adom.201700231
ZHANG F, SHI Z F, MA Z Z, et al. Silica coating enhances the stability of inorganic perovskite nanocrystals for efficient and stable down-conversion in white light-emitting devices [J]. Nanoscale, 2018, 10(43): 20131-20139. doi: 10.1039/c8nr07022ahttp://dx.doi.org/10.1039/c8nr07022a
LIU Z, SHANG Q Y, LI C, et al. Temperature-dependent photoluminescence and lasing properties of CsPbBr3 nanowires [J]. Appl. Phys. Lett., 2019, 114(10): 101902-1-5. doi: 10.1063/1.5082759http://dx.doi.org/10.1063/1.5082759
CAO X B, ZHI L L, LI Y H, et al. Fabrication of perovskite films with large columnar grains via solvent-mediated ostwald ripening for efficient inverted perovskite solar cells [J]. ACS Appl. Energy Mater., 2018, 1(2): 868-875. doi: 10.1021/acsaem.7b00300http://dx.doi.org/10.1021/acsaem.7b00300
何晓雄, 周浩, 何青泉, 等. 表面包覆稳定铅卤化物钙钛矿纳米晶研究进展 [J]. 发光学报, 2021, 42(11): 1701-1721. doi: 10.37188/CJL.20210223http://dx.doi.org/10.37188/CJL.20210223
HE X X, ZHOU H, HE Q Q, et al. Research progress of lead halide perovskite nanocrystals stabilized by surface coating [J]. Chin. J. Lumin., 2021, 42(11): 1701-1721. (in Chinese). doi: 10.37188/CJL.20210223http://dx.doi.org/10.37188/CJL.20210223
LI F, XIA Z G, PAN C F, et al. High Br- content CsPb(ClyBr1-y)3 perovskite nanocrystals with strong Mn2+ emission through diverse cation/anion exchange engineering [J]. ACS Appl. Mater. Interfaces, 2018, 10(14): 11739-11746. doi: 10.1021/acsami.7b18750http://dx.doi.org/10.1021/acsami.7b18750
LI J, TAO Y, CHEN S F, et al. A flexible plasma-treated silver-nanowire electrode for organic light-emitting devices [J]. Sci. Rep., 2017, 7(1): 16468-1-9. doi: 10.1038/s41598-017-16721-7http://dx.doi.org/10.1038/s41598-017-16721-7
0
Views
69
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution