浏览全部资源
扫码关注微信
1.中国科学院长春光学精密机械与物理研究所 发光学及应用国家重点实验室, 吉林 长春 130033
2.中国科学院大学, 北京 100049
3.吉林大学 数学学院, 吉林 长春 130012
Received:02 March 2023,
Revised:16 March 2023,
Published:05 August 2023
移动端阅览
邢开笑,吕哲,李颜涛等.水系电解质离子对无定形WO3电致变色性能的影响[J].发光学报,2023,44(08):1404-1412.
XING Kaixiao,LYU Zhe,LI Yantao,et al.Effect of Aqueous Electrolyte Ions on Electrochromic Properties of Amorphous WO3[J].Chinese Journal of Luminescence,2023,44(08):1404-1412.
邢开笑,吕哲,李颜涛等.水系电解质离子对无定形WO3电致变色性能的影响[J].发光学报,2023,44(08):1404-1412. DOI: 10.37188/CJL.20230050.
XING Kaixiao,LYU Zhe,LI Yantao,et al.Effect of Aqueous Electrolyte Ions on Electrochromic Properties of Amorphous WO3[J].Chinese Journal of Luminescence,2023,44(08):1404-1412. DOI: 10.37188/CJL.20230050.
WO
3
是理想的无机电致变色材料,其电致变色机制是在电压作用下发生可逆的氧化还原反应,并伴随着电解质离子在材料内部的嵌入和脱出。本文研究了含有Li
+
、Zn
2+
、Al
3+
的三种水系电解质对无定形WO
3
电致变色性能的影响。结果表明,当以Al
3+
作为嵌入离子时,WO
3
获得了最好的电致变色性能,包括快响应速度(着色响应时间2.8 s,褪色响应时间1.1 s)、大光学对比度(700 nm处达83.4%)、优异的循环稳定性(连续循环 1 000次仅衰减2.8%)、高着色效率(74.7 cm
2
·C
-1
),其综合性能在已报道的WO
3
电致变色器件中处于较高水平。机制研究发现,Al
3+
水系电解质溶液中性能的提升得益于快速的离子传输动力学。这些结果将为高性能电致变色器件构建和电解质优选提供简单有效的指导。
WO
3
is an ideal inorganic electrochromic material. Its electrochromic mechanism is reversible redox reaction under the driving of voltage, accompanied by the insertion and extraction of counterions in the material. In this paper, we investigated the electrochromic properties of amorphous WO
3
in three aqueous electrolyte solutions of Li, Zn and Al. WO
3
achieves the best electrochromic performances when Al
3+
was used as insertion ions, including fast response speed (2.8 s for coloring and 1.1 s for decolorization), large optical contrast (83.4% at 700 nm), good cycling stability (2.8% decay for 1 000 successive cycles), high coloration efficiency (74.7 cm
2
·C
-1
), and its comprehensive performance is at high level among the reported WO
3
electrochromic devices. Mechanistic studies have revealed that the enhanced performance in Al
3+
electrolytes is due to the fast ion transport kinetics. These results will provide a simple and effective guidance for the construction of high-performance electrochromic devices and the optimization of electrolytes.
GRANQVIST C G , ARVIZU M A , PEHLIVAN İ B , et al . Electrochromic materials and devices for energy efficiency and human comfort in buildings: a critical review [J]. Electrochim. Acta , 2018 , 259 : 1170 - 1182 . doi: 10.1016/j.electacta.2017.11.169 http://dx.doi.org/10.1016/j.electacta.2017.11.169
GRANQVIST C G . Electrochromics for smart windows: oxide-based thin films and devices [J]. Thin Solid Films , 2014 , 564 : 1 - 38 . doi: 10.1016/j.tsf.2014.02.002 http://dx.doi.org/10.1016/j.tsf.2014.02.002
CAI G F , EH A L S , JI L , et al . Recent advances in electrochromic smart fenestration [J]. Adv. Sustainable Syst. , 2017 , 1 ( 12 ): 1700074 . doi: 10.1002/adsu.201700074 http://dx.doi.org/10.1002/adsu.201700074
GU C , JIA A B , ZHANG Y M , et al . Emerging electrochromic materials and devices for future displays [J]. Chem. Rev. , 2022 , 122 ( 18 ): 14679 - 14721 . doi: 10.1021/acs.chemrev.1c01055 http://dx.doi.org/10.1021/acs.chemrev.1c01055
YU H T , SHAO S , YAN L J , et al . Side-chain engineering of green color electrochromic polymer materials: toward adaptive camouflage application [J]. J. Mater. Chem. C , 2016 , 4 ( 12 ): 2269 - 2273 . doi: 10.1039/c6tc00197a http://dx.doi.org/10.1039/c6tc00197a
WEN R T , GRANQVIST C G , NIKLASSON G A . Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO 3 thin films [J]. Nat. Mater. , 2015 , 14 ( 10 ): 996 - 1001 . doi: 10.1038/nmat4368 http://dx.doi.org/10.1038/nmat4368
DONG W J , LV Y , ZHANG N , et al . Trifunctional NiO-Ag-NiO electrodes for ITO-free electrochromic supercapacitors [J]. J. Mater. Chem. C , 2017 , 5 ( 33 ): 8408 - 8414 . doi: 10.1039/c7tc03120c http://dx.doi.org/10.1039/c7tc03120c
CAO S , ZHANG S L , ZHANG T R , et al . A visible light-near-infrared dual-band smart window with internal energy storage [J]. Joule , 2019 , 3 ( 4 ): 1152 - 1162 . doi: 10.1016/j.joule.2018.12.010 http://dx.doi.org/10.1016/j.joule.2018.12.010
THAKUR V K , DING G Q , MA J , et al . Hybrid materials and polymer electrolytes for electrochromic device applications [J]. Adv. Mater. , 2012 , 24 ( 30 ): 4071 - 4096 . doi: 10.1002/adma.201200213 http://dx.doi.org/10.1002/adma.201200213
WAGEMAKER M , KENTGENS A P M , MULDER F M . Equilibrium lithium transport between nanocrystalline phases in intercalated TiO 2 anatase [J]. Nature , 2002 , 418 ( 6896 ): 397 - 399 . doi: 10.1038/nature00901 http://dx.doi.org/10.1038/nature00901
YAO Y J , ZHAO Q , WEI W , et al . WO 3 quantum-dots electrochromism [J]. Nano Energy , 2020 , 68 : 104350-1 - 8 . doi: 10.1016/j.nanoen.2019.104350 http://dx.doi.org/10.1016/j.nanoen.2019.104350
YOO S J , LIM J W , SUNG Y E , et al . Fast switchable electrochromic properties of tungsten oxide nanowire bundles [J]. Appl. Phys. Lett. , 2007 , 90 ( 17 ): 173126-1-3 . doi: 10.1063/1.2734395 http://dx.doi.org/10.1063/1.2734395
LI F , MA D Y , QIAN J H , et al . One-step hydrothermal growth and electrochromic properties of highly stable prussian green film and device [J]. Sol. Energy Mater. Sol. Cells , 2019 , 192 : 103 - 108 . doi: 10.1016/j.solmat.2018.12.024 http://dx.doi.org/10.1016/j.solmat.2018.12.024
DING Y L , WANG M Y , MEI Z Y , et al . Different ion-based electrolytes for electrochromic devices: a review [J]. Sol. Energy Mater. Sol. Cells , 2022 , 248: 11 2039-1-5 . doi: 10.1016/j.solmat.2022.112037 http://dx.doi.org/10.1016/j.solmat.2022.112037
WU W T , WU L Q , MA H L , et al . Electrochromic devices constructed with water-in-salt electrolyte enabling energy-saving and prolonged optical memory effect [J]. Chem. Eng. J. , 2022 , 446 : 137122-1 - 9 . doi: 10.1016/j.cej.2022.137122 http://dx.doi.org/10.1016/j.cej.2022.137122
TIAN Y Y , ZHANG W K , CONG S , et al . Unconventional aluminum ion intercalation/deintercalation for fast switching and highly stable electrochromism [J]. Adv. Funct. Mater. , 2015 , 25 ( 36 ): 5833 - 5839 . doi: 10.1002/adfm.201502638 http://dx.doi.org/10.1002/adfm.201502638
XIAO L L , LV Y , DONG W J , et al . Dual-functional WO 3 nanocolumns with broadband antireflective and high-performance flexible electrochromic properties [J]. ACS Appl. Mater. Interfaces , 2016 , 8 ( 40 ): 27107 - 27114 . doi: 10.1021/acsami.6b08895 http://dx.doi.org/10.1021/acsami.6b08895
张观广 , 倪浩智 , 张啸尘 , 等 . 旋涂法制备WO 3 薄膜电致变色性能 [J]. 发光学报 , 2019 , 40 ( 2 ): 183 - 188 . doi: 10.3788/fgxb20194002.0183 http://dx.doi.org/10.3788/fgxb20194002.0183
ZHANG G G , NI H Z , ZHANG X C , et al . Electrochromic properties of WO 3 film by spin-coating [J]. Chin. J. Lumin. , 2019 , 40 ( 2 ): 183 - 188 . (in Chinese) . doi: 10.3788/fgxb20194002.0183 http://dx.doi.org/10.3788/fgxb20194002.0183
WANG J H , SHAO J D , YI K , et al . Layer uniformity of glancing angle deposition [J]. Vacuum , 2005 , 78 ( 1 ): 107 - 111 . doi: 10.1016/j.vacuum.2004.12.019 http://dx.doi.org/10.1016/j.vacuum.2004.12.019
刘岩 , 吕营 , 何龙桂 , 等 . 新型无铟透明导电-电致变色双功能MoO 3 /Ag/MoO 3 薄膜的制备及性能研究 [J]. 发光学报 , 2016 , 37 ( 2 ): 187 - 191 . doi: 10.3788/fgxb20163702.0187 http://dx.doi.org/10.3788/fgxb20163702.0187
LIU Y , LYU Y , HE L G , et al . Preparation and properties of new type of transparent conductive and electrochromic bi-functional indium-free MoO 3 /Ag/MoO 3 thin films [J]. Chin. J. Lumin. , 2016 , 37 ( 2 ): 187 - 191 . (in Chinese) . doi: 10.3788/fgxb20163702.0187 http://dx.doi.org/10.3788/fgxb20163702.0187
GUO J J , WANG M , DIAO X G , et al . Prominent electrochromism achieved using aluminum ion insertion/extraction in amorphous WO 3 films [J]. J. Phys. Chem. C , 2018 , 122 ( 33 ): 19037 - 19043 . doi: 10.1021/acs.jpcc.8b05692 http://dx.doi.org/10.1021/acs.jpcc.8b05692
LI H L , LV Y , ZHANG X , et al . High-performance ITO-free electrochromic films based on bi-functional stacked WO 3 /Ag/WO 3 structures [J]. Sol. Energy Mater. Sol. Cells , 2015 , 136 : 86 - 91 . doi: 10.1016/j.solmat.2015.01.002 http://dx.doi.org/10.1016/j.solmat.2015.01.002
WEN R T , MALMGREN S , GRANQVIST C G , et al . Degradation dynamics for electrochromic WO 3 films under extended charge insertion and extraction: unveiling physicochemical mechanisms [J]. ACS Appl. Mater. Interfaces , 2017 , 9 ( 14 ): 12872 - 12877 . doi: 10.1021/acsami.7b01324 http://dx.doi.org/10.1021/acsami.7b01324
0
Views
436
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution