浏览全部资源
扫码关注微信
上海理工大学 材料与化学学院, 上海 200093
Published:05 September 2023,
Received:01 March 2023,
Revised:14 March 2023,
移动端阅览
方舟,贾东升,李天铭等.量子点修饰Ln⁃ZIF杂化材料的构筑及其对单宁酸的荧光检测[J].发光学报,2023,44(09):1681-1692.
FANG Zhou,JIA Dongsheng,LI Tianming,et al.Construction of Quantum Dot-modified Ln-ZIF Hybrid Materials and Fluorescence Detection of Tannic Acid[J].Chinese Journal of Luminescence,2023,44(09):1681-1692.
方舟,贾东升,李天铭等.量子点修饰Ln⁃ZIF杂化材料的构筑及其对单宁酸的荧光检测[J].发光学报,2023,44(09):1681-1692. DOI: 10.37188/CJL.20230048.
FANG Zhou,JIA Dongsheng,LI Tianming,et al.Construction of Quantum Dot-modified Ln-ZIF Hybrid Materials and Fluorescence Detection of Tannic Acid[J].Chinese Journal of Luminescence,2023,44(09):1681-1692. DOI: 10.37188/CJL.20230048.
采用一步水热法制备了一种具有新型褶皱球结构的镧系金属Eu
3+
掺杂的金属有机骨架材料Eu/ZIF⁃67,并进一步通过配位键合的方式将ZnO量子点负载到Eu/ZIF⁃67的表面,形成了一种类沸石咪唑酯骨架的双发射荧光杂化材料Eu/ZIF⁃67@ZnO QDs。通过对材料的结构、形貌以及荧光传感性能表征分析,发现该荧光材料具有ZnO量子点和镧系红光铕离子的双重荧光发射。此外,进一步探究了Eu/ZIF⁃67@ZnO QDs对单宁酸的荧光传感性能。结果表明,单宁酸能够有效猝灭Eu/ZIF⁃67@ZnO QDs在ZnO QDs处的特征荧光发射,检出限为0.029 9 µmol/L。同时,Eu/ZIF⁃67@ZnO QDs对单宁酸的荧光响应具有抗干扰能力,可作为一种经济高效的荧光传感器来特异性识别单宁酸。
Lanthanide Eu
3+
-doped metal-organic backbone material Eu/ZIF-67 was prepared by a one-step hydrothermal method with a novel pleated sphere structure. A dual-emission fluorescent hybrid material Eu/ZIF-67@ZnO QDs with a zeolite imidazolium ester backbone was obtained by loading ZnO quantum dots onto the surface of Eu/ZIF-67
via
coordination bonding. The structure, morphology and fluorescence sensing properties of the material were characterized in detail. Furthermore, the fluorescent material was found to display the dual fluorescence emission of ZnO quantum dots and lanthanide red europium ions. The fluorescence sensing performance of Eu/ZIF-67@ZnO QDs to tannic acid was further investigated, and the results indicated that tannic acid can effectively burst the characteristic fluorescence emission of Eu/ZIF-67@ZnO QDs at ZnO QDs with a detection limit of 0.029 9 µmol/L. Meanwhile, Eu/ZIF-67@ZnO QDs have the fluorescence response to tannic acid with anti-interference ability, which can be used as a cost-effective fluorescence sensor to specifically identify tannic acid.
金属有机骨架量子点双发射探针单宁酸荧光检测
metal organic skeletonquantum dotsdual-emission probestannic acidfluorescent detection
FIGUEROA-ESPINOZA M C, ZAFIMAHOVA A, ALVARADO P G M, et al. Grape seed and apple tannins: emulsifying and antioxidant properties [J]. Food Chem., 2015, 178: 38-44. doi: 10.1016/j.foodchem.2015.01.056http://dx.doi.org/10.1016/j.foodchem.2015.01.056
RICCI A, LAGEL M C, PARPINELLO G P, et al. Spectroscopy analysis of phenolic and sugar patterns in a food grade chestnut tannin [J]. Food Chem., 2016, 203: 425-429. doi: 10.1016/j.foodchem.2016.02.105http://dx.doi.org/10.1016/j.foodchem.2016.02.105
LU R F, ZHANG X Q, CHENG X X, et al. Medical applications based on supramolecular self-assembled materials from tannic acid [J]. Front. Chem., 2020, 8: 583484-1-25. doi: 10.3389/fchem.2020.583484http://dx.doi.org/10.3389/fchem.2020.583484
BALDWIN A, BOOTH B W. Biomedical applications of tannic acid [J]. J. Biomater. Appl., 2022, 36(8): 1503-1523. doi: 10.1177/08853282211058099http://dx.doi.org/10.1177/08853282211058099
AGUILERA J R, VENEGAS V, OLIVA J M, et al. Targeted multifunctional tannic acid nanoparticles [J]. RSC Adv., 2016, 6(9): 7279-7287. doi: 10.1039/c5ra19405ahttp://dx.doi.org/10.1039/c5ra19405a
CHOI J, YADAV S, WANG J Q, et al. Effects of supplemental tannic acid on growth performance, gut health, microbiota, and fat accumulation and optimal dosages of tannic acid in broilers [J]. Front. Physiol., 2022, 13: 912797-1-23. doi: 10.3389/fphys.2022.912797http://dx.doi.org/10.3389/fphys.2022.912797
NAKAMURA T, YOSHIDA N, YASOSHIMA M, et al. Effect of tannic acid on skin barrier function [J]. Exp. Dermatol., 2018, 27(8): 824-826. doi: 10.1111/exd.13478http://dx.doi.org/10.1111/exd.13478
PINTO A F, NASCIMENTO J MDO, SILVA SOBRAL R VDA, et al. Tannic acid as a precipitating agent of human plasma proteins [J]. Eur. J. Pharm. Sci., 2019, 138: 105018-1-10. doi: 10.1016/j.ejps.2019.105018http://dx.doi.org/10.1016/j.ejps.2019.105018
SONG B, YANG L W, HAN L L, et al. Metal ion-chelated tannic acid coating for hemostatic dressing [J]. Materials, 2019, 12(11): 1803-1-10. doi: 10.3390/ma12111803http://dx.doi.org/10.3390/ma12111803
PICARIELLO L, GAMBUTI A, PETRACCA F, et al. Enological tannins affect acetaldehyde evolution, colour stability and tannin reactivity during forced oxidation of red wine [J]. Int. J. Food Sci. Technol., 2018, 53(1): 228-236. doi: 10.1111/ijfs.13577http://dx.doi.org/10.1111/ijfs.13577
RINALDI A, MOIO L. Effect of enological tannin addition on astringency subqualities and phenolic content of red wines [J]. J. Sens. Stud., 2018, 33(3): e12325-1-11. doi: 10.1111/joss.12325http://dx.doi.org/10.1111/joss.12325
DE FRANCESCO G, BRAVI E, SANARICA E, et al. Effect of addition of different phenolic-rich extracts on beer flavour stability [J]. Foods, 2020, 9: 1638-1-14. doi: 10.3390/foods9111638http://dx.doi.org/10.3390/foods9111638
XIE C G, CUI H. Detection of tannic acid at trace level in industrial wastewaters using a highly sensitive chemiluminescence method [J]. Water Res., 2003, 37(1): 233-237. doi: 10.1016/s0043-1354(02)00247-6http://dx.doi.org/10.1016/s0043-1354(02)00247-6
WAN H J, ZOU Q L, YAN R, et al. Electrochemistry and voltammetric determination of tannic acid on a single-wall carbon nanotube-coated glassy carbon electrode [J]. Microchim. Acta, 2007, 159(1): 109-115. doi: 10.1007/s00604-006-0717-4http://dx.doi.org/10.1007/s00604-006-0717-4
DA SILVA F G S, DOS SANTOS G K C, NETO S Y, et al. Self-powered sensor for tannic acid exploiting visible LED light as excitation source [J]. Electrochim. Acta, 2018, 274: 67-73. doi: 10.1016/j.electacta.2018.04.049http://dx.doi.org/10.1016/j.electacta.2018.04.049
ZYWICKI B, REEMTSMA T, JEKEL M. Analysis of commercial vegetable tanning agents by reversed-phase liquid chromatography-electrospray ionization-tandem mass spectrometry and its application to wastewater [J]. J. Chromatogr. A, 2002, 970(1-2): 191-200. doi: 10.1016/s0021-9673(02)00883-xhttp://dx.doi.org/10.1016/s0021-9673(02)00883-x
VARANKA Z, ROJIK I, VARANKA I, et al. Biochemical and morphological changes in carp (Cyprinus carpio L.) liver following exposure to copper sulfate and tannic acid [J]. Comp. Biochem. Phys. C Toxicol. Pharmacol., 2001, 128(3): 467-478. doi: 10.1016/s1532-0456(01)00166-1http://dx.doi.org/10.1016/s1532-0456(01)00166-1
董英鸽, 杨金龙, 丁艳丽, 等. 反相微乳液法制备尺寸可调的高荧光碳量子点 [J]. 发光学报, 2015, 36(2): 157-162. doi: 10.3788/fgxb20153602.0157http://dx.doi.org/10.3788/fgxb20153602.0157
DONG Y G, YANG J L, DING Y L, et al. Size-controllable synthesis of highly fluorescent carbon quantum dots in a reverse microemusion [J]. Chin. J. Lumin., 2015, 36(2): 157-162. (in Chinese). doi: 10.3788/fgxb20153602.0157http://dx.doi.org/10.3788/fgxb20153602.0157
RANI P, DALAL R, SRIVASTAVA S. Study of electronic and optical properties of quantum dots [J]. Appl. Nanosci., 2022, 12(7): 2127-2138. doi: 10.1007/s13204-022-02485-8http://dx.doi.org/10.1007/s13204-022-02485-8
AL-ALWANI A J, SHINKARENKO O A, CHUMAKOV A S, et al. Influence of capping ligands on the assembly of quantum dots and their properties [J]. Mater. Sci. Technol., 2019, 35(9): 1053-1060. doi: 10.1080/02670836.2019.1612141http://dx.doi.org/10.1080/02670836.2019.1612141
尚金梁, 卫迎迎, 王军丽, 等. 三苯甲基改性油溶性碳量子点合成及其在发光器件中的应用 [J]. 发光学报, 2021, 42(8): 1257-1266. doi: 10.37188/cjl.20210115http://dx.doi.org/10.37188/cjl.20210115
SHANG J J, WEI Y Y, WANG J L, et al. Synthesis of triphenylmethyl modified oil-soluble carbon quantum dots and their applications in light-emitting devices [J]. Chin. J. Lumin., 2021, 42(8): 1257-1266. (in Chinese). doi: 10.37188/cjl.20210115http://dx.doi.org/10.37188/cjl.20210115
YIN N Q, LI P, XU X L, et al. A dual-functional ferroferric oxide/quantum dots theranostic nanoplatform for fluorescent labeling and photothermal therapy [J]. Part. Part. Syst. Charact., 2021, 38(6): 2100043-1-7. doi: 10.1002/ppsc.202100043http://dx.doi.org/10.1002/ppsc.202100043
ZHENG S H, ZHANG M, BAI H Y, et al. Preparation of AS1411 aptamer modified Mn-MoS2 QDs for targeted MR imaging and fluorescence labelling of renal cell carcinoma [J]. Int. J. Nanomed., 2019, 14: 9513-9524. doi: 10.2147/ijn.s215883http://dx.doi.org/10.2147/ijn.s215883
湛志华, 陈茺而, 莫大幸, 等. 单激发双发射近红外荧光碳量子点制备、荧光性能与细胞成像 [J]. 发光学报, 2021, 42(8): 1307-1313. doi: 10.37188/CJL.20210157http://dx.doi.org/10.37188/CJL.20210157
ZHAN Z H, CHEN C E, MO D X, et al. Preparation, Fluorescent properties and cell imaging of near infrared fluorescent carbon quantum dots with single excited double emission [J]. Chin. J. Lumin., 2021, 42(8): 1307-1313. (in Chinese). doi: 10.37188/CJL.20210157http://dx.doi.org/10.37188/CJL.20210157
PRADHAN S. Multi-bandgap colloidal quantum dot mixing for optoelectronic devices [J]. New J. Chem., 2022, 46(27): 12892-12900. doi: 10.1039/d2nj01987fhttp://dx.doi.org/10.1039/d2nj01987f
YE Y F. Photoluminescence property adjustment of ZnO quantum dots synthesized via sol-gel method [J]. J. Mater. Sci. Mater. Electron., 2018, 29(6): 4967-4974. doi: 10.1007/s10854-017-8457-2http://dx.doi.org/10.1007/s10854-017-8457-2
GENG S, LIN S M, LIU S G, et al. Indirect detection of alcoholic strength in spirits by fluorescence method using the polyethyleneimine capped ZnO QDs [J]. Sens. Actuators B Chem., 2016, 236: 591-596. doi: 10.1016/j.snb.2016.06.043http://dx.doi.org/10.1016/j.snb.2016.06.043
YAMANI Z H, AL-JABARI M H, KHAN S A, et al. Colloidal solution of luminescent ZnO quantum dots embedded silica as Nano-tracers for remote sensing applications [J]. J. Mol. Liq., 2019, 274: 447-454. doi: 10.1016/j.molliq.2018.11.001http://dx.doi.org/10.1016/j.molliq.2018.11.001
施周, 贺英, 蔡计杰, 等. ZnO@GQDs核壳结构量子点的制备及性能研究 [J]. 发光学报, 2014, 35(2): 137-141. doi: 10.3788/fgxb20143502.0137http://dx.doi.org/10.3788/fgxb20143502.0137
SHI Z, HE Y, CAI J J, et al. Synthesis and characterization of ZnO@Graphene quantum dots with core-shell structure [J]. Chin. J. Lumin., 2014, 35(2): 137-141. (in Chinese). doi: 10.3788/fgxb20143502.0137http://dx.doi.org/10.3788/fgxb20143502.0137
PIRZADEH K, ESFANDIARI K, GHOREYSHI A A, et al. CO2 and N2 adsorption and separation using aminated UiO-66 and Cu3(BTC)2: A comparative study [J]. Korean J. Chem. Eng., 2020, 37(3): 513-524. doi: 10.1007/s11814-019-0433-5http://dx.doi.org/10.1007/s11814-019-0433-5
ZHANG Y, LIU S, ZHAO Z S, et al. Recent progress in lanthanide metal-organic frameworks and their derivatives in catalytic applications [J]. Inorg. Chem. Front., 2021, 8(3): 590-619. doi: 10.1039/d0qi01191fhttp://dx.doi.org/10.1039/d0qi01191f
ZHANG Y, XU X, YAN B. A multicolor-switchable fluorescent lanthanide MOFs triggered by anti-cancer drugs: multifunctional platform for anti-cancer drug sensing and information anticounterfeiting [J]. J. Mater. Chem. C, 2022, 10(9): 3576-3584. doi: 10.1039/d1tc05935ahttp://dx.doi.org/10.1039/d1tc05935a
何睿夫, 周非凡, 屈军乐, 等. 金属有机框架材料在有机钙钛矿太阳能电池中的应用进展 [J]. 发光学报, 2021, 42(11): 1722-1738. doi: 10.37188/CJL.20210208http://dx.doi.org/10.37188/CJL.20210208
HE R F, ZHOU F F, QU J L, et al. Research progress of metal-organic frameworks in organic perovskite solar cells [J]. Chin. J. Lumin., 2021, 42(11): 1722-1738. (in Chinese). doi: 10.37188/CJL.20210208http://dx.doi.org/10.37188/CJL.20210208
MOGHADDAM E, YOUZBASHI A A, KAZEMZADEH A, et al. Photoluminescence investigation of ZnO quantum dots surface modified with silane coupling agent as a capping agent [J]. J. Lumin., 2015, 168: 158-162. doi: 10.1016/j.jlumin.2015.08.008http://dx.doi.org/10.1016/j.jlumin.2015.08.008
ZHANG X L, LUO S S, WU X D, et al. Effect of alkali bases on the synthesis of ZnO quantum dots [J]. Open Chem., 2021, 19(1): 377-384. doi: 10.1515/chem-2021-0027http://dx.doi.org/10.1515/chem-2021-0027
HUANG W Y, LV X W, TAN J L, et al. Regulable preparation of the oxygen vacancy of ZnO QDs and their fluorescence performance [J]. J. Mol. Struct., 2019, 1195: 653-658. doi: 10.1016/j.molstruc.2019.05.105http://dx.doi.org/10.1016/j.molstruc.2019.05.105
WANG W, ZHANG H, ZHAO Y Z, et al. A novel MOF-drived self-decomposition strategy for CoO@N/C-Co/Ni-NiCo2O4 multi-heterostructure composite as high-performance electromagnetic wave absorbing materials [J]. Chem. Eng. J., 2021, 426: 131667. doi: 10.1016/j.cej.2021.131667http://dx.doi.org/10.1016/j.cej.2021.131667
CHENG J, GUO H, YANG X, et al. Phosphotungstic acid-modified zeolite imidazolate framework (ZIF-67) as an acid-base bifunctional heterogeneous catalyst for biodiesel production from microalgal lipids [J]. Energy Convers. Manage., 2021, 232: 113872-1-11. doi: 10.1016/j.enconman.2021.113872http://dx.doi.org/10.1016/j.enconman.2021.113872
JUNG J Y, HONG Y L, KIM J G, et al. New insight of tailor-made graphene oxide for the formation of atomic Co-N sites toward hydrogen evolution reaction [J]. Appl. Surf. Sci., 2021, 563: 150254-1-8. doi: 10.1016/j.apsusc.2021.150254http://dx.doi.org/10.1016/j.apsusc.2021.150254
WANG Y Q, FANG Z, MIN H, et al. Sensitive determination of ofloxacin by molecularly imprinted polymers containing ionic liquid functionalized carbon quantum dots and europium ion [J]. ACS Appl. Nano Mater., 2022, 5(6): 8467-8474. doi: 10.1021/acsanm.2c01583http://dx.doi.org/10.1021/acsanm.2c01583
LI Y, YANG Y Q, JIANG Y M, et al. Detection of tannic acid exploiting carbon dots enhanced hydrogen peroxide/potassium ferricyanide chemiluminescence [J]. Microchem. J., 2020, 157: 105113-1-7. doi: 10.1016/j.microc.2020.105113http://dx.doi.org/10.1016/j.microc.2020.105113
YANG P, ZHU Z Q, CHEN M Z, et al. Microwave-assisted synthesis of polyamine-functionalized carbon dots from xylan and their use for the detection of tannic acid [J]. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 213: 301-308. doi: 10.1016/j.saa.2019.01.043http://dx.doi.org/10.1016/j.saa.2019.01.043
FALAK S, HUH D S. Iron oxide nanoparticles embedded in porous films for tannic acid detection [J]. React. Funct. Polym., 2023, 183: 105494. doi: 10.1016/j.reactfunctpolym.2022.105494http://dx.doi.org/10.1016/j.reactfunctpolym.2022.105494
PIOVESAN J V, SANTANA E R, SPINELLI A. A carbon paste electrode improved with poly(ethylene glycol) for tannic acid surveillance in beer samples [J]. Food Chem., 2020, 326: 127055-1-6. doi: 10.1016/j.foodchem.2020.127055http://dx.doi.org/10.1016/j.foodchem.2020.127055
ZHU X Y, YU J Y, YAN Y C, et al. One-pot alkali cutting-assisted synthesis of fluorescence tunable amino-functionalized graphene quantum dots as a multifunctional nanosensor for sensing of pH and tannic acid [J]. Talanta, 2022, 236: 122874-1-7. doi: 10.1016/j.talanta.2021.122874http://dx.doi.org/10.1016/j.talanta.2021.122874
DA SILVA F G S, FERREIRA A R, DOS SANTOS C C, et al. Dual-photoelectrode photoelectrochemical cell exploiting a photoanode based on cadmium sulfide and anatase TiO2 photocatalysts for tannic acid detection [J]. J. Solid State Electrochem., 2021, 25(8): 2213-2224. doi: 10.1007/s10008-021-04987-xhttp://dx.doi.org/10.1007/s10008-021-04987-x
刘丽, 胡润泽, 徐陈, 等. 镧系Eu3+配合物修饰的分子印迹聚合物荧光探针制备及其对血红蛋白的传感检测 [J]. 发光学报, 2022, 43(6): 944-951. doi: 10.37188/cjl.20220095http://dx.doi.org/10.37188/cjl.20220095
LIU L, HU R Z, XU C, et al. Preparation of molecularly imprinted polymer fluorescence probe modified by lanthanide Eu3+ complex and hemoglobin sensing detection [J]. Chin. J. Lumin., 2022, 43(6): 944-951. (in Chinese). doi: 10.37188/cjl.20220095http://dx.doi.org/10.37188/cjl.20220095
0
Views
285
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution