浏览全部资源
扫码关注微信
北京信息科技大学 仪器科学与光电工程学院, 北京 100192
Published:05 August 2023,
Received:08 February 2023,
Revised:24 February 2023,
扫 描 看 全 文
苏美琪,张丹丹.基于金属氧化物功能层的QLED性能优化和研究进展[J].发光学报,2023,44(08):1439-1450.
SU Meiqi,ZHANG Dandan.Optimization and Research Progress of QLED Performance Based on Metal Oxide Functional Layer[J].Chinese Journal of Luminescence,2023,44(08):1439-1450.
苏美琪,张丹丹.基于金属氧化物功能层的QLED性能优化和研究进展[J].发光学报,2023,44(08):1439-1450. DOI: 10.37188/CJL.20230016.
SU Meiqi,ZHANG Dandan.Optimization and Research Progress of QLED Performance Based on Metal Oxide Functional Layer[J].Chinese Journal of Luminescence,2023,44(08):1439-1450. DOI: 10.37188/CJL.20230016.
由于金属氧化物具有较好的热稳定性以及对水/氧的敏感性较低,因此被作为最重要的电荷传输材料应用于量子点发光二极管(QLED)器件中。然而,不同金属氧化物的电荷传输能力不同,并且在不同的器件结构中界面能级匹配问题等因素会使得电荷失衡,甚至引发激子猝灭。因此在保证材料稳定性的同时,要得到良好的器件性能就要对其进行界面修饰和优化。本文以金属氧化物作为电荷传输层、电荷注入层以及电荷阻挡层分别进行阐述,通过混入其他材料以及构建合理的器件结构等方面综述了近些年金属氧化物在QLED应用中的发展历程。
Because metal oxides have good thermal stability and low sensitivity to water/oxygen, they are used as the most important charge transfer materials in quantum dot light emitting diodes (QLED) devices. However, the charge transfer ability of different metal oxides is different, and the interface energy level matching problem in different device structures will cause the charge imbalance and even lead to exciton quenching. Therefore, in order to obtain good device performance, it is necessary to modify and optimize the interface while ensuring the stability of the material. In this paper, metal oxides as charge transport layer, charge injection layer and charge blocking layer are described respectively, and the development of metal oxides in QLED applications in recent years is summarized by mixing other materials and constructing reasonable device structures.
金属氧化物电荷传输层电荷注入层电荷阻挡层复合界面功能层
metallic oxidecharge transfer layercharge injection layercharge barrier layercomposite interface function layer
YANG Z W, GAO M Y, WU W J, et al. Recent advances in quantum dot-based light-emitting devices: challenges and possible solutions [J]. Mater. Today, 2019, 24: 69-93. doi: 10.1016/j.mattod.2018.09.002http://dx.doi.org/10.1016/j.mattod.2018.09.002
YUAN Q L, WANG T, YU P L, et al. A review on the electroluminescence properties of quantum-dot light-emitting diodes [J]. Org. Electron., 2021, 90: 106086. doi: 10.1016/j.orgel.2021.106086http://dx.doi.org/10.1016/j.orgel.2021.106086
刘佰全, 高桦宇, 胡素娟, 等. 胶体量子阱发光二极管的研究进展 [J]. 物理化学学报, 2022, 38(12): 2204052-1-23. doi: 10.3866/PKU.WHXB202204052http://dx.doi.org/10.3866/PKU.WHXB202204052
LIU B Q, GAO H Y, HU S J, et al. Progress in the development of colloidal quantum well light-emitting diodes [J]. Acta Phys.⁃Chim. Sinica, 2022, 38(12): 2204052-1-23. (in Chinese). doi: 10.3866/PKU.WHXB202204052http://dx.doi.org/10.3866/PKU.WHXB202204052
宋志成, 刘代明, 刘卫东, 等. QLED研究及显示应用进展 [J]. 材料导报, 2017, 31(19): 122-128. doi: 10.11896/j.issn.1005-023X.2017.019.017http://dx.doi.org/10.11896/j.issn.1005-023X.2017.019.017
SONG Z C, LIU D M, LIU W D, et al. Review on QLED and its applications in display [J]. Mater. Rep., 2017, 31(19): 122-128. (in Chinese). doi: 10.11896/j.issn.1005-023X.2017.019.017http://dx.doi.org/10.11896/j.issn.1005-023X.2017.019.017
DENG Y Z, LIN X, FANG W, et al. Deciphering exciton-generation processes in quantum-dot electroluminescence [J]. Nat. Commun., 2020, 11(1): 2309-1-8. doi: 10.1038/s41467-020-15944-zhttp://dx.doi.org/10.1038/s41467-020-15944-z
LIU W, HALLER C, CHEN Y, et al. Impact of defects on Auger recombination in c-plane InGaN/GaN single quantum well in the efficiency droop regime [J]. Appl. Phys. Lett., 2020, 116(22): 222106-1-5. doi: 10.1063/5.0004321http://dx.doi.org/10.1063/5.0004321
XU L M, LI J H, CAI B, et al. A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes [J]. Nat. Commun., 2020, 11(1): 3902-1-12. doi: 10.1038/s41467-020-17633-3http://dx.doi.org/10.1038/s41467-020-17633-3
BAE W K, PARK Y S, LIM J, et al. Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes [J]. Nat. Commun., 2013, 4(1): 2661-1-8. doi: 10.1038/ncomms3661http://dx.doi.org/10.1038/ncomms3661
马航, 李邓化, 陈雯柏, 等. 电子传输层厚度及阻塞层对量子点发光二极管性能的影响 [J]. 发光学报, 2017, 38(1): 85-90. doi: 10.3788/fgxb20173801.0085http://dx.doi.org/10.3788/fgxb20173801.0085
MA H, LI D H, CHEN W B, et al. Influence of thickness of electron transport layer and block layer on the properties of quantum dot light emitting diodes [J]. Chin. J. Lumin., 2017, 38(1): 85-90. (in Chinese). doi: 10.3788/fgxb20173801.0085http://dx.doi.org/10.3788/fgxb20173801.0085
WOOD V, PANZER M J, HALPERT J E, et al. Selection of metal oxide charge transport layers for colloidal quantum dot LEDs [J]. ACS Nano, 2009, 3(11): 3581-3586. doi: 10.1021/nn901074rhttp://dx.doi.org/10.1021/nn901074r
顾伟, 皮孝东, 杨德仁. 量子点发光二极管界面调控研究进展 [J]. 激光与光电子学进展, 2017, 54(7): 110003-1-13. doi: 10.3788/lop54.070005http://dx.doi.org/10.3788/lop54.070005
GU W, PI X D, YANG D R. Progress on interfacial control of quantum dot light-emitting diodes [J]. Laser Optoelectron. Prog., 2017, 54(7): 110003-1-13. (in Chinese). doi: 10.3788/lop54.070005http://dx.doi.org/10.3788/lop54.070005
吕玫, 张丽, 张彦, 等. 量子点发光二极管稳定性提高策略 [J]. 中国光学, 2021, 14(1): 117-134. doi: 10.37188/CO.2020-0184http://dx.doi.org/10.37188/CO.2020-0184
LYU M, ZHANG L, ZHANG Y, et al. Strategies for improving the stability of quantum dots light-emitting diodes [J]. Chin. Opt., 2021, 14(1): 117-134. (in Chinese). doi: 10.37188/CO.2020-0184http://dx.doi.org/10.37188/CO.2020-0184
KANG B H, KIM J S, LEE J S, et al. Solution processable CdSe/ZnS quantum dots light-emitting diodes using ZnO nanocrystal as electron transport layer [J]. J. Nanosci. Nanotechnol., 2015, 15(9): 7416-7420. doi: 10.1166/jnn.2015.10542http://dx.doi.org/10.1166/jnn.2015.10542
PARK D Y, LIM J H, HA M Y, et al. High efficiency quantum dot light-emitting diode by solution printing of zinc oxide nanoparticles [J]. J. Nanosci. Nanotechnol., 2020, 20(7): 4454-4457. doi: 10.1166/jnn.2020.17591http://dx.doi.org/10.1166/jnn.2020.17591
WEI S, MIAO J H, SHI Q W, et al. Stable and efficient QLEDs with crystallographic TiO2 as the electron transportation layer and improved carrier transportation by chlorination [J]. J. Mater. Sci.: Mater. Electron., 2021, 32(8): 9795-9803. doi: 10.1007/s10854-021-05639-6http://dx.doi.org/10.1007/s10854-021-05639-6
BANG S Y, FAN X B, JUNG S M, et al. Highly stable and scalable blue QD-LED via an evaporated TiO2 thin film as an electron transport layer [J]. Adv. Opt. Mater., 2020, 8(21): 2001172-1-8. doi: 10.1002/adom.202001172http://dx.doi.org/10.1002/adom.202001172
FENG H W, LIU S H, TANG G, et al. Highly efficient and stable quantum dot light-emitting devices with a low-temperature tin oxide electron transport layer [J]. J. Mater. Chem. C, 2021, 9(39): 13748-13754. doi: 10.1039/d1tc03073fhttp://dx.doi.org/10.1039/d1tc03073f
WANG Y C, ZHANG H Z, JI W Y. Efficient quantum-dot light-emitting diodes based on solvent-annealed SnO2 electron-transport layers [J]. ACS Appl. Electron. Mater., 2023, 5(1): 537-543. doi: 10.1021/acsaelm.2c01560http://dx.doi.org/10.1021/acsaelm.2c01560
LIU B Q, SHARMA M, YU J H, et al. Management of electroluminescence from silver-doped colloidal quantum well light-emitting diodes [J]. Cell Rep. Phys. Sci., 2022, 3(5): 100860-1-15. doi: 10.1016/j.xcrp.2022.100860http://dx.doi.org/10.1016/j.xcrp.2022.100860
HU S J, SHABANI F, LIU B Q, et al. High-performance deep red colloidal quantum well light-emitting diodes enabled by the understanding of charge dynamics [J]. ACS Nano, 2022, 16(7): 10840-10851. doi: 10.1021/acsnano.2c02967http://dx.doi.org/10.1021/acsnano.2c02967
ALEXANDROV A, ZVAIGZNE M, LYPENKO D, et al. Al-, Ga-, Mg-, or Li-doped zinc oxide nanoparticles as electron transport layers for quantum dot light-emitting diodes [J]. Sci. Rep., 2020, 10(1): 7496-1-11. doi: 10.1038/s41598-020-64263-2http://dx.doi.org/10.1038/s41598-020-64263-2
CHRZANOWSKI M, KUCHOWICZ M, SZUKIEWICZ R, et al. Enhanced efficiency of quantum dot light-emitting diode by sol-gel derived Zn1-xMgxO electron transport layer [J]. Org. Electron., 2020, 80: 105656-1-7. doi: 10.1016/j.orgel.2020.105656http://dx.doi.org/10.1016/j.orgel.2020.105656
ZHANG B B, LUO Y, MAI C H, et al. Effects of ZnMgO electron transport layer on the performance of InP-based inverted quantum dot light-emitting diodes [J]. Nanomaterials, 2021, 11(5): 1246-1-10. doi: 10.3390/nano11051246http://dx.doi.org/10.3390/nano11051246
KIM M, LEE N, YANG J H, et al. High-efficiency quantum dot light-emitting diodes based on Li-doped TiO2 nanoparticles as an alternative electron transport layer [J]. Nanoscale, 2021, 13(5): 2838-2842. doi: 10.1039/d0nr05920jhttp://dx.doi.org/10.1039/d0nr05920j
JING J P, LIN L H, YANG K Y, et al. Highly efficient inverted quantum dot light-emitting diodes employing sol-gel derived Li-doped ZnO as electron transport layer [J]. Org. Electron., 2022, 103: 106466-1-7. doi: 10.1016/j.orgel.2022.106466http://dx.doi.org/10.1016/j.orgel.2022.106466
CAO S, ZHENG J J, ZHAO J L, et al. Enhancing the performance of quantum dot light-emitting diodes using room-temperature-processed Ga-doped ZnO nanoparticles as the electron transport layer [J]. ACS Appl. Mater. Interfaces, 2017, 9(18): 15605-15614. doi: 10.1021/acsami.7b03262http://dx.doi.org/10.1021/acsami.7b03262
YAN R L, TAKAHASHI T, KANAI M, et al. Unusual sequential annealing effect in achieving high thermal stability of conductive Al-doped ZnO nanofilms [J]. ACS Appl. Electron. Mater., 2020, 2(7): 2064-2070. doi: 10.1021/acsaelm.0c00321http://dx.doi.org/10.1021/acsaelm.0c00321
LEE Y, KIM H M, KIM J, et al. Remarkable lifetime improvement of quantum-dot light emitting diodes by incorporating rubidium carbonate in metal-oxide electron transport layers [J]. J. Mater. Chem. C, 2019, 7(32): 10082-10091. doi: 10.1039/c9tc02683ehttp://dx.doi.org/10.1039/c9tc02683e
KIM H M, JEONG W, KIM J H, et al. Stability of quantum-dot light emitting diodes with alkali metal carbonates blending in Mg doped ZnO electron transport layer [J]. Nanomaterials, 2020, 10(12): 2423-1-14. doi: 10.3390/nano10122423http://dx.doi.org/10.3390/nano10122423
PAN J Y, WEI C T, WANG L X, et al. Boosting the efficiency of inverted quantum dot light-emitting diodes by balancing charge densities and suppressing exciton quenching through band alignment [J]. Nanoscale, 2018, 10(2): 592-602. doi: 10.1039/c7nr06248fhttp://dx.doi.org/10.1039/c7nr06248f
SUN K, LI F S, ZENG Q Y, et al. Blue quantum dot light emitting diodes with polyvinylpyrrolidone-doped electron transport layer [J]. Org. Electron., 2018, 63: 65-70. doi: 10.1016/j.orgel.2018.08.049http://dx.doi.org/10.1016/j.orgel.2018.08.049
XUE X L, DONG J Y, WANG S P, et al. Degradation of quantum dot light emitting diodes, the case under a low driving level [J]. J. Mater. Chem. C, 2020, 8(6): 2014-2018. doi: 10.1039/c9tc04107ahttp://dx.doi.org/10.1039/c9tc04107a
ZHENG W Y, SONG D D, ZHAO S L, et al. Performance improvements in all-solution processed inverted QLEDs realized by inserting an electron blocking layer [J]. Nanotechnology, 2021, 32(33): 335204-1-7. doi: 10.1088/1361-6528/abfe8ehttp://dx.doi.org/10.1088/1361-6528/abfe8e
KIM J S, KIM S W, XU B R, et al. High-performance quantum dot-light-emitting diodes with a polyethylenimine ethoxylated-modified emission layer [J]. Thin Solid Films, 2020, 709: 138179-1-6. doi: 10.1016/j.tsf.2020.138179http://dx.doi.org/10.1016/j.tsf.2020.138179
DAVIDSON-HALL T, AZIZ H. The role of polyethylenimine in enhancing the efficiency of quantum dot light-emitting devices [J]. Nanoscale, 2018, 10(5): 2623-2631. doi: 10.1039/c7nr07683ehttp://dx.doi.org/10.1039/c7nr07683e
LI Y F, DAI X L, CHEN D S, et al. Inverted quantum dot light-emitting diodes with conductive interlayers of zirconium acetylacetonate [J]. J. Mater. Chem. C, 2019, 7(11): 3154-3159. doi: 10.1039/c8tc06511jhttp://dx.doi.org/10.1039/c8tc06511j
NGUYEN H T, RYU S, DUONG A T, et al. Suppression of non-radiative recombination to improve performance of colloidal quantum-dot LEDs with a Cs2CO3 solution treatment [J]. Nanotechnology, 2021, 32(15): 155202-1-8. doi: 10.1088/1361-6528/abd780http://dx.doi.org/10.1088/1361-6528/abd780
LEE C, MOON H, KIM J, et al. Ethanedithiol treatment on zinc oxide films for highly efficient quantum dot light-emitting diodes by reducing exciton quenching [J]. J. Opt. Soc. Am. B, 2020, 37(2): 304-310. doi: 10.1364/josab.379767http://dx.doi.org/10.1364/josab.379767
QU X W, MA J R, JIA S Q, et al. Improved blue quantum dot light-emitting diodes via chlorine passivated ZnO nanoparticle layer [J]. Chin. Phys. B, 2021, 30(11): 118503-1-6. doi: 10.1088/1674-1056/ac22a3http://dx.doi.org/10.1088/1674-1056/ac22a3
KIM H M, GENG D, KIM J, et al. Metal-oxide stacked electron transport layer for highly efficient inverted quantum-dot light emitting diodes [J]. ACS Appl. Mater. Interfaces, 2016, 8(42): 28727-28736. doi: 10.1021/acsami.6b10314http://dx.doi.org/10.1021/acsami.6b10314
KIM H M, KIM J, CHO S Y, et al. Solution-processed metal-oxide p-n charge generation junction for high-performance inverted quantum-dot light-emitting diodes [J]. ACS Appl. Mater. Interfaces, 2017, 9(44): 38678-38686. doi: 10.1021/acsami.7b14584http://dx.doi.org/10.1021/acsami.7b14584
SUN Y Z, JIANG Y B, PENG H R, et al. Efficient quantum dot light-emitting diodes with a Zn0.85Mg0.15O interfacial modification layer [J]. Nanoscale, 2017, 9(26): 8962-8969. doi: 10.1039/c7nr02099fhttp://dx.doi.org/10.1039/c7nr02099f
QIN P L, HE Q, OUYANG D, et al. Transition metal oxides as hole-transporting materials in organic semiconductor and hybrid perovskite based solar cells [J]. Sci. China Chem., 2017, 60(4): 472-489. doi: 10.1007/s11426-016-9023-5http://dx.doi.org/10.1007/s11426-016-9023-5
CHOI S G, SEOK H J, RHEE S, et al. Magnetron-sputtered amorphous V2O5 hole injection layer for high performance quantum dot light-emitting diode [J]. J. Alloys Compd., 2021, 878: 160303-1-13. doi: 10.1016/j.jallcom.2021.160303http://dx.doi.org/10.1016/j.jallcom.2021.160303
KIM H S, LEE D, KIM B, et al. Improved performance of quantum dot light-emitting diodes by introducing WO3 hole injection layers [J]. Mol. Cryst. Liq. Cryst., 2022, 735: 51-60. doi: 10.1080/15421406.2021.1972228http://dx.doi.org/10.1080/15421406.2021.1972228
TANG L Y, ZHAO J L, ZHANG X L, et al. Enhanced electroluminescence of all-inorganic colloidal quantum dot light-emitting diode by optimising the MoO3 intermediate layer [J]. Micro Nano Lett., 2014, 9(6): 421-424. doi: 10.1049/mnl.2014.0079http://dx.doi.org/10.1049/mnl.2014.0079
CHEN W S, YANG S H, TSENG W C, et al. Utilization of nanoporous nickel oxide as the hole injection layer for quantum dot light-emitting diodes [J]. ACS Omega, 2021, 6(20): 13447-13455. doi: 10.1021/acsomega.1c01618http://dx.doi.org/10.1021/acsomega.1c01618
LI J H, SHAO Y L, CHEN X C, et al. All-inorganic quantum-dot light-emitting-diodes with vertical nickel oxide nanosheets as hole transport layer [J]. Prog. Nat. Sci.: Mater. Int., 2016, 26(5): 503-509. doi: 10.1016/j.pnsc.2016.09.003http://dx.doi.org/10.1016/j.pnsc.2016.09.003
WANG F Z, WANG Z Y, ZHU X D, et al. Highly efficient and super stable full-color quantum dots light-emitting diodes with solution-processed all-inorganic charge transport layers [J]. Small, 2021, 17(12): 2007363-1-11. doi: 10.1002/smll.202007363http://dx.doi.org/10.1002/smll.202007363
LEE S M, SHIN D, CHO N K, et al. A solution-processable inorganic hole injection layer that improves the performance of quantum-dot light-emitting diodes [J]. Curr. Appl. Phys., 2017, 17(4): 442-447. doi: 10.1016/j.cap.2016.12.024http://dx.doi.org/10.1016/j.cap.2016.12.024
CAO F, WANG H R, SHEN P Y, et al. High-efficiency and stable quantum dot light-emitting diodes enabled by a solution-processed metal-doped nickel oxide hole injection interfacial layer [J]. Adv. Funct. Mater., 2017, 27(42): 1704278-1-7. doi: 10.1002/adfm.201704278http://dx.doi.org/10.1002/adfm.201704278
YU Y, LIANG Y, YONG J, et al. Low-temperature solution-processed transparent QLED using inorganic metal oxide carrier transport layers [J]. Adv. Funct. Mater., 2022, 32(3): 2106387-1-9. doi: 10.1002/adfm.202106387http://dx.doi.org/10.1002/adfm.202106387
SHIN J S, KIM M, MA J H, et al. Solution-processable Li-doped transition metal oxide hole-injection layer for highly efficient quantum-dot light-emitting diodes [J]. J. Mater. Chem. C, 2022, 10(14): 5590-5597. doi: 10.1039/d1tc06117hhttp://dx.doi.org/10.1039/d1tc06117h
KIM J Y, MOHD A R B, JANG J. Quantum-dot light-emitting diode featuring polymeric metal oxide anode buffer layer [J]. IEEE J. Sel. Top. Quantum Electron., 2015, 21(4): 1900206-1-6. doi: 10.1109/jstqe.2014.2375152http://dx.doi.org/10.1109/jstqe.2014.2375152
SHIN J S, KIM T Y, HEO S B, et al. Improving the performance of quantum-dot light-emitting diodes via an organic-inorganic hybrid hole injection layer [J]. RSC Adv., 2021, 11(7): 4168-4172. doi: 10.1039/d0ra10422ahttp://dx.doi.org/10.1039/d0ra10422a
KIM H M, KIM J, JANG J. Quantum-dot light-emitting diodes with a perfluorinated ionomer-doped copper-nickel oxide hole transporting layer [J]. Nanoscale, 2018, 10(15): 7281-7290. doi: 10.1039/c7nr09671bhttp://dx.doi.org/10.1039/c7nr09671b
DING K, CHEN H T, FAN L W, et al. Polyethylenimine insulativity-dominant charge-injection balance for highly efficient inverted quantum dot light-emitting diodes [J]. ACS Appl. Mater. Interfaces, 2017, 9(23): 20231-20238. doi: 10.1021/acsami.7b04662http://dx.doi.org/10.1021/acsami.7b04662
JI W Y, LIU S H, ZHANG H, et al. Ultrasonic spray processed, highly efficient all-inorganic quantum-dot light-emitting diodes [J]. ACS Photonics, 2017, 4(5): 1271-1278. doi: 10.1021/acsphotonics.7b00216http://dx.doi.org/10.1021/acsphotonics.7b00216
TIAN F Q, ZHU Y B, XU Z W, et al. Achieving highly efficient and stable quantum dot light-emitting diodes with interface modification [J]. IEEE Electron Device Lett., 2020, 41(9): 1384-1387. doi: 10.1109/led.2020.3011505http://dx.doi.org/10.1109/led.2020.3011505
JI W Y, SHEN H B, ZHANG H, et al. Over 800% efficiency enhancement of all-inorganic quantum-dot light emitting diodes with an ultrathin alumina passivating layer [J]. Nanoscale, 2018, 10(23): 11103-11109. doi: 10.1039/c8nr01460dhttp://dx.doi.org/10.1039/c8nr01460d
ZHANG Y D, DONG Z W, LI P J. Construction of electron and grain boundary barrier in quantum dots light-emitting diodes: the role of NiO interface coating [J]. Opt. Mater., 2021, 117: 111204-1-7. doi: 10.1016/j.optmat.2021.111204http://dx.doi.org/10.1016/j.optmat.2021.111204
SU Q, ZHANG H, SUN Y Z, et al. Enhancing the performance of quantum-dot light-emitting diodes by postmetallization annealing [J]. ACS Appl. Mater. Interfaces, 2018, 10(27): 23218-23224. doi: 10.1021/acsami.8b08470http://dx.doi.org/10.1021/acsami.8b08470
TANG P Y, WEI C T, XIE L M, et al. Efficiency enhancement of quantum-dot light-emitting diodes via rapid post-treatment of intense pulsed light sintering technique [J]. Chem. Phys. Lett., 2020, 739: 137048-1-5. doi: 10.1016/j.cplett.2019.137048http://dx.doi.org/10.1016/j.cplett.2019.137048
0
Views
199
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution