浏览全部资源
扫码关注微信
1.中国科学院理化技术研究所 光化学转换与功能材料重点实验室, 北京 100190
2.中国科学院大学 未来技术学院, 北京 100049
3.西北工业大学 柔性电子前沿科学中心, 陕西 西安 710129
Published:05 June 2023,
Received:15 February 2023,
Revised:06 March 2023,
移动端阅览
张云秀,贾庆岩,葛介超.绿茶衍生碳点用于光动力治疗耐药菌感染[J].发光学报,2023,44(06):1112-1120.
ZHANG Yunxiu,JIA Qingyan,GE Jiechao.Thea Viridis Derived Carbon Dots for Drug-resistant Bacterial Infections by Photodynamic Therapy[J].Chinese Journal of Luminescence,2023,44(06):1112-1120.
张云秀,贾庆岩,葛介超.绿茶衍生碳点用于光动力治疗耐药菌感染[J].发光学报,2023,44(06):1112-1120. DOI: 10.37188/CJL.20230036.
ZHANG Yunxiu,JIA Qingyan,GE Jiechao.Thea Viridis Derived Carbon Dots for Drug-resistant Bacterial Infections by Photodynamic Therapy[J].Chinese Journal of Luminescence,2023,44(06):1112-1120. DOI: 10.37188/CJL.20230036.
随着细菌耐药性的不断播散,尤其是“超级细菌”的出现,临床可用抗生素药物越来越少,迫切需要发展新的高效、低毒和无耐药性的抗菌材料和技术。本研究采用生物质绿茶作为碳源,通过溶剂热法,成功制备了具有光动力治疗(Photodynamic therapy,PDT)性能的绿茶衍生碳点(T⁃CDs)。在660 nm激光照射下,所制备的T⁃CDs 能够有效产生活性氧。细胞和活体实验表明,T⁃CDs具有优异的生物相容性,且产生的活性氧能杀死耐甲氧西林金黄色葡萄球菌,从而通过降低细菌引起的伤口炎症,加速伤口愈合。本研究所制备的T⁃CDs能够通过PDT杀灭致病菌,促进感染伤口愈合,为开发抗生素替代药物提供了新的思路,同时对探索耐药菌感染伤口临床治疗新方案具有重要参考价值。
With the spread of bacterial drug resistance, especially the emergence of “superbugs”, it's an urgent need to develop new antibacterial materials and technologies with high efficiency, low toxicity and no drug resistance. In this study,
thea viridis
derived carbon dots (T-CDs) were successfully prepared by solvothermal method. Under 660 nm laser irradiation, the prepared T-CDs could effectively produce reactive oxygen species (ROS).
In vitro
and
in vivo
experiments showed that T-CDs have excellent biocompatibility, and can produce ROS under laser irradiation to kill methicillin-resistant
Staphylococcus aureus
, thereby reducing wound inflammation caused by bacteria and accelerating wound healing. The prepared T-CDs can kill pathogenic bacteria through PDT and promote the healing of infected wounds, provide a new idea for the development of antibiotic replacement drugs, and have important value for exploring new clinical treatment schemes of drug-resistant bacteria infected wounds.
碳点光动力治疗耐药菌感染生物质
carbon dotsphotodynamic therapydrug-resistant bacteriabiomass
SUGDEN R, KELLY R, DAVIES S. Combatting antimicrobial resistance globally [J]. Nat. Microbiol., 2016, 1(10): 16187-1-2. doi: 10.1038/nmicrobiol.2016.187http://dx.doi.org/10.1038/nmicrobiol.2016.187
ANTIMICROBIAL RESISTANCE COLLABORATORS. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis [J]. Lancet, 2022, 399(10325): 629-655. doi: 10.1016/S0140-6736(21)02724-0http://dx.doi.org/10.1016/S0140-6736(21)02724-0
OKANO A, ISLEY N A, BOGER D L. Total syntheses of vancomycin-related glycopeptide antibiotics and key analogues [J]. Chem. Rev., 2017, 117(18): 11952-11993. doi: 10.1021/acs.chemrev.6b00820http://dx.doi.org/10.1021/acs.chemrev.6b00820
CROFTS T S, GASPARRINI A J, DANTAS G. Next-generation approaches to understand and combat the antibiotic resistome [J]. Nat. Rev. Microbiol., 2017, 15(7): 422-434. doi: 10.1038/nrmicro.2017.28http://dx.doi.org/10.1038/nrmicro.2017.28
WAINWRIGHT M, MAISCH T, NONELL S, et al. Photoantimicrobials—are we afraid of the light?[J]. Lancet Infect. Dis., 2017, 17(2): E49-E55. doi: 10.1016/s1473-3099(16)30268-7http://dx.doi.org/10.1016/s1473-3099(16)30268-7
JIA Q Y, SONG Q, LI P, et al. Rejuvenated photodynamic therapy for bacterial infections [J]. Adv. Healthc. Mater., 2019, 8(14): 1900608-1-19. doi: 10.1002/adhm.201900608http://dx.doi.org/10.1002/adhm.201900608
南福春, 薛小矿, 葛介超, 等. 红光/近红外光响应碳点在肿瘤治疗中的应用进展 [J]. 发光学报, 2021, 42(8): 1155-1171. doi: 10.37188/CJL.20210163http://dx.doi.org/10.37188/CJL.20210163
NAN F C, XUE X K, GE J C, et al. Recent advances of red/near infrared light responsive carbon dots for tumor therapy [J]. Chin. J. Lumin., 2021, 42(8): 1155-1171. (in Chinese). doi: 10.37188/CJL.20210163http://dx.doi.org/10.37188/CJL.20210163
LI P F, SUN L, XUE S S, et al. Recent advances of carbon dots as new antimicrobial agents [J]. SmartMat, 2022, 3(2): 226-248. doi: 10.1002/smm2.1131http://dx.doi.org/10.1002/smm2.1131
YANG J J, GE G, ZHANG X D, et al. One-step synthesis of carbon dots with bacterial contact-enhanced fluorescence emission: fast Gram-type identification and selective Gram-positive bacterial inactivation [J]. Carbon, 2019, 146: 827-839. doi: 10.1016/j.carbon.2019.02.040http://dx.doi.org/10.1016/j.carbon.2019.02.040
YANG J J, ZHANG X D, MA Y H, et al. Carbon dot-based platform for simultaneous bacterial distinguishment and antibacterial applications [J]. ACS Appl. Mater. Interfaces, 2016, 8(47): 32170-32181. doi: 10.1021/acsami.6b10398http://dx.doi.org/10.1021/acsami.6b10398
WANG B Y, SONG H Q, QU X L, et al. Carbon dots as a new class of nanomedicines: opportunities and challenges [J]. Coordin. Chem. Rev., 2021, 442: 214010-1-18. doi: 10.1016/j.ccr.2021.214010http://dx.doi.org/10.1016/j.ccr.2021.214010
张震, 曲丹, 安丽, 等. 荧光碳点的制备、发光机理及应用 [J]. 发光学报, 2021, 42(8): 1125-1140. doi: 10.37188/CJL.20210061http://dx.doi.org/10.37188/CJL.20210061
ZHANG Z, QU D, AN L, et al. Preparation, luminescence mechanism and application of fluorescent carbon dots [J]. Chin. J. Lumin., 2021, 42(8): 1125-1140. (in Chinese). doi: 10.37188/CJL.20210061http://dx.doi.org/10.37188/CJL.20210061
胡妙言, 刘凯, 高诗雨, 等. 淡竹叶碳量子点的微波法制备及在细胞成像中的应用探究 [J]. 发光学报, 2022, 43(12): 2001-2013. doi: 10.37188/CJL.20220256http://dx.doi.org/10.37188/CJL.20220256
HU M Y, LIU K, GAO S Y, et al. Microwave preparation of common lophatherum herb carbon quantum dots and application in cell imaging [J]. Chin. J. Lumin., 2022, 43(12): 2001-2013. (in Chinese). doi: 10.37188/CJL.20220256http://dx.doi.org/10.37188/CJL.20220256
吴仕敏, 江用文, 滑金杰, 等. 基于UPLC-Q-Exactive Orbitrap-MS分析不同足火方式对绿茶中叶绿素降解的影响 [J]. 食品科学, 2022, 43(8): 44-51.
WU S M, JIANG Y W, HUA J J, et al. Effects of different full drying methods on the chlorophyll degradation in green tea as analyzed by UPLC-Q-Exactive Orbitrap-MS [J]. Food Sci., 2022, 43(8): 44-51. (in Chinese)
ZHANG Y X, JIA Q Y, NAN F C, et al. Carbon dots nanophotosensitizers with tunable reactive oxygen species generation for mitochondrion-targeted type Ⅰ/Ⅱphotodynamic therapy [J]. Biomaterials, 2023, 293: 121953-1-13. doi: 10.1016/j.biomaterials.2022.121953http://dx.doi.org/10.1016/j.biomaterials.2022.121953
BU W H, XU X W, WANG Z L, et al. Ascorbic acid-PEI carbon dots with osteogenic effects as miR-2861 carriers to effectively enhance bone regeneration [J]. ACS Appl. Mater. Interfaces, 2020, 12(45): 50287-50302. doi: 10.1021/acsami.0c15425http://dx.doi.org/10.1021/acsami.0c15425
YANG H Y, LIU Y L, GUO Z Y, et al. Hydrophobic carbon dots with blue dispersed emission and red aggregation-induced emission [J]. Nat. Commun., 2019, 10(1): 1789-1-11. doi: 10.1038/s41467-019-09830-6http://dx.doi.org/10.1038/s41467-019-09830-6
BAO L, LIU C, ZHANG Z L, et al. Photoluminescence-tunable carbon nanodots: surface-state energy-gap tuning [J]. Adv. Mater., 2015, 27(10): 1663-1667. doi: 10.1002/adma.201405070http://dx.doi.org/10.1002/adma.201405070
WEN Y M, JIA Q Y, NAN F C, et al. Pheophytin derived near-infrared-light responsive carbon dot assembly as a new phototheranotic agent for bioimaging and photodynamic therapy [J]. Chem. Asian J., 2019, 14(12): 2162-2168. doi: 10.1002/asia.201900416http://dx.doi.org/10.1002/asia.201900416
SUN J, DU K, DIAO J J, et al. GSH and H2O2 co-activatable mitochondria-targeted photodynamic therapy under normoxia and hypoxia [J]. Angew. Chem. Int. Ed., 2020, 59(29): 12122-12128. doi: 10.1002/anie.202003895http://dx.doi.org/10.1002/anie.202003895
南福春, 杨阳, 赵晓智, 等. 碳点用于荧光成像介导的原位膀胱癌靶向光动力/光热治疗 [J]. 发光学报, 2022, 43(4): 608-619. doi: 10.37188/CJL.20220017http://dx.doi.org/10.37188/CJL.20220017
NAN F C, YNAG Y, ZHAO X Z, et al. Orthotopic bladder tumor targeted carbon dots for fluorescence imaging-guided phototherapy [J]. Chin. J. Lumin., 2022, 43(4): 608-619. (in English). doi: 10.37188/CJL.20220017http://dx.doi.org/10.37188/CJL.20220017
ZHONG X Y, WANG X W, LI J X, et al. ROS-based dynamic therapy synergy with modulating tumor cell-microenvironment mediated by inorganic nanomedicine [J]. Coordin. Chem. Rev., 2021, 437: 213828-1-35. doi: 10.1016/j.ccr.2021.213828http://dx.doi.org/10.1016/j.ccr.2021.213828
ZHANG J H, JIA Q Y, YUE Z L, et al. An electroluminodynamic flexible device for highly efficient eradication of drug-resistant bacteria [J]. Adv. Mater., 2022, 34(17): 2200334-1-11. doi: 10.1002/adma.202200334http://dx.doi.org/10.1002/adma.202200334
0
Views
262
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution