浏览全部资源
扫码关注微信
复旦大学 信息科学与工程学院, 上海 200433
Published:05 June 2023,
Received:30 January 2023,
Revised:16 February 2023,
移动端阅览
李黎嘉,丛春晓.二维黑磷的光电特性及光电器件研究进展[J].发光学报,2023,44(06):995-1005.
LI Lijia,CONG Chunxiao.Optoelectronic Properties and Photodetection of Two-dimensional Black Phosphorus[J].Chinese Journal of Luminescence,2023,44(06):995-1005.
李黎嘉,丛春晓.二维黑磷的光电特性及光电器件研究进展[J].发光学报,2023,44(06):995-1005. DOI: 10.37188/CJL.20230015.
LI Lijia,CONG Chunxiao.Optoelectronic Properties and Photodetection of Two-dimensional Black Phosphorus[J].Chinese Journal of Luminescence,2023,44(06):995-1005. DOI: 10.37188/CJL.20230015.
中波长红外(Mid⁃wavelength infrared,MWIR)光电器件可用于热成像、光通信和气体传感等多个领域。二维黑磷(Black phosphorus,BP)在中波长红外范围显示出独特的优点,其所有厚度下都具有直接带隙和高迁移率的特点使其在中红外光电器件应用方面具有很大的潜力。由于皱褶的晶格结构,黑磷有较强的面内各向异性,可应用于线偏振光电器件。此外,黑磷通过掺杂、应力调控和异质堆叠等多种方式可以实现室温下中红外波段范围内的各种功能性光电器件。本文综述了黑磷的晶体和能带结构及其各向异性的光学性质,并结合近年来在偏振方向敏感的光电探测器和光谱可调控等功能性光电器件方面的应用研究进展,总结了该材料在实际应用中的主要优势和面临的重要问题。最后对二维黑磷在中红外光电器件应用领域的发展趋势进行了展望。
Mid-wavelength infrared (MWIR) optoelectronic devices can be used for various applications, including thermal imaging, optical communications, and gas sensing. Owing to the direct bandgap at all thicknesses and high carrier mobility, two-dimensional black phosphorus (BP) is promising for room-temperature mid-wavelength infrared optoelectronic applications. The intrinsic crystal anisotropy of such two-dimensional material also offers an exciting opportunity for the application in linear-polarization-sensitive photodetection. Furthermore, the electronic and optical properties of black phosphorus can be effectively modulated by doping, strain and fabrication of Van der Waals heterostructures, which is advantageous to meet the numerous demands for functional optoelectronic applications. Here we review the essential properties of two-dimensional black phosphorus and discuss the potential applications of black phosphorus in functional mid-wavelength infrared optoelectronic devices. Finally, some of the challenges and future outlooks of BP-based applications in mid-infrared optoelectronic devices are discussed and sug⁃ gested.
黑磷二维材料中波长红外光电器件
black phosphorustwo-dimensional materialsmid-wavelength infraredoptoelectronic devices
BAGAVATHIAPPAN S, LAHIRI B B, SARAVANAN T, et al. Infrared thermography for condition monitoring:a review [J]. Infrared Phys. Technol., 2013, 60: 35-55. doi: 10.1016/j.infrared.2013.03.006http://dx.doi.org/10.1016/j.infrared.2013.03.006
KAHN J M, BARRY J R. Wireless infrared communications [J]. Proc. IEEE, 1997, 85(2): 265-298. doi: 10.1109/5.554222http://dx.doi.org/10.1109/5.554222
BAKER M J, TREVISAN J, BASSAN P, et al. Using Fourier transform IR spectroscopy to analyze biological materials [J]. Nat. Protoc., 2014, 9(8): 1771-1791. doi: 10.1038/nprot.2014.110http://dx.doi.org/10.1038/nprot.2014.110
GIBSON D, MACGREGOR C. A novel solid state non-dispersive infrared CO2 gas sensor compatible with wireless and portable deployment [J]. Sensors, 2013, 13(6): 7079-7103. doi: 10.3390/s130607079http://dx.doi.org/10.3390/s130607079
RAZEGHI M, NGUYEN B M. Advances in mid-infrared detection and imaging: a key issues review [J]. Rep. Prog. Phys., 2014, 77(8): 082401-1-17. doi: 10.1088/0034-4885/77/8/082401http://dx.doi.org/10.1088/0034-4885/77/8/082401
KIM H, UDDIN S Z, LIEN D H, et al. Actively variable-spectrum optoelectronics with black phosphorus [J]. Nature, 2021, 596(7871): 232-237. doi: 10.1038/s41586-021-03701-1http://dx.doi.org/10.1038/s41586-021-03701-1
TAKAO Y, ASAHINA H, MORITA A. Electronic structure of black phosphorus in tight binding approach [J]. J. Phys. Soc. Japan, 1981, 50(10): 3362-3369. doi: 10.1143/jpsj.50.3362http://dx.doi.org/10.1143/jpsj.50.3362
ASAHINA H, MORITA A. Band structure and optical properties of black phosphorus [J]. J. Phys. C: Solid State Phys., 1984, 17(11): 1839-1852. doi: 10.1088/0022-3719/17/11/006http://dx.doi.org/10.1088/0022-3719/17/11/006
QIAO J S, KONG X H, HU Z X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus [J]. Nat. Commun., 2014, 5: 4475-1-9. doi: 10.1038/ncomms5475http://dx.doi.org/10.1038/ncomms5475
LI L K, YU Y J, YE G J, et al. Black phosphorus field-effect transistors [J]. Nat. Nanotechnol., 2014, 9(5): 372-377. doi: 10.1038/nnano.2014.35http://dx.doi.org/10.1038/nnano.2014.35
LING X, HUANG S X, HASDEO E H, et al. Anisotropic electron-photon and electron-phonon interactions in black phosphorus [J]. Nano Lett., 2016, 16(4): 2260-2267. doi: 10.1021/acs.nanolett.5b04540http://dx.doi.org/10.1021/acs.nanolett.5b04540
QUEREDA J, SAN-JOSE P, PARENTE V, et al. Strong modulation of optical properties in black phosphorus through strain-engineered rippling [J]. Nano Lett., 2016, 16(5): 2931-2937. doi: 10.1021/acs.nanolett.5b04670http://dx.doi.org/10.1021/acs.nanolett.5b04670
ZHANG Z C, LI L K, HORNG J, et al. Strain-modulated bandgap and piezo-resistive effect in black phosphorus field-effect transistors [J]. Nano Lett., 2017, 17(10): 6097-6103. doi: 10.1021/acs.nanolett.7b02624http://dx.doi.org/10.1021/acs.nanolett.7b02624
HUANG S Y, ZHANG G W, FAN F R, et al. Strain-tunable van der Waals interactions in few-layer black phosphorus [J]. Nat. Commun., 2019, 10(1): 2447-1-23. doi: 10.1038/s41467-019-10483-8http://dx.doi.org/10.1038/s41467-019-10483-8
MA W D, LU J F, WAN B S, et al. Piezoelectricity in multilayer black phosphorus for piezotronics and nanogenerators [J]. Adv. Mater., 2020, 32(7): 1905795-1-9. doi: 10.1002/adma.201905795http://dx.doi.org/10.1002/adma.201905795
LING X, WANG H, HUANG S X, et al. The renaissance of black phosphorus [J]. Proc. Natl. Acad. Sci. USA, 2015, 112(15): 4523-4530. doi: 10.1073/pnas.1416581112http://dx.doi.org/10.1073/pnas.1416581112
LIU H, NEAL A T, ZHU Z, et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility [J]. ACS Nano, 2014, 8(4): 4033-4041. doi: 10.1021/nn501226zhttp://dx.doi.org/10.1021/nn501226z
SORKIN V, CAI Y, ONG Z, et al. Recent advances in the study of phosphorene and its nanostructures [J]. Crit. Rev. Solid State Mater. Sci., 2017, 42(1): 1-82. doi: 10.1080/10408436.2016.1182469http://dx.doi.org/10.1080/10408436.2016.1182469
RODIN A S, CARVALHO A, CASTRO NETO A H. Strain-induced gap modification in black phosphorus [J]. Phys. Rev. Lett., 2014, 112(17): 176801-1-5. doi: 10.1103/physrevlett.112.176801http://dx.doi.org/10.1103/physrevlett.112.176801
XU R J, ZHANG S, WANG F, et al. Extraordinarily bound quasi-one-dimensional trions in two-dimensional phosphorene atomic semiconductors [J]. ACS Nano, 2016, 10(2): 2046-2053. doi: 10.1021/acsnano.5b06193http://dx.doi.org/10.1021/acsnano.5b06193
LIANG L B, WANG J, LIN W Z, et al. Electronic bandgap and edge reconstruction in phosphorene materials [J]. Nano Lett., 2014, 14(11): 6400-6406. doi: 10.1021/nl502892thttp://dx.doi.org/10.1021/nl502892t
LOW T, RODIN A S, CARVALHO A, et al. Tunable optical properties of multilayer black phosphorus thin films [J]. Phys. Rev. B, 2014, 90(7): 075434-1-5. doi: 10.1103/physrevb.90.075434http://dx.doi.org/10.1103/physrevb.90.075434
XIA F N, WANG H, JIA Y C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics [J]. Nat. Commun., 2014, 5: 4458-1-6. doi: 10.1038/ncomms5458http://dx.doi.org/10.1038/ncomms5458
ZHANG G W, HUANG S Y, CHAVES A, et al. Infrared fingerprints of few-layer black phosphorus [J]. Nat. Commun., 2017, 8: 14071-1-9. doi: 10.1038/ncomms14071http://dx.doi.org/10.1038/ncomms14071
ZHAO C, SEKHAR M C, LU W, et al. Anisotropic visible photoluminescence from thermally annealed few-layer black phosphorus [J]. Nanotechnology, 2018, 29(24): 245202-1-8. doi: 10.1088/1361-6528/aab98ehttp://dx.doi.org/10.1088/1361-6528/aab98e
WANG X M, JONES A M, SEYLER K L, et al. Highly anisotropic and robust excitons in monolayer black phosphorus [J]. Nat. Nanotechnol., 2015, 10(6): 517-521. doi: 10.1038/nnano.2015.71http://dx.doi.org/10.1038/nnano.2015.71
LING X, LIANG L B, HUANG S X, et al. Low-frequency interlayer breathing modes in few-layer black phosphorus [J]. Nano Lett., 2015, 15(6): 4080-4088. doi: 10.1021/acs.nanolett.5b01117http://dx.doi.org/10.1021/acs.nanolett.5b01117
SUGAI S, SHIROTANI I. Raman and infrared reflection spectroscopy in black phosphorus [J]. Solid State Commun., 1985, 53(9): 753-755. doi: 10.1016/0038-1098(85)90213-3http://dx.doi.org/10.1016/0038-1098(85)90213-3
PHANEUF-L'HEUREUX A L, FAVRON A, GERMAIN J F, et al. Polarization-resolved raman study of bulk-like and davydov-induced vibrational modes of exfoliated black phosphorus [J]. Nano Lett., 2016, 16(12): 7761-7767. doi: 10.1021/acs.nanolett.6b03907http://dx.doi.org/10.1021/acs.nanolett.6b03907
MAO N N, TANG J Y, XIE L M, et al. Optical anisotropy of black phosphorus in the visible regime [J]. J. Am. Chem. Soc., 2016, 138(1): 300-305. doi: 10.1021/jacs.5b10685http://dx.doi.org/10.1021/jacs.5b10685
WANG Y L, CONG C X, FEI R X, et al. Remarkable anisotropic phonon response in uniaxially strained few-layer black phosphorus [J]. Nano Res., 2015, 8(12): 3944-3953. doi: 10.1007/s12274-015-0895-7http://dx.doi.org/10.1007/s12274-015-0895-7
BUSCEMA M, GROENENDIJK D J, BLANTER S I, et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors [J]. Nano Lett., 2014, 14(6): 3347-3352. doi: 10.1021/nl5008085http://dx.doi.org/10.1021/nl5008085
SUESS R J, LEONG E, GARRETT J L, et al. Mid-infrared time-resolved photoconduction in black phosphorus [J]. 2D Mater., 2016, 3(4): 041006-1-9. doi: 10.1088/2053-1583/3/4/041006http://dx.doi.org/10.1088/2053-1583/3/4/041006
XU M, GU Y Q, PENG R M, et al. Black phosphorus mid-infrared photodetectors [J]. Appl. Phys. B, 2017, 123(4): 130-1-5. doi: 10.1007/s00340-017-6698-7http://dx.doi.org/10.1007/s00340-017-6698-7
GUO Q S, POSPISCHIL A, BHUIYAN M, et al. Black phosphorus mid-infrared photodetectors with high gain [J]. Nano Lett., 2016, 16(7): 4648-4655. doi: 10.1021/acs.nanolett.6b01977http://dx.doi.org/10.1021/acs.nanolett.6b01977
BUSCEMA M, GROENENDIJK D J, STEELE G A, et al. Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating [J]. Nat. Commun., 2014, 5: 4651-1-8. doi: 10.1038/ncomms5651http://dx.doi.org/10.1038/ncomms5651
WU S, CHEN, Y, WANG, X, et al. Ultra-sensitive polarization-resolved black phosphorus homojunction photodetector defined by ferroelectric domains [J]. Nat. Commun., 2022, 13: 3198-1-8. doi: 10.1038/s41467-022-30951-yhttp://dx.doi.org/10.1038/s41467-022-30951-y
DRESSELHAUS G. Optical absorption band edge in anisotropic crystals [J]. Phys. Rev., 1957, 105(1): 135-138. doi: 10.1103/physrev.105.135http://dx.doi.org/10.1103/physrev.105.135
BLAKEMORE J S, NOMURA K C. Intrinsic optical absorption in tellurium [J]. Phys. Rev., 1962, 127(4): 1024-1029. doi: 10.1103/physrev.127.1024http://dx.doi.org/10.1103/physrev.127.1024
WANG J F, GUDIKSEN M S, DUAN X F, et al. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires [J]. Science, 2001, 293(5534): 1455-1457. doi: 10.1126/science.1062340http://dx.doi.org/10.1126/science.1062340
HAN C Q, YAO M Y, BAI X X, et al. Electronic structure of black phosphorus studied by angle-resolved photoemission spectroscopy [J]. Phys. Rev. B, 2014, 90(8): 085101-1-5. doi: 10.1103/physrevb.90.085101http://dx.doi.org/10.1103/physrevb.90.085101
YUAN H T, LIU X G, AFSHINMANESH F, et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p⁃n junction [J]. Nat. Nanotechnol., 2015, 10(8): 707-713. doi: 10.1038/nnano.2015.112http://dx.doi.org/10.1038/nnano.2015.112
CHEN Y M, LEI Y S, LI Y H, et al. Strain engineering and epitaxial stabilization of halide perovskites [J]. Nature, 2020, 577(7789): 209-215. doi: 10.1038/s41586-019-1868-xhttp://dx.doi.org/10.1038/s41586-019-1868-x
THOMPSON S E, ARMSTRONG M, AUTH C, et al. A 90-nm logic technology featuring strained-silicon [J]. IEEE Trans. Electron Devices, 2004, 51(11): 1790-1797. doi: 10.1109/ted.2004.836648http://dx.doi.org/10.1109/ted.2004.836648
LEE C, WEI X D, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science, 2008, 321(5887): 385-388. doi: 10.1126/science.1157996http://dx.doi.org/10.1126/science.1157996
ÇAKIR D, SAHIN H, PEETERS F M. Tuning of the electronic and optical properties of single-layer black phosphorus by strain [J]. Phys. Rev. B, 2014, 90(20): 205421-1-7. doi: 10.1103/physrevb.90.205421http://dx.doi.org/10.1103/physrevb.90.205421
YE L, LI H, CHEN Z F, et al. Near-infrared photodetector based on MoS2/black phosphorus heterojunction [J]. ACS Photonics, 2016, 3(4): 692-699. doi: 10.1021/acsphotonics.6b00079http://dx.doi.org/10.1021/acsphotonics.6b00079
CHEN P, ZHANG T T, ZHANG J, et al. Gate tunable WSe2-BP van der Waals heterojunction devices [J]. Nanoscale, 2016, 8(6): 3254-3258. doi: 10.1039/c5nr09218chttp://dx.doi.org/10.1039/c5nr09218c
SHIM J, OH S, KANG D H, et al. Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic [J]. Nat. Commun., 2016, 7: 13413-1-8. doi: 10.1038/ncomms13413http://dx.doi.org/10.1038/ncomms13413
HUANG M Q, WANG M L, CHEN C, et al. Broadband black-phosphorus photodetectors with high responsivity [J]. Adv. Mat., 2016, 28(18): 3481-3485. doi: 10.1002/adma.201506352http://dx.doi.org/10.1002/adma.201506352
BULLOCK J, AMANI M, CHO J, et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature [J]. Nat. Photonics, 2018, 12(10): 601-607. doi: 10.1038/s41566-018-0239-8http://dx.doi.org/10.1038/s41566-018-0239-8
ZHU W K, WEI X, YAN F G, et al. Broadband polarized photodetector based on p-BP/n-ReS2 heterojunction [J]. J. Semicond., 2019, 40(9): 092001-1-8. doi: 10.1088/1674-4926/40/9/092001http://dx.doi.org/10.1088/1674-4926/40/9/092001
LV Q S, YAN F G, MORI N, et al. Interlayer band-to-band tunneling and negative differential resistance in van der Waals BP/InSe field-effect transistors [J]. Adv. Funct. Mater., 2020, 30(15): 1910713-1-7. doi: 10.1002/adfm.201910713http://dx.doi.org/10.1002/adfm.201910713
YAN F G, WEI Z M, WEI X, et al. Toward high-performance photodetectors based on 2D materials: strategy on methods [J]. Small Methods, 2018, 2(5): 1700349. doi: 10.1002/smtd.201700349http://dx.doi.org/10.1002/smtd.201700349
0
Views
469
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution