浏览全部资源
扫码关注微信
1.上海理工大学 材料与化学学院, 上海 200093
2.上海理工大学科技发展研究院 技术转移中心, 上海 200093
Published:05 September 2023,
Received:01 March 2023,
Revised:13 March 2023,
移动端阅览
胡润泽,徐陈,方舟等.一种比率型荧光聚苯乙烯微球杂化探针用于炭疽病毒标志物的高选择性检测[J].发光学报,2023,44(09):1693-1704.
HU Runze,XU Chen,FANG Zhou,et al.A Ratiometric Fluorescent Polystyrene Microsphere Hybrid Probe for Highly Selective Detection of Anthrax Markers[J].Chinese Journal of Luminescence,2023,44(09):1693-1704.
胡润泽,徐陈,方舟等.一种比率型荧光聚苯乙烯微球杂化探针用于炭疽病毒标志物的高选择性检测[J].发光学报,2023,44(09):1693-1704. DOI: 10.37188/CJL.20230049.
HU Runze,XU Chen,FANG Zhou,et al.A Ratiometric Fluorescent Polystyrene Microsphere Hybrid Probe for Highly Selective Detection of Anthrax Markers[J].Chinese Journal of Luminescence,2023,44(09):1693-1704. DOI: 10.37188/CJL.20230049.
采用包埋法将通过二苯甲酰甲烷(DBM)和1⁃10无水邻菲啰啉(Phen)制得的稀土配合物Eu(DBM)
3
Phen包埋进羧基化聚苯乙烯微球中,再通过配位作用引入镧系发光中心Tb
3+
,获得具有双发射中心的荧光聚苯乙烯微球杂化探针Tb⁃PS@Eu(DBM)
3
Phen。利用SEM、TEM、FT⁃IR、XPS、UV⁃Vis、PL等表征方法对探针分子的结构和性能进行分析。研究结果表明,Tb⁃PS@Eu(DBM)
3
Phen具有优异的稳定性、分散性和荧光性能。此外,通过进一步研究探针分子对2,6⁃吡啶二甲酸(DPA)的荧光传感性能,发现DPA能够对Tb⁃PS@Eu(DBM)
3
Phen的荧光产生明显的增强效果,这可能是由于DPA和聚苯乙烯微球表面的铽离子配位,进而使配体⁃稀土之间的能量传递过程受到影响,从而造成Tb⁃PS@Eu(DBM)
3
Phen的荧光增强。同时,Tb⁃PS@Eu(DBM)
3
Phen对DPA具有较强的选择性和抗干扰能力,有望用作检测识别DPA的荧光探针。
Eu(DBM)
3
Phen was firstly encapsulated into carboxylated polystyrene microspheres by the encapsulation method, and then the lanthanide luminescence center Tb
3+
was introduced by coordination to obtain the fluorescent polystyrene microsphere hybrid probe Tb-PS@Eu(DBM)
3
Phen with dual emission centers. The results indicated that Tb-PS@Eu(DBM)
3
Phen has excellent stability, dispersibility and fluorescence properties. In addition, by further investigating the fluorescence sensing properties of the probe molecule on 2,6-pyridinedicarboxylic acid (DPA), it was found that Tb-PS@Eu(DBM)
3
Phen could produce a significant enhancement with the present of DPA, which might be due to the coordination of terbium ions on the surface of DPA and polystyrene microspheres, which in turn affected the energy transfer process between the ligand-rare earths, resulting in Tb-PS@Eu-(DBM)
3
Phen's fluorescence enhancement. Meanwhile, Tb-PS@Eu(DBM)
3
Phen has strong selectivity and anti-interference ability for DPA, which is expected to be used as a potential fluorescent probe for the recognition of DPA.
稀土配合物荧光微球DPA比率荧光传感
lanthanide complexesfluorescent microspheresDPAratiometric fluorescent sensing
KUMITA K, KITAZAWA Y, TOKUDA R, et al. First report of anthracnose on tillandsia caused by Colletotrichum sp. in Japan [J]. J. Gen. Plant Pathol., 2021, 87(4): 254-258. doi: 10.1007/s10327-021-00995-xhttp://dx.doi.org/10.1007/s10327-021-00995-x
CUSTÓDIO F A, BROMMONSCHENKEL T C, SILVA A D A, et al. Colletotrichum pereskiae sp. nov. causing anthracnose on pereskia aculeata in Brazil [J]. Mycol. Prog., 2021, 20(12): 1583-1593. doi: 10.1007/s11557-021-01758-whttp://dx.doi.org/10.1007/s11557-021-01758-w
MAHADEVAKUMAR S, CHANDANA C, JANARDHANA G R. First report of Colletotrichum truncatum associated with anthracnose disease on tuberose (Polianthes tuberosa) in India [J]. Crop Prot., 2019, 118: 1-5. doi: 10.1016/j.cropro.2018.12.006http://dx.doi.org/10.1016/j.cropro.2018.12.006
BARANDONGO Z R, DOLFI A C, BRUCE S A, et al. The persistence of time: the lifespan of Bacillus anthracis spores in environmental reservoirs [J]. Res. Microbiol., 2023, doi: 10.1016/J.RESMIC.2023.104029http://dx.doi.org/10.1016/J.RESMIC.2023.104029.
BRAUN P, KNÜPFER M, ANTWERPEN M, et al. A rare glimpse into the past of the anthrax pathogen Bacillus anthracis [J]. Microorganisms., 2020, 8(2): 298-1-7. doi: 10.3390/microorganisms8020298http://dx.doi.org/10.3390/microorganisms8020298
COSTANTINO V, BAHL P, DOOLAN C, et al. Modeling on the effects of deliberate release of aerosolized inhalational Bacillus anthracis (anthrax) on an Australian Population [J]. Health Secur., 2023, 21(1): 61-69. doi: 10.1089/hs.2022.0100http://dx.doi.org/10.1089/hs.2022.0100
SHIPMAN M A, RAMHIT K J, BLIGHT B A. Sensing a Bacillis anthracis biomarker with well-known OLED emitter EuTta3Phen [J]. J Mater. Chem. B, 2016, 4(18): 3043-3045. doi: 10.1039/c5tb02469bhttp://dx.doi.org/10.1039/c5tb02469b
VERMA M, KAUR N, SINGH N. Naphthalimide-based DNA-coupled hybrid assembly for sensing dipicolinic acid: a biomarker for Bacillus anthracis spores [J]. Langmuir, 2018, 34(22): 6591-6600. doi: 10.1021/acs.langmuir.8b00340http://dx.doi.org/10.1021/acs.langmuir.8b00340
ZHANG X Y, YOUNG M A, LYANDRES O, et al. Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy [J]. J. Am. Chem. Soc, 2005, 127(12): 4484-4489. doi: 10.1021/ja043623bhttp://dx.doi.org/10.1021/ja043623b
LARKIN I N, GARIMELLA V, YAMANKURT G, et al. Dual-readout sandwich immunoassay for device-free and highly sensitive anthrax biomarker detection [J]. Anal. Chem., 2020, 92(11): 7845-7851. doi: 10.1021/acs.analchem.0c01090http://dx.doi.org/10.1021/acs.analchem.0c01090
WANG D B, TIAN B, ZHANG Z P, et al. Rapid detection of Bacillus anthracis spores using a super-paramagnetic lateral-flow immunological detectionsystem [J]. Biosens. Bioelectron., 2013, 42: 661-667. doi: 10.1016/j.bios.2012.10.088http://dx.doi.org/10.1016/j.bios.2012.10.088
LINS R C, BOYER A E, KUKLENYIK Z, et al. Zeptomole per milliliter detection and quantification of edema factor in plasma by LC-MS/MS yields insights into toxemia and the progression of inhalation anthrax [J]. Anal. Bioanal. Chem., 2019, 411(12): 2493-2509. doi: 10.1007/s00216-019-01730-4http://dx.doi.org/10.1007/s00216-019-01730-4
FARROW B, HONG S A, ROMERO E C, et al. Correction to a chemically synthesized capture agent enables the selective, sensitive, and robust electrochemical detection of anthrax protective antigen [J]. ACS Nano, 2018, 12(5): 5066-5066. doi: 10.1021/acsnano.8b03441http://dx.doi.org/10.1021/acsnano.8b03441
WANG Y Q, FANG, Z, MIN, H, et al. Sensitive determination of ofloxacin by molecularly imprinted polymers containing ionic liquid functionalized carbon quantum dots and europium ion [J]. ACS Appl. Nano Mater., 2022, 5(6): 8467-8474. doi: 10.1021/acsanm.2c01583http://dx.doi.org/10.1021/acsanm.2c01583
LI Y, LING H X, GAO Y, et al. Lanthanide β-diketonate complex functionalized poly(ionic liquid)s/SiO2 microsphere as a fluorescent probe for the determination of bovine hemoglobin [J]. ACS Appl. Polym. Mater., 2022, 4(4): 2941-2950. doi: 10.1021/acsapm.2c00261http://dx.doi.org/10.1021/acsapm.2c00261
GAN Z Y, HU X T, HUANG X W, et al. A dual-emission fluorescence sensor for ultrasensitive sensing mercury in milk based on carbon quantum dots modified with europium (III) complexes [J]. Sens. Actuators B Chem., 2021, 328: 128997-1-9. doi: 10.1016/j.snb.2020.128997http://dx.doi.org/10.1016/j.snb.2020.128997
GU D X, YANG W T, LIN D Y, et al. Water-stable lanthanide-based metal-organic gel for the detection of organic amines and white-light emission [J]. J. Mater. Chem. C, 2020, 8(39): 13648-13654. doi: 10.1039/d0tc03266bhttp://dx.doi.org/10.1039/d0tc03266b
SAHOO J, JAISWAR S, CHATTERJEE P B, et al. Mechanistic insight of sensing hydrogen phosphate in aqueous medium by using lanthanide(III)-based luminescent probes [J]. Nanomaterials, 2021, 11(1): 53-1-13. doi: 10.3390/nano11010053http://dx.doi.org/10.3390/nano11010053
LI Z, LU S, LI X J, et al. Lanthanide upconversion nanoplatforms for advanced bacteria-targeted detection and therapy [J]. Adv. Opt. Mater., 2023, 11(11): 2202386. doi: 10.1002/adom.202202386http://dx.doi.org/10.1002/adom.202202386
LUO L, XIE Y, HOU S L, et al. Recyclable luminescent sensor for detecting creatinine based on a lanthanide-organic framework [J]. Inorg. Chem., 2022, 61(26): 9990-9996. doi: 10.1021/acs.inorgchem.2c00850http://dx.doi.org/10.1021/acs.inorgchem.2c00850
HALAWA M I, LI B S, XU G B. Novel synthesis of thiolated gold nanoclusters induced by lanthanides for ultrasensitive and luminescent detection of the potential anthrax spores' biomarker [J]. ACS Appl. Mater. Interfaces, 2020, 12(29): 32888-32897. doi: 10.1021/acsami.0c10069http://dx.doi.org/10.1021/acsami.0c10069
DONMEZ M, YILMAZ M D, KILBAS B. Fluorescent detection of dipicolinic acid as a biomarker of bacterial spores using lanthanide-chelated gold nanoparticles [J]. J. Hazard. Mater., 2017, 324: 593-598. doi: 10.1016/j.jhazmat.2016.11.030http://dx.doi.org/10.1016/j.jhazmat.2016.11.030
LUAN K, MENG R Q, SHAN C F, et al. Terbium functionalized micelle nanoprobe for ratiometric fluorescence detection of anthrax spore biomarker [J]. Anal. Chem., 2018, 90(5): 3600-3607. doi: 10.1021/acs.analchem.8b00050http://dx.doi.org/10.1021/acs.analchem.8b00050
CAI K Y, ZENG M L, LIU F F, et al. BSA-AuNPs@Tb-AMP metal-organic frameworks for ratiometric fluorescence detection of DPA and Hg2+ [J]. Luminescence, 2017, 32(7): 1277-1282. doi: 10.1002/bio.3321http://dx.doi.org/10.1002/bio.3321
LI Z J, LIU G, FAN C B, et al. Ratiometric fluorescence for sensitive detection of phosphate species based on mixed lanthanide metal organic framework [J]. Anal. Bioanal. Chem., 2021, 413(12): 3281-3290. doi: 10.1007/s00216-021-03264-0http://dx.doi.org/10.1007/s00216-021-03264-0
LIU X W, LI X, XU S L, et al. Efficient ratiometric fluorescence probe based on dual-emission luminescent lanthanide coordination polymer for amyloid β-peptide detection [J]. Sens. Actuators B Chem., 2022, 352: 131052. doi: 10.1016/j.snb.2021.131052http://dx.doi.org/10.1016/j.snb.2021.131052
SUN X C, CONG Z Z, WU S Y, et al. Stable lanthanide metal-organic frameworks as ratiometric fluorescent probes for the efficient detection of riboflavin [J]. J. Mater. Chem. C, 2022, 10(41): 15516-15523. doi: 10.1039/d2tc02947bhttp://dx.doi.org/10.1039/d2tc02947b
SUN Y Y, DRAMOU P, SONG Z R, et al. Lanthanide metal doped organic gel as ratiometric fluorescence probe for selective monitoring of ciprofloxacin [J]. Microchem. J., 2022, 179: 107476-1-8. doi: 10.1016/j.microc.2022.107476http://dx.doi.org/10.1016/j.microc.2022.107476
CHENG Y H, CAI Z Y, XU Z H, et al. Smart sensing device for formaldehyde that based on uniform lanthanide CPs microsphere [J]. J. Mol. Struct., 2023, 1281: 135004. doi: 10.1016/j.molstruc.2023.135004http://dx.doi.org/10.1016/j.molstruc.2023.135004
XU K, LIN C, QIN M F, et al. Amplifying photoluminescence of lanthanide-doped nanoparticles by iridium phosphonate complex [J]. ACS Mater. Lett., 2023, 5(3): 854-861. doi: 10.1021/acsmaterialslett.2c01125http://dx.doi.org/10.1021/acsmaterialslett.2c01125
LI X, TANG J, WANG G J, et al. Facile synthesis and luminescence properties of lanthanide ions doped gadolinium phosphate hierarchical hollow spheres [J]. Solid State Sci., 2020, 107: 106354-1-8. doi: 10.1016/j.solidstatesciences.2020.106354http://dx.doi.org/10.1016/j.solidstatesciences.2020.106354
ZHAO S, TIAN R R, SHAO B Q, et al. One-pot synthesis of Ln3+-doped porous BiF3@PAA nanospheres for temperature sensing and pH-responsive drug delivery guided by CT imaging [J]. Nanoscale, 2020, 12(2): 695-702. doi: 10.1039/c9nr09401fhttp://dx.doi.org/10.1039/c9nr09401f
ZHAO X, SHAO B Q, TANG J, et al. Green synthesis and luminescence properties of lanthanide ions doped yttrium oxyfluoride microdiscs [J]. Appl. Surf. Sci., 2019, 484: 285-292. doi: 10.1016/j.apsusc.2019.04.086http://dx.doi.org/10.1016/j.apsusc.2019.04.086
刘权, 李子坚, 赵旭东, 等. 稀土掺杂中红外硫系光纤及其传感应用研究进展 [J]. 硅酸盐学报, 2022, 50(4): 1100-1108.
LIU Q, LI Z J, ZHAO X D, et al. Progress on rare-earth ions doped midinfrared chalcogenide optical fibers and their sensing application [J]. J. Chin. Ceramic Soc., 2022, 50(4): 1100-1108. (in Chinese)
XIE M J, CHEN Z L, ZHAO F G, et al. Selection and application of ssDNA Aptamers for fluorescence biosensing detection of malachite green [J]. Foods, 2022, 11(6): 801-1-15. doi: 10.3390/foods11131933http://dx.doi.org/10.3390/foods11131933
刘丽, 胡润泽, 徐陈, 等. 镧系Eu3+配合物修饰的分子印迹聚合物荧光探针制备及其对血红蛋白的传感检测 [J]. 发光学报, 2022, 43(6): 944-951. doi: 10.37188/cjl.20220095http://dx.doi.org/10.37188/cjl.20220095
LIU L, HU R Z, XU C, et al. Preparation of molecularly imprinted polymer fluorescence probe modified by lanthanide Eu3+ complex and hemoglobin sensing detection [J]. Chin. J. Lumin., 2022, 43(6): 944-951. (in Chinese). doi: 10.37188/cjl.20220095http://dx.doi.org/10.37188/cjl.20220095
SANKOVA N, SHALAEV P, SEMEYKINA V, et al. Spectrally encoded microspheres for immunofluorescence analysis [J]. J. Appl. Polym. Sci., 2020, 138(8): 49890-1-21. doi: 10.1002/app.49890http://dx.doi.org/10.1002/app.49890
YIN J X, DENG J Q, WANG L, et al. Detection of circulating tumor cells by fluorescence microspheres-mediated amplification [J]. Anal. Chem., 2020, 92(10): 6968-6976. doi: 10.1021/acs.analchem.9b05844http://dx.doi.org/10.1021/acs.analchem.9b05844
SONG L P, ZHANG, L, XU K, et al. Fluorescent microsphere probe for rapid qualitative and quantitative detection of trypsin activity [J]. Nanoscale Adv., 2019, 1(1): 162-167. doi: 10.1039/c8na00111ahttp://dx.doi.org/10.1039/c8na00111a
蒙铭周, 张瑞, 法信蒙, 等. Ce3+掺杂对NaYF4∶Yb3+,Tm3+纳米粒子上转换发光性能的影响及其荧光温度特性应用 [J]. 发光学报, 2021, 42(11): 1763-1773. doi: 10.37188/CJL.20210227http://dx.doi.org/10.37188/CJL.20210227
MENG M Z, ZHANG R, FA X M, et al. Effect of Ce3+ doping on upconversion luminescence of NaYF4∶Yb3+,Tm3+ nanoparticles and application of fluorescence temperature characteristics [J]. Chin. J. Lumin., 2021, 42(11): 1763-1773. (in Chinese). doi: 10.37188/CJL.20210227http://dx.doi.org/10.37188/CJL.20210227
MONDAL T K, MONDAL S, GHORAI U K, et al. White light emitting lanthanide based carbon quantum dots as toxic Cr (VI) and pH sensor [J]. J. Colloid Interface Sci., 2019, 553: 177-185. doi: 10.1016/j.jcis.2019.06.009http://dx.doi.org/10.1016/j.jcis.2019.06.009
SONG T, ZHANG Q, LU C L, et al. Structural design and preparation of high-performance QD-encoded polymer beads for suspension arrays [J]. J. Mater. Chem., 2011, 21(7): 2169-2177. doi: 10.1039/c0jm02447chttp://dx.doi.org/10.1039/c0jm02447c
邵可满, 傅桂瑜, 陈素艳, 等. 稀土配合物分子印迹荧光探针的制备及检测孔雀石绿的残留 [J]. 光谱学与光谱分析, 2022, 42(3): 808-813. doi: 10.3964/j.issn.1000-0593(2022)03-0808-06http://dx.doi.org/10.3964/j.issn.1000-0593(2022)03-0808-06
SHAO K M, FU G Y, CHEN S Y, et al. Preparation of molecularly imprinted fluorescent probe for rare earth complex and determination of malachite green residue [J]. Spectrosc. Spect. Anal., 2022, 42(3): 808-813. (in Chinese). doi: 10.3964/j.issn.1000-0593(2022)03-0808-06http://dx.doi.org/10.3964/j.issn.1000-0593(2022)03-0808-06
DANG V D, GANGANBOINA A B, DOONG R A. Bipyridine- and copper-functionalized N-doped carbon dots for fluorescence turn off-on detection of ciprofloxacin [J]. ACS Appl. Mater. Interfaces, 2020, 12(29): 32247-32258. doi: 10.1021/acsami.0c04645http://dx.doi.org/10.1021/acsami.0c04645
XU F Z, TANG H Y, YU J H, et al. A Cu2+-assisted fluorescence switch biosensor for detecting of coenzyme a employing nitrogen-doped carbon dots [J]. Talanta, 2021, 224: 121838-1-7. doi: 10.1016/j.talanta.2020.121838http://dx.doi.org/10.1016/j.talanta.2020.121838
YANG J, JIN X L, CHENG Z, et al. Facile and green synthesis of bifunctional carbon dots for detection of Cu2+ and ClO– in aqueous solution [J]. ACS Sustainable Chem. Eng., 2021, 9(39): 13206-13214. doi: 10.1021/acssuschemeng.1c03868http://dx.doi.org/10.1021/acssuschemeng.1c03868
彭晓, 阳维维, 凌东雄, 等. 红色荧光粉Sr3LiSbO6∶Eu3+制备及其发光性质 [J]. 发光学报, 2021, 42(4): 455-461. doi: 10.37188/CJL.20200371http://dx.doi.org/10.37188/CJL.20200371
PENG X, YANG W W, LING D X, et al. Preparation and luminescence properties of red Sr3LiSbO6∶Eu3+ phosphor [J]. Chin. J. Lumin., 2021, 42(4): 455-461. (in Chinese). doi: 10.37188/CJL.20200371http://dx.doi.org/10.37188/CJL.20200371
0
Views
370
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution