浏览全部资源
扫码关注微信
1.中山大学 电子与信息工程学院, 广东 广州 510006
2.华南理工大学 微电子学院, 广东 广州 510640
3.东莞理工学院 电子工程与智能化学院, 广东 东莞 523808
4.华南师范大学 华南先进光电子研究院, 广东 广州 510006
Published:05 August 2023,
Received:31 January 2023,
Revised:20 February 2023,
扫 描 看 全 文
方文惠,张灵骄,陆冠桦等.无铅钙钛矿发光二极管的实现及研究进展[J].发光学报,2023,44(08):1422-1438.
FANG Wenhui,ZHANG Lingjiao,LU Guanhua,et al.Preparation and Research Progress of Lead-free Perovskite Light Emitting Diodes[J].Chinese Journal of Luminescence,2023,44(08):1422-1438.
方文惠,张灵骄,陆冠桦等.无铅钙钛矿发光二极管的实现及研究进展[J].发光学报,2023,44(08):1422-1438. DOI: 10.37188/CJL.20230017.
FANG Wenhui,ZHANG Lingjiao,LU Guanhua,et al.Preparation and Research Progress of Lead-free Perovskite Light Emitting Diodes[J].Chinese Journal of Luminescence,2023,44(08):1422-1438. DOI: 10.37188/CJL.20230017.
金属卤化物钙钛矿材料由于具有高光致发光量子效率、高色纯度、波长可调和可溶液加工等优异的性能,近年来广泛用于制备发光二极管、太阳能电池、激光器、探测器等半导体器件。其中,铅基钙钛矿发光二极管(Perovskite light emitting diode,PeLED)的外量子效率已经突破了28%。然而,重金属铅的毒性阻碍了其大规模的生产和商业化发展。因此,开发高性能的无铅PeLED成为新的研究热点,在下一代显示和照明领域展现出重要的应用前景。本文综述了无铅PeLED的实现及研究进展,首先介绍了无铅PeLED中的相关基本概念,包括无铅钙钛矿材料特性、器件结构、发光机理等;然后从无铅钙钛矿材料种类的角度出发,阐述了无铅钙钛矿的制备方法,包括旋涂法、热注入法、配体辅助再沉淀法、气相沉积法等;接着总结了实现高性能Sn基、Bi基、Sb基、Cu基等无铅PeLED的方法,包括对材料选取、结构设计、器件性能、工作机理以及发光过程的分析;最后探讨了无铅PeLED目前面临的挑战及其未来的发展机遇。
In recent years, metal halide perovskite materials have shown a bright application prospect due to their high photoluminescence quantum efficiency, tunable luminescence wavelength, high color purity, low cost and solution-processed fabrication at room temperature. At present, the external quantum efficiency of lead-based perovskite light emitting diode(PeLED) has exceeded 28%. However, the toxicity of heavy metal lead seriously hinders its large-scale production and commercial development. Therefore, the development of low toxicity lead-free PeLED has become an urgent problem in this field. In order to solve this problem, researchers try some solutions to replace Pb, such as Sn, Bi, Sb, Cu,
etc
. However, the performance of lead-free perovskite is far from that of Pb based perovskite, so people have adopted doping, improved preparation methods and device structures to improve the performance. This paper first introduces the preparation methods of lead-free perovskite, then summarizes the research progress, advantages and disadvantages, existing problems and improvement direction of lead-free PeLEDs, and finally makes prospects for the future development.
发光二极管钙钛矿无铅性能
light emitting diodeperovskitelead-freeperformance
HUANG H, POLAVARAPU L, SICHERT J A, et al. Colloidal lead halide perovskite nanocrystals: synthesis, optical properties and applications [J]. NPG Asia Mater., 2016, 8(11): e328-1-15. doi: 10.1038/am.2016.167http://dx.doi.org/10.1038/am.2016.167
PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut [J]. Nano Lett., 2015, 15(6): 3692-3696. doi: 10.1021/nl5048779http://dx.doi.org/10.1021/nl5048779
HUANG H, SUSHA A S, KERSHAW S V, et al. Control of emission color of high quantum yield CH3NH3PbBr3 perovskite quantum dots by precipitation temperature [J]. Adv. Sci., 2015, 2(9): 1500194-1-5. doi: 10.1002/advs.201500194http://dx.doi.org/10.1002/advs.201500194
CHO H, JEONG S H, PARK M H, et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes [J]. Science, 2015, 350(6265): 1222-1225. doi: 10.1126/science.aad1818http://dx.doi.org/10.1126/science.aad1818
KIM Y H, CHO H, LEE T W. Metal halide perovskite light emitters [J]. Proc. Natl. Acad. Sci. USA, 2016, 113(42): 11694-11702. doi: 10.1073/pnas.1607471113http://dx.doi.org/10.1073/pnas.1607471113
LUO D X, WANG L, QIU Y, et al. Emergence of impurity-doped nanocrystal light-emitting diodes [J]. Nanomaterials, 2020, 10(6): 1226-1-40. doi: 10.3390/nano10061226http://dx.doi.org/10.3390/nano10061226
TAN Z K, MOGHADDAM R S, LAI M L, et al. Bright light-emitting diodes based on organometal halide perovskite [J]. Nat. Nanotechnol, 2014, 9(9): 687-692. doi: 10.1038/nnano.2014.149http://dx.doi.org/10.1038/nnano.2014.149
SONG J Z, LI J H, LI X M, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3) [J]. Adv. Mater., 2015, 27(44): 7162-7167. doi: 10.1002/adma.201502567http://dx.doi.org/10.1002/adma.201502567
PERUMAL A, SHENDRE S, LI M J, et al. High brightness formamidinium lead bromide perovskite nanocrystal light emitting devices [J]. Sci. Rep., 2016, 6: 36733-1-10. doi: 10.1038/srep36733http://dx.doi.org/10.1038/srep36733
CHEN J W, WANG J, XU X B, et al. Efficient and bright white light-emitting diodes based on single-layer heterophase halide perovskites [J]. Nat. Photonics, 2021, 15(3): 238-244. doi: 10.1038/s41566-020-00743-1http://dx.doi.org/10.1038/s41566-020-00743-1
CAO Y, WANG N N, TIAN H, et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures [J]. Nature, 2018, 562(7726): 249-253. doi: 10.1038/s41586-018-0576-2http://dx.doi.org/10.1038/s41586-018-0576-2
LUO D X, CHEN Q Z, QIU Y, et al. Device engineering for all-inorganic perovskite light-emitting diodes [J]. Nanomaterials, 2019, 9(7): 1007-1-30. doi: 10.3390/nano9071007http://dx.doi.org/10.3390/nano9071007
GAO Z, ZHENG Y F, WANG Z J, et al. Improving the stability and efficiency of perovskite light-emitting diodes via an insulating layer of polyethylenimine ethoxylated [J]. J. Lumin., 2018, 201: 359-363. doi: 10.1016/j.jlumin.2018.05.019http://dx.doi.org/10.1016/j.jlumin.2018.05.019
WANG L, LIU B Q, ZHAO X, et al. Solvent-assisted surface engineering for high-performance all-inorganic perovskite nanocrystal light-emitting diodes [J]. ACS Appl. Mater. Interfaces, 2018, 10(23): 19828-19835. doi: 10.1021/acsami.8b06105http://dx.doi.org/10.1021/acsami.8b06105
LIU B Q, WANG L, GU H S, et al. Highly efficient green light-emitting diodes from all-inorganic perovskite nanocrystals enabled by a new electron transport layer [J]. Adv. Opt. Mater., 2018, 6(11): 1800220-1-7. doi: 10.1002/adom.201800220http://dx.doi.org/10.1002/adom.201800220
刘王宇, 陈斐, 孔淑祺, 等. 全无机钙钛矿量子点的合成、性质及发光二极管应用进展 [J]. 发光学报, 2020, 41(2): 117-133. doi: 10.3788/fgxb20204102.0117http://dx.doi.org/10.3788/fgxb20204102.0117
LIU W Y, CHEN F, KONG S Q, et al. Synthesis, properties and application of all-inorganic perovskite quantum dots [J]. Chin. J. Lumin., 2020, 41(2): 117-133. (in Chinese). doi: 10.3788/fgxb20204102.0117http://dx.doi.org/10.3788/fgxb20204102.0117
王巍, 李一, 宁平凡, 等. 广色域钙钛矿量子点/荧光粉转换白光LED [J]. 发光学报, 2018, 39(5): 627-632. doi: 10.3788/fgxb20183905.0627http://dx.doi.org/10.3788/fgxb20183905.0627
WANG W, LI Y, NING P F, et al. Perovskite quantum dot/powder phosphor converted white light LEDs with wide color gamut [J]. Chin. J. Lumin., 2018, 39(5): 627-632. (in Chinese). doi: 10.3788/fgxb20183905.0627http://dx.doi.org/10.3788/fgxb20183905.0627
JIANG J, CHU Z M, YIN Z G, et al. Red perovskite light-emitting diodes with efficiency exceeding 25% realized by co-spacer cations [J]. Adv. Mater., 2022, 34(36): 2204460-1-17. doi: 10.1002/adma.202204460http://dx.doi.org/10.1002/adma.202204460
KIM J S, HEO J M, PARK G S, et al. Ultra-bright, efficient and stable perovskite light-emitting diodes [J]. Nature, 2022, 611(7937): 688-694. doi: 10.1038/s41586-022-05304-whttp://dx.doi.org/10.1038/s41586-022-05304-w
XIAO P, YU Y C, CHENG J Y, et al. Advances in perovskite light-emitting diodes possessing improved lifetime [J]. Nanomaterials, 2021, 11(1): 103-1-30. doi: 10.3390/nano11010103http://dx.doi.org/10.3390/nano11010103
MASHFORD B S, STEVENSON M, POPOVIC Z, et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection [J]. Nat. Photonics, 2013, 7(5): 407-412. doi: 10.1038/nphoton.2013.70http://dx.doi.org/10.1038/nphoton.2013.70
YANG X Y, MA Y Y, MUTLUGUN E, et al. Stable, efficient, and all-solution-processed quantum dot light-emitting diodes with double-sided metal oxide nanoparticle charge transport layers [J]. ACS Appl. Mater. Interfaces, 2014, 6(1): 495-499. doi: 10.1021/am404540zhttp://dx.doi.org/10.1021/am404540z
CHIBA T, HAYASHI Y, EBE H, et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices [J]. Nat. Photonics, 2018, 12(11): 681-687. doi: 10.1038/s41566-018-0260-yhttp://dx.doi.org/10.1038/s41566-018-0260-y
YANG X L, ZHOU G J, WONG W Y. Functionalization of phosphorescent emitters and their host materials by main-group elements for phosphorescent organic light-emitting devices [J]. Chem. Soc. Rev., 2015, 44(23): 8484-8575. doi: 10.1039/c5cs00424ahttp://dx.doi.org/10.1039/c5cs00424a
尹勇明, 孟鸿. 量子点、钙钛矿色转换全彩显示应用研究进展 [J]. 发光学报, 2021, 42(4): 419-447. doi: 10.37188/CJL.20200391http://dx.doi.org/10.37188/CJL.20200391
YIN Y M, MENG H. Progress of quantum dots and perovskite as color conversion materials for full-color display [J]. Chin. J. Lumin., 2021, 42(4): 419-447. (in Chinese). doi: 10.37188/CJL.20200391http://dx.doi.org/10.37188/CJL.20200391
FANG Z B, CHEN W J, SHI Y L, et al. Dual passivation of perovskite defects for light-emitting diodes with external quantum efficiency exceeding 20% [J]. Adv. Funct. Mater., 2020, 30(12): 1909754-1-9. doi: 10.1002/adfm.201909754http://dx.doi.org/10.1002/adfm.201909754
LIN K B, XING J, QUAN L N, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent [J]. Nature, 2018, 562(7726): 245-248. doi: 10.1038/s41586-018-0575-3http://dx.doi.org/10.1038/s41586-018-0575-3
WANG K H, ZHU B S, YAO J S, et al. Chemical regulation of metal halide perovskite nanomaterials for efficient light-emitting diodes [J]. Sci. China Chem., 2018, 61(9): 1047-1061. doi: 10.1007/s11426-018-9325-7http://dx.doi.org/10.1007/s11426-018-9325-7
VAN LE Q, JANG H W, KIM S Y. Recent advances toward high-efficiency halide perovskite light-emitting diodes: review and perspective [J]. Small Methods, 2018, 2(10): 1700419. doi: 10.1002/smtd.201700419http://dx.doi.org/10.1002/smtd.201700419
ZHAO X F, NG J D A, FRIEND R H, et al. Opportunities and challenges in perovskite light-emitting devices [J]. ACS Photonics, 2018, 5(10): 3866-3875. doi: 10.1021/acsphotonics.8b00745http://dx.doi.org/10.1021/acsphotonics.8b00745
HIRAGOND C B, POWAR N S, IN S I. Recent developments in lead and lead-free halide perovskite nanostructures towards photocatalytic CO2 reduction [J]. Nanomaterials, 2020, 10(12): 2569-1-24. doi: 10.3390/nano10122569http://dx.doi.org/10.3390/nano10122569
JELLICOE T C, RICHTER J M, GLASS H F J, et al. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals [J]. J. Am. Chem. Soc., 2016, 138(9): 2941-2944. doi: 10.1021/jacs.5b13470http://dx.doi.org/10.1021/jacs.5b13470
WU B, ZHOU Y Y, XING G C, et al. Long minority-carrier diffusion length and low surface-recombination velocity in inorganic lead-free CsSnI3 perovskite crystal for solar cells [J]. Adv. Funct. Mater., 2017, 27(7): 1604818-1-10. doi: 10.1002/adfm.201604818http://dx.doi.org/10.1002/adfm.201604818
YANG B, CHEN J S, YANG S Q, et al. Lead-free silver-bismuth halide double perovskite nanocrystals [J]. Angew. Chem. Int. Ed., 2018, 57(19): 5359-5363. doi: 10.1002/anie.201800660http://dx.doi.org/10.1002/anie.201800660
LIU Y, JING Y Y, ZHAO J, et al. Design optimization of lead-free perovskite Cs2AgInCl6∶Bi nanocrystals with 11.4% photoluminescence quantum yield [J]. Chem. Mater., 2019, 31(9): 3333-3339. doi: 10.1021/acs.chemmater.9b00410http://dx.doi.org/10.1021/acs.chemmater.9b00410
DE GRAEF M, MCHENRY M E. Structure of Materials: An Introduction to Crystallography, Diffraction and Symmetry [M]. New York: Cambridge University Press, 2012. doi: 10.1017/cbo9781139051637http://dx.doi.org/10.1017/cbo9781139051637
ZHOU C K, LIN H R, HE Q Q, et al. Low dimensional metal halide perovskites and hybrids [J]. Mater. Sci. Eng.: R: Rep., 2019, 137: 38-65. doi: 10.1016/j.mser.2018.12.001http://dx.doi.org/10.1016/j.mser.2018.12.001
SONG L, GUO X Y, HU Y S, et al. Improved performance of CsPbBr3 perovskite light-emitting devices by both boundary and interface defects passivation [J]. Nanoscale, 2018, 10(38): 18315-18322. doi: 10.1039/c8nr06311ghttp://dx.doi.org/10.1039/c8nr06311g
WU S Q, ZHAO S L, XU Z, et al. Highly bright and stable all-inorganic perovskite light-emitting diodes with methoxypolyethylene glycols modified CsPbBr3 emission layer [J]. Appl. Phys. Lett., 2018, 113(21): 213501-1-5. doi: 10.1063/1.5054367http://dx.doi.org/10.1063/1.5054367
SEOK S I, GUO T F. Halide perovskite materials and devices [J]. MRS Bull., 2020, 45(6): 427-430. doi: 10.1557/mrs.2020.140http://dx.doi.org/10.1557/mrs.2020.140
NG Y F, NEO W J, JAMALUDIN N F, et al. Enhanced coverage of all‐inorganic perovskite CsPbBr3 through sequential deposition for green light‐emitting diodes [J]. Energy Technol., 2017, 5(10): 1859-1865. doi: 10.1002/ente.201700475http://dx.doi.org/10.1002/ente.201700475
WU Z H, WEI J, SUN Y N, et al. Air-stable all-inorganic perovskite quantum dot inks for multicolor patterns and white LEDs [J]. J. Mater. Sci., 2019, 54(9): 6917-6929. doi: 10.1007/s10853-019-03382-2http://dx.doi.org/10.1007/s10853-019-03382-2
LINABURG M R, MCCLURE E T, MAJHER J D, et al. Cs1-xRbxPbCl3 and Cs1-xRbxPbBr3 solid solutions: understanding octahedral tilting in lead halide perovskites [J]. Chem. Mater., 2017, 29(8): 3507-3514. doi: 10.1021/acs.chemmater.6b05372http://dx.doi.org/10.1021/acs.chemmater.6b05372
YUAN F, RAN C X, ZHANG L, et al. A cocktail of multiple cations in inorganic halide perovskite toward efficient and highly stable blue light-emitting diodes [J]. ACS Energy Lett., 2020, 5(4): 1062-1069. doi: 10.1021/acsenergylett.9b02562http://dx.doi.org/10.1021/acsenergylett.9b02562
XIAO Z W, SONG Z N, YAN Y F. From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives [J]. Adv. Mater., 2019, 31(47): 1803792-1-22. doi: 10.1002/adma.201803792http://dx.doi.org/10.1002/adma.201803792
HEO J H, KIM J, KIM H, et al. Roles of SnX2 (X = F, Cl, Br) additives in tin-based halide perovskites toward highly efficient and stable lead-free perovskite solar cells [J]. J. Phys. Chem. Lett., 2018, 9(20): 6024-6031. doi: 10.1021/acs.jpclett.8b02555http://dx.doi.org/10.1021/acs.jpclett.8b02555
LIU B Q, WANG L, GAO D Y, et al. Extremely high-efficiency and ultrasimplified hybrid white organic light-emitting diodes exploiting double multifunctional blue emitting layers [J]. Light: Sci. Appl., 2016, 5(8): e16137-1-6. doi: 10.1038/lsa.2016.137http://dx.doi.org/10.1038/lsa.2016.137
ZHOU J H, ZOU J H, DAI C H, et al. High-efficiency and high-luminance three-color white organic light-emitting diodes with low efficiency roll-off [J]. ECS J. Solid State Sci. Technol., 2018, 7(6): R99-R103. doi: 10.1149/2.0081806jsshttp://dx.doi.org/10.1149/2.0081806jss
LIU B Q, XU M, TAO H, et al. The effect of spacer in hybrid white organic light emitting diodes [J]. Chin. Sci. Bull., 2014, 59(25): 3090-3097. doi: 10.1007/s11434-014-0469-1http://dx.doi.org/10.1007/s11434-014-0469-1
SUN Y Z, JIANG Y B, SUN X W, et al. Beyond OLED: efficient quantum dot light-emitting diodes for display and lighting application [J]. Chem. Rec., 2019, 19(8): 1729-1752. doi: 10.1002/tcr.201800191http://dx.doi.org/10.1002/tcr.201800191
LIU B Q, TAO H, SU Y J, et al. Color-stable, reduced efficiency roll-off hybrid white organic light emitting diodes with ultra high brightness [J]. Chin. Phys. B, 2013, 22(7): 077303-1-4. doi: 10.1088/1674-1056/22/7/077303http://dx.doi.org/10.1088/1674-1056/22/7/077303
吴润锋, 陆冠桦, 郑华, 等. 蓝光钙钛矿发光二极管的性质及性能优化方法 [J]. 材料研究与应用, 2022, 16(5): 685-702.
WU R F, LU G H, ZHENG H, et al. Properties and performance optimization of blue perovskite light-emitting diodes [J]. Mater. Res. Appl., 2022, 16(5): 685-702. (in Chinese)
ZHANG J F, WANG L, ZHANG X Y, et al. Blue light-emitting diodes based on halide perovskites: recent advances and strategies [J]. Mater. Today, 2021, 51: 222-246. doi: 10.1016/j.mattod.2021.10.023http://dx.doi.org/10.1016/j.mattod.2021.10.023
YUAN S, CUI L S, DAI L J, et al. Efficient and spectrally stable blue perovskite light‐emitting diodes employing a cationic π-conjugated polymer [J]. Adv. Mater., 2021, 33(45): 2103640-1-10. doi: 10.1002/adma.202103640http://dx.doi.org/10.1002/adma.202103640
HU S J, SHABANI F, LIU B Q, et al. High-performance deep red colloidal quantum well light-emitting diodes enabled by the understanding of charge dynamics [J]. ACS Nano, 2022, 16(7): 10840-10851. doi: 10.1021/acsnano.2c02967http://dx.doi.org/10.1021/acsnano.2c02967
LIU B Q, SHARMA M, YU J H, et al. Management of electroluminescence from silver-doped colloidal quantum well light-emitting diodes [J]. Cell Rep. Phys. Sci., 2022, 3(5): 100860. doi: 10.1016/j.xcrp.2022.100860http://dx.doi.org/10.1016/j.xcrp.2022.100860
LIU B Q, LUO D X, GAO D Y, et al. An ideal host-guest system to accomplish high-performance greenish yellow and hybrid white organic light-emitting diodes [J]. Org. Electron., 2015, 27: 29-34. doi: 10.1016/j.orgel.2015.08.030http://dx.doi.org/10.1016/j.orgel.2015.08.030
LIU B Q, WANG L, XU M, et al. Simultaneous achievement of low efficiency roll-off and stable color in highly efficient single-emitting-layer phosphorescent white organic light-emitting diodes [J]. J. Mater. Chem. C, 2014, 2(29): 5870-5877. doi: 10.1039/c4tc00413bhttp://dx.doi.org/10.1039/c4tc00413b
MOYEZ S A, ROY S. Thermal engineering of lead-free nanostructured CH3NH3SnCl3 perovskite material for thin-film solar cell [J]. J. Nanopart. Res., 2017, 20(1): 5-1-13. doi: 10.1007/s11051-017-4108-zhttp://dx.doi.org/10.1007/s11051-017-4108-z
WANG Z B, WANG F Z, ZHAO B, et al. Efficient two-dimensional tin halide perovskite light-emitting diodes via a spacer cation substitution strategy [J]. J. Phys. Chem. Lett., 2020, 11(3): 1120-1127. doi: 10.1021/acs.jpclett.9b03565http://dx.doi.org/10.1021/acs.jpclett.9b03565
李淏淼, 董化, 李璟睿, 等. 锡基钙钛矿太阳能电池研究进展 [J]. 物理化学学报, 2021, 37(4): 2007006-1-17. doi: 10.3866/PKU.WHXB202007006http://dx.doi.org/10.3866/PKU.WHXB202007006
LI H M, DONG H, LI J R, et al. Recent advances in tin-based perovskite solar cells [J]. Acta Phys.⁃Chim. Sinica, 2021, 37(4): 2007006-1-17. (in Chinese). doi: 10.3866/PKU.WHXB202007006http://dx.doi.org/10.3866/PKU.WHXB202007006
HONG W L, HUANG Y C, CHANG C Y, et al. Efficient low-temperature solution-processed lead-free perovskite infrared light-emitting diodes [J]. Adv. Mater., 2016, 28(36): 8029-8036. doi: 10.1002/adma.201601024http://dx.doi.org/10.1002/adma.201601024
PAL J, MANNA S, MONDAL A, et al. Colloidal synthesis and photophysics of M3Sb2I9 (M=Cs and Rb) nanocrystals: lead-free perovskites [J]. Angew. Chem. Int. Ed., 2017, 56(45): 14187-14191. doi: 10.1002/anie.201709040http://dx.doi.org/10.1002/anie.201709040
KIM J, PARK J, NAM S W, et al. Determining the chemical origin of the photoluminescence of cesium-bismuth-bromide perovskite nanocrystals and improving the luminescence via metal chloride additives [J]. ACS Appl. Energy Mater., 2020, 3(5): 4650-4657. doi: 10.1021/acsaem.0c00299http://dx.doi.org/10.1021/acsaem.0c00299
LENG M Y, YANG Y, CHEN Z W, et al. Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission [J]. Nano Lett., 2018, 18(9): 6076-6083. doi: 10.1021/acs.nanolett.8b03090http://dx.doi.org/10.1021/acs.nanolett.8b03090
CAO Y, ZHANG Z Y, LI L L, et al. An improved strategy for high-quality cesium bismuth bromine perovskite quantum dots with remarkable electrochemiluminescence activities [J]. Anal. Chem., 2019, 91(13): 8607-8614. doi: 10.1021/acs.analchem.9b01918http://dx.doi.org/10.1021/acs.analchem.9b01918
YANG W F, IGBARI F, LOU Y H, et al. Tin halide perovskites: progress and challenges [J]. Adv. Energy Mater., 2020, 10(13): 1902584-1-30. doi: 10.1002/aenm.201902584http://dx.doi.org/10.1002/aenm.201902584
YU Y, ZHAO D W, GRICE C R, et al. Thermally evaporated methylammonium tin triiodide thin films for lead-free perovskite solar cell fabrication [J]. RSC Adv., 2016, 6(93): 90248-90254. doi: 10.1039/c6ra19476ahttp://dx.doi.org/10.1039/c6ra19476a
PATIL P, LIM S, NA S I. Comparison of screen printed and spin coated hole transport layer in perovskite solar cells [J]. J. Korean Soc. Imaging Sci. Technol., 2020, 26(1): 18-24. doi: 10.14226/ksist.2020.26.01.3http://dx.doi.org/10.14226/ksist.2020.26.01.3
郑春波, 郑鑫, 冯晨, 等. 基于LiF修饰层的喷墨打印钙钛矿发光二极管 [J]. 发光学报, 2021, 42(5): 565-574. doi: 10.37188/CJL.20210058http://dx.doi.org/10.37188/CJL.20210058
ZHENG C B, ZHENG X, FENG C, et al. Inkjet printed perovskite light-emitting diode based on LiF modification layer [J]. Chin. J. Lumin., 2021, 42(5): 565-574. (in Chinese). doi: 10.37188/CJL.20210058http://dx.doi.org/10.37188/CJL.20210058
赵雪帆, 朱云飞, 孟凡斌, 等. 非铅钙钛矿光伏材料与器件研究进展 [J]. 发光学报, 2022, 43(6): 817-832. doi: 10.37188/CJL.20220050http://dx.doi.org/10.37188/CJL.20220050
ZHAO X F, ZHU Y F, MENG F B, et al. Progress of lead-free perovskite photovoltaic materials and devices [J]. Chin. J. Lumin., 2022, 43(6): 817-832. (in Chinese). doi: 10.37188/CJL.20220050http://dx.doi.org/10.37188/CJL.20220050
KE W J, STOUMPOS C C, KANATZIDIS M G. “Unleaded” perovskites: status quo and future prospects of tin-based perovskite solar cells [J]. Adv. Mater., 2019, 31(47): 1803230-1-31. doi: 10.1002/adma.201803230http://dx.doi.org/10.1002/adma.201803230
QIU W M, XIAO Z G, ROH K, et al. Mixed lead-tin halide perovskites for efficient and wavelength-tunable near-infrared light-emitting diodes [J]. Adv. Mater., 2019, 31(3): 1806105-1-7. doi: 10.1002/adma.201806105http://dx.doi.org/10.1002/adma.201806105
LAI M L, TAY T Y S, SADHANALA A, et al. Tunable near-infrared luminescence in tin halide perovskite devices [J]. J. Phys. Chem. Lett., 2016, 7(14): 2653-2658. doi: 10.1021/acs.jpclett.6b01047http://dx.doi.org/10.1021/acs.jpclett.6b01047
RICCIARELLI D, MEGGIOLARO D, AMBROSIO F, et al. Instability of tin iodide perovskites: bulk p-doping versus surface tin oxidation [J]. ACS Energy Lett., 2020, 5(9): 2787-2795. doi: 10.1021/acsenergylett.0c01174http://dx.doi.org/10.1021/acsenergylett.0c01174
YAN Y J, PULLERITS T, ZHENG K B, et al. Advancing tin halide perovskites: strategies toward the ASnX3 paradigm for efficient and durable optoelectronics [J]. ACS Energy Lett., 2020, 5(6): 2052-2086. doi: 10.1021/acsenergylett.0c00577http://dx.doi.org/10.1021/acsenergylett.0c00577
MENG X Y, LIN J B, LIU X, et al. Highly stable and efficient FASnI3-based perovskite solar cells by introducing hydrogen bonding [J]. Adv. Mater., 2019, 31(42): 1903721-1-7. doi: 10.1002/adma.201903721http://dx.doi.org/10.1002/adma.201903721
LU J X, GUAN X, LI Y Q, et al. Dendritic CsSnI3 for efficient and flexible near-infrared perovskite light-emitting diodes [J]. Adv. Mater., 2021, 33(44): 2104414-1-7. doi: 10.1002/adma.202104414http://dx.doi.org/10.1002/adma.202104414
ZHANG F, MIN H, ZHANG Y, et al. Vapor-assisted in situ recrystallization for efficient tin-based perovskite light-emitting diodes [J]. Adv. Mater., 2022, 34(37): 2203180-1-7. doi: 10.1002/adma.202203180http://dx.doi.org/10.1002/adma.202203180
TAN Z F, LI J H, ZHANG C, et al. Highly efficient blue-emitting Bi-doped Cs2SnCl6 perovskite variant: photoluminescence induced by impurity doping [J]. Adv. Funct. Mater., 2018, 28(29): 1801131-1-10. doi: 10.1002/adfm.201801131http://dx.doi.org/10.1002/adfm.201801131
LANZETTA L, MARIN-BELOQUI J M, SANCHEZ-MOLINA I, et al. Two-dimensional organic tin halide perovskites with tunable visible emission and their use in light-emitting devices [J]. ACS Energy Lett., 2017, 2(7): 1662-1668. doi: 10.1021/acsenergylett.7b00414http://dx.doi.org/10.1021/acsenergylett.7b00414
LIANG H Y, YUAN F L, JOHNSTON A, et al. High color purity lead-free perovskite light-emitting diodes via Sn stabilization [J]. Adv. Sci., 2020, 7(8): 1903213-1-8. doi: 10.1002/advs.201903213http://dx.doi.org/10.1002/advs.201903213
WANG X, LIU L H, QIAN Z, et al. Eu2+ ions as an antioxidant additive for Sn-based perovskite light-emitting diodes [J]. J. Mater. Chem. C, 2021, 9(36): 12079-12085. doi: 10.1039/d1tc03658khttp://dx.doi.org/10.1039/d1tc03658k
YUAN F L, ZHENG X P, JOHNSTON A, et al. Color-pure red light-emitting diodes based on two-dimensional lead-free perovskites [J]. Sci. Adv., 2020, 6(42): eabb0253-1-8. doi: 10.1126/sciadv.abb0253http://dx.doi.org/10.1126/sciadv.abb0253
CHEN M Y, LIN J T, HSU C S, et al. Strongly Coupled tin-halide perovskites to modulate light emission: tunable 550-640 nm light emission (FWHM 36-80 nm) with a quantum yield of up to 6.4% [J]. Adv. Mater., 2018, 30(20): 1706592-1-8. doi: 10.1002/adma.201706592http://dx.doi.org/10.1002/adma.201706592
ZHANG X T, WANG C C, ZHANG Y, et al. Bright orange electroluminescence from lead-free two-dimensional perovskites [J]. ACS Energy Lett., 2019, 4(1): 242-248. doi: 10.1021/acsenergylett.8b02239http://dx.doi.org/10.1021/acsenergylett.8b02239
余毅, 安治东, 蔡晓艺, 等. 锡基钙钛矿的研究进展及其在发光二极管中的应用 [J]. 物理学报, 2021, 70(4): 048503-1-19. doi: 10.7498/aps.70.20201284http://dx.doi.org/10.7498/aps.70.20201284
YU Y, AN Z D, CAI X Y, et al. Recent progress of tin-based perovskites and their applications in light-emitting diodes [J]. Acta Phys. Sinica, 2021, 70(4): 048503-1-19. (in Chinese). doi: 10.7498/aps.70.20201284http://dx.doi.org/10.7498/aps.70.20201284
LENG M Y, YANG Y, ZENG K, et al. All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability [J]. Adv. Funct. Mater., 2018, 28(1): 1704446-1-11. doi: 10.1002/adfm.201704446http://dx.doi.org/10.1002/adfm.201704446
SHEN Y L, YIN J, CAI B, et al. Lead-free, stable, high-efficiency (52%) blue luminescent FA3Bi2Br9 perovskite quantum dots [J]. Nanoscale Horiz., 2020, 5(3): 580-585. doi: 10.1039/c9nh00685khttp://dx.doi.org/10.1039/c9nh00685k
ZHU Y S, ZHU J Y, SONG H Z, et al. Samarium doping improves luminescence efficiency of Cs3Bi2Br9 perovskite quantum dots enabling efficient white light-emitting diodes [J]. J. Rare Earths, 2021, 39(4): 374-379. doi: 10.1016/j.jre.2020.06.007http://dx.doi.org/10.1016/j.jre.2020.06.007
MA Z Z, SHI Z F, WANG L T, et al. Water-induced fluorescence enhancement of lead-free cesium bismuth halide quantum dots by 130% for stable white light-emitting devices [J]. Nanoscale, 2020, 12(6): 3637-3645. doi: 10.1039/c9nr10075jhttp://dx.doi.org/10.1039/c9nr10075j
WANG S Z, WANG J T, LOU Y H, et al. Environment-friendly perovskite light-emitting diodes: progress and perspective [J]. Adv. Mater. Interfaces, 2022, 9(22): 2200772. doi: 10.1002/admi.202200772http://dx.doi.org/10.1002/admi.202200772
ZHANG J, YANG Y, DENG H, et al. High quantum yield blue emission from lead free inorganic antimony halide perovskite colloidal quantum dots [J]. ACS Nano, 2017, 11(9): 9294-9302. doi: 10.1021/acsnano.7b04683http://dx.doi.org/10.1021/acsnano.7b04683
SINGH A, CHIU N C, BOOPATHI K M, et al. Lead-free antimony-based light-emitting diodes through the vapor-anion-exchange method [J]. ACS Appl. Mater. Interfaces, 2019, 11(38): 35088-35094. doi: 10.1021/acsami.9b10602http://dx.doi.org/10.1021/acsami.9b10602
MA Z Z, SHI Z F, YANG D W, et al. Electrically-driven violet light-emitting devices based on highly stable lead-free perovskite Cs3Sb2Br9 quantum dots [J]. ACS Energy Lett., 2020, 5(2): 385-394. doi: 10.1021/acsenergylett.9b02096http://dx.doi.org/10.1021/acsenergylett.9b02096
LIN R C, GUO Q L, ZHU Q, et al. All-inorganic CsCu2I3 single crystal with high-PLQY (≈ to 15.7%) intrinsic white-light emission via strongly localized 1D excitonic recombination [J]. Adv. Mater., 2019, 31(46): 1905079-1-7. doi: 10.1002/adma.201905079http://dx.doi.org/10.1002/adma.201905079
MA Z Z, SHI Z F, QIN C C, et al. Stable yellow light-emitting devices based on ternary copper halides with broadband emissive self-trapped excitons [J]. ACS Nano, 2020, 14(4): 4475-4486. doi: 10.1021/acsnano.9b10148http://dx.doi.org/10.1021/acsnano.9b10148
JUN T, SIM K, IIMURA S, et al. Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure [J]. Adv. Mater., 2018, 30(43): 1804547-1-6. doi: 10.1002/adma.201804547http://dx.doi.org/10.1002/adma.201804547
WANG L T, SHI Z F, MA Z Z, et al. Colloidal synthesis of ternary copper halide nanocrystals for high-efficiency deep-blue light-emitting diodes with a half-lifetime above 100 h [J]. Nano Lett., 2020, 20(5): 3568-3576. doi: 10.1021/acs.nanolett.0c00513http://dx.doi.org/10.1021/acs.nanolett.0c00513
MA Z Z, SHI Z F, YANG D W, et al. High color-rendering index and stable white light-emitting diodes by assembling two broadband emissive self-trapped excitons [J]. Adv. Mater., 2021, 33(2): 2001367-1-10. doi: 10.1002/adma.202001367http://dx.doi.org/10.1002/adma.202001367
CHEN H, ZHU L, XUE C, et al. Efficient and bright warm-white electroluminescence from lead-free metal halides [J]. Nat. Commun., 2021, 12(1): 1421-1-7. doi: 10.1038/s41467-021-21638-xhttp://dx.doi.org/10.1038/s41467-021-21638-x
YAN S Y, TIAN W L, CHEN H, et al. Synthesis of 0D manganese-based organic-inorganic hybrid perovskite and its application in lead-free red light-emitting diode [J]. Adv. Funct. Mater., 2021, 31(26): 2100855-1-10. doi: 10.1002/adfm.202100855http://dx.doi.org/10.1002/adfm.202100855
LUO J J, WANG X M, LI S R, et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites [J]. Nature, 2018, 563(7732): 541-545. doi: 10.1038/s41586-018-0691-0http://dx.doi.org/10.1038/s41586-018-0691-0
LUO J J, YANG L B, TAN Z F, et al. Efficient Blue light emitting diodes based on europium halide perovskites [J]. Adv. Mater., 2021, 33(38): 2101903. doi: 10.1002/adma.202101903http://dx.doi.org/10.1002/adma.202101903
练惠旺, 康茹, 陈星中, 等. 全无机钙钛矿CsPbX3热稳定性研究进展 [J]. 发光学报, 2020, 41(8): 926-939. doi: 10.37188/fgxb20204108.0926http://dx.doi.org/10.37188/fgxb20204108.0926
LIAN H W, KANG R, CHEN X Z, et al. Research progress on thermal stability of all inorganic perovskite CsPbX3 [J]. Chin. J. Lumin., 2020, 41(8): 926-939. (in Chinese). doi: 10.37188/fgxb20204108.0926http://dx.doi.org/10.37188/fgxb20204108.0926
LIU B Q, LU G H, WU R F, et al. Unlocking the potential of blue perovskite light-emitting diodes for active-matrix displays [J]. Adv. Opt. Mater., 2023, 11(9): 2202894-1-10. doi: 10.1002/adom.202202894http://dx.doi.org/10.1002/adom.202202894
LIU B Q, XU M, WANG L, et al. High-performance hybrid white organic light-emitting diodes comprising ultrathin blue and orange emissive layers [J]. Appl. Phys. Express, 2013, 6(12): 122101. doi: 10.7567/apex.6.122101http://dx.doi.org/10.7567/apex.6.122101
LUO D X, YANG Y B, HUANG L, et al. High-performance hybrid white organic light-emitting diodes exploiting blue thermally activated delayed fluorescent dyes [J]. Dyes Pigm., 2017, 147: 83-89. doi: 10.1016/j.dyepig.2017.07.072http://dx.doi.org/10.1016/j.dyepig.2017.07.072
GAO C C, JIANG Y Z, SUN C J, et al. Multifunctional naphthol sulfonic salt incorporated in lead-free 2D tin halide perovskite for red light-emitting diodes [J]. ACS Photonics, 2020, 7(8): 1915-1922. doi: 10.1021/acsphotonics.0c00497http://dx.doi.org/10.1021/acsphotonics.0c00497
JEON S, ZHAO L F, JUNG Y J, et al. Perovskite light-emitting diodes with improved outcoupling using a high-index contrast nanoarray [J]. Small, 2019, 15(8): 1900135. doi: 10.1002/smll.201900135http://dx.doi.org/10.1002/smll.201900135
刘佰全, 高栋雨, 王剑斌, 等. 白光有机发光二极管的研究进展 [J]. 物理化学学报, 2015, 31(10): 1823-1852. doi: 10.3866/PKU.WHXB201506192http://dx.doi.org/10.3866/PKU.WHXB201506192
LIU B Q, GAO D Y, WANG J B, et al. Progress of white organic light-emitting diodes [J]. Acta Phys.⁃Chim. Sinica, 2015, 31(10): 1823-1852. (in Chinese). doi: 10.3866/PKU.WHXB201506192http://dx.doi.org/10.3866/PKU.WHXB201506192
HUANG H, LIN H, KERSHAW S V, et al. Polyhedral oligomeric silsesquioxane enhances the brightness of perovskite nanocrystal-based green light-emitting devices [J]. J. Phys. Chem. Lett., 2016, 7(21): 4398-4404. doi: 10.1021/acs.jpclett.6b02224http://dx.doi.org/10.1021/acs.jpclett.6b02224
SHI Z F, LI Y, ZHANG Y T, et al. High-efficiency and air-stable perovskite quantum dots light-emitting diodes with an all-inorganic heterostructure [J]. Nano Lett., 2017, 17(1): 313-321. doi: 10.1021/acs.nanolett.6b04116http://dx.doi.org/10.1021/acs.nanolett.6b04116
ZHAO L F, LEE K M, ROH K, et al. Improved outcoupling efficiency and stability of perovskite light-emitting diodes using thin emitting layers [J]. Adv. Mater., 2019, 31(2): 1805836-1-6. doi: 10.1002/adma.201805836http://dx.doi.org/10.1002/adma.201805836
KHAN Q, SUBRAMANIAN A, YU G N, et al. Structure optimization of perovskite quantum dot light-emitting diodes [J]. Nanoscale, 2019, 11(11): 5021-5029. doi: 10.1039/c8nr09864fhttp://dx.doi.org/10.1039/c8nr09864f
XIAO M, GU S, ZHU P C, et al. Tin-based perovskite with improved coverage and crystallinity through tin-fluoride-assisted heterogeneous nucleation [J]. Adv. Opt. Mater., 2018, 6(1): 1700615-1-7. doi: 10.1002/adom.201700615http://dx.doi.org/10.1002/adom.201700615
CHEN S, SHI G Q. Two-dimensional materials for halide perovskite-based optoelectronic devices [J]. Adv. Mater., 2017, 29(24): 1605448-1-31. doi: 10.1002/adma.201605448http://dx.doi.org/10.1002/adma.201605448
SAPAROV B, MITZI D B. Organic⁃inorganic perovskites: structural versatility for functional materials design [J]. Chem. Rev., 2016, 116(7): 4558-4596. doi: 10.1021/acs.chemrev.5b00715http://dx.doi.org/10.1021/acs.chemrev.5b00715
LIU B Q, XU M, WANG L, et al. Regulating charges and excitons in simplified hybrid white organic light-emitting diodes: the key role of concentration in single dopant host-guest systems [J]. Org. Electron., 2014, 15(10): 2616-2623. doi: 10.1016/j.orgel.2014.07.033http://dx.doi.org/10.1016/j.orgel.2014.07.033
LIU B Q, XU M, WANG L, et al. Very-high color rendering index hybrid white organic light-emitting diodes with double emitting nanolayers [J]. Nano-Micro Lett., 2014, 6(4): 335-339. doi: 10.1007/s40820-014-0006-4http://dx.doi.org/10.1007/s40820-014-0006-4
WANG X M, MENG W W, LIAO W Q, et al. Atomistic mechanism of broadband emission in metal halide perovskites [J]. J. Phys. Chem. Lett., 2019, 10(3): 501-506. doi: 10.1021/acs.jpclett.8b03717http://dx.doi.org/10.1021/acs.jpclett.8b03717
HE X L, TANG R J, PU Y, et al. High-gravity-hydrolysis approach to transparent nanozirconia/silicone encapsulation materials of light emitting diodes devices for healthy lighting [J]. Nano Energy, 2019, 62: 1-10. doi: 10.1016/j.nanoen.2019.05.024http://dx.doi.org/10.1016/j.nanoen.2019.05.024
KEUNING W, VAN DE WEIJER P, LIFKA H, et al. Cathode encapsulation of organic light emitting diodes by atomic layer deposited Al2O3 films and Al2O3/a-SiNx∶H stacks [J]. J. Vac. Sci. Technol. A, 2011, 30(1): 01A131-1-6. doi: 10.1116/1.3664762http://dx.doi.org/10.1116/1.3664762
LI X L, XIE G Z, LIU M, et al. High-efficiency WOLEDs with high color-rendering index based on a chromaticity-adjustable yellow thermally activated delayed fluorescence emitter [J]. Adv. Mater., 2016, 28(23): 4614-4619. doi: 10.1002/adma.201505963http://dx.doi.org/10.1002/adma.201505963
LI X, GAO X P, ZHANG X T, et al. Lead-free halide perovskites for light emission: recent advances and perspectives [J]. Adv. Sci., 2021, 8(4): 2003334-1-33. doi: 10.1002/advs.202003334http://dx.doi.org/10.1002/advs.202003334
0
Views
595
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution