WAN Jie,OUYANG Sha,JI Yao,et al.Calculation and Prediction of Quenching Concentration of Er3+-doped Germanate Glass[J].Chinese Journal of Luminescence,2023,44(06):1032-1041.
WAN Jie,OUYANG Sha,JI Yao,et al.Calculation and Prediction of Quenching Concentration of Er3+-doped Germanate Glass[J].Chinese Journal of Luminescence,2023,44(06):1032-1041. DOI: 10.37188/CJL.20230014.
Calculation and Prediction of Quenching Concentration of Er3+-doped Germanate Glass增强出版
Rare-earth doped laser glass fiber is the core gain medium of fiber laser.The concentration of the rare-earth ions is one of the important parameters to determine the gain characteristics of laser glass. How to determine the quenching concentration(QC) of laser glass quickly and effectively is a key scientific problem. In this paper, the QC of Er
3+
-doped germanate glass is predicted by using the spontaneous emission lifetime and the measured lifetime of the Er
3+
:
4
I
13/2
→
4
I
15/2
transition. The results show that the maximum absolute error between the theoretical prediction and the actual value is less than 0.4%. Compared with the phenomenological model and finite diffusion model to determine the QC by fitting the luminescent intensity and measured lifetime of multiple experimental samples, our proposed method can determine the QC of laser glass by the test parameters of one or two samples, which is simple, fast and has little calculation error. It has a guiding significance for the research of high-gain laser glass and optical fiber.
WANG W C, ZHOU B, XU S H, et al. Recent advances in soft optical glass fiber and fiber lasers [J]. Prog. Mater. Sci., 2019, 101: 90-171. doi: 10.1016/j.pmatsci.2018.11.003http://dx.doi.org/10.1016/j.pmatsci.2018.11.003
ZERVAS M N, CODEMARD C A. High power fiber lasers: a review [J]. IEEE J. Sel. Top. Quant. Electron., 2014, 20(5): 0904123-1-23. doi: 10.1109/jstqe.2014.2321279http://dx.doi.org/10.1109/jstqe.2014.2321279
ZHANG B T, CHEN Y E, ZHAO Z G, et al. Progress and applications of active optical Fibers [J]. Appl. Phys., 2018, 8(5): 256-268. (in Chinese). doi: 10.12677/APP.2018.85032http://dx.doi.org/10.12677/APP.2018.85032
SNOEKS E, KIK P G, POLMAN A. Concentration quenching in erbium implanted alkali silicate glasses [J]. Opt. Mater., 1996, 5(3): 159-167. doi: 10.1016/0925-3467(95)00063-1http://dx.doi.org/10.1016/0925-3467(95)00063-1
MYSLINSKI P, NGUYEN D, CHROSTOWSKI J. Effects of concentration on the performance of erbium-doped fiber amplifiers [J]. J. Lightwave Technol., 1997, 15(1): 112-120. doi: 10.1109/50.552118http://dx.doi.org/10.1109/50.552118
HOUDE-WALTER S N, PETERS P M, STEBBINS J F, et al. Hydroxyl-contents and hydroxyl-related concentration quenching in erbium-doped aluminophosphate, aluminosilicate and fluorosilicate glasses [J]. J. Non. Cryst. Solids, 2001, 286(1-2): 118-131. doi: 10.1016/s0022-3093(00)00445-2http://dx.doi.org/10.1016/s0022-3093(00)00445-2
VAN UITERT L G. Characterization of energy transfer interactions between rare earth ions [J]. J. Electrochem. Soc., 1967, 114(10): 1048. doi: 10.1149/1.2424184http://dx.doi.org/10.1149/1.2424184
AUZEL F, BONFIGLI F, GAGLIARI S, et al. The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity [J]. J. Lumin., 2001, 94-95: 293-297. doi: 10.1016/s0022-2313(01)00308-8http://dx.doi.org/10.1016/s0022-2313(01)00308-8
AUZEL F, BALDACCHINI G, LAVERSENNE L, et al. Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3 [J]. Opt. Mater., 2003, 24(1-2): 103-109. doi: 10.1016/s0925-3467(03)00112-5http://dx.doi.org/10.1016/s0925-3467(03)00112-5
PUGLIESE D, BOETTI N G, LOUSTEAU J, et al. Concentration quenching in an Er-doped phosphate glass for compact optical lasers and amplifiers [J]. J. Alloys Compd., 2016, 657: 678-683. doi: 10.1016/j.jallcom.2015.10.126http://dx.doi.org/10.1016/j.jallcom.2015.10.126
GEBAVI H, MILANESE D, LIAO G H, et al. Spectroscopic investigation and optical characterization of novel highly thulium doped tellurite glasses [J]. J. Non Cryst. Solids, 2009, 355(9): 548-555. doi: 10.1016/j.jnoncrysol.2009.01.016http://dx.doi.org/10.1016/j.jnoncrysol.2009.01.016
RAVAGL A, BOETTI N G, CRUZ F A G, et al. Structural and spectral characterisation of Er3+ and Nd3+ doped Ga-La-S-Se glasses [J]. RSC Adv., 2018, 8(48): 27556-27564.
HUANG L L, CHEN J Q, ZHAO W Z, et al. The optimal concentrations of doped rare-earth ions Nd, Ho, Tm in RE∶ YAG crystals [J]. Chin. J. Quant. Electron., 1995, 12(2): 227-231. (in Chinese)
HU X, HONG F Y, WU L N. Optimal concentration of active particles in four-level and quasi-four-level laser systems [J]. Acta Phys. Sinica, 2002, 51(9): 2002-2010. (in Chinese). doi: 10.7498/aps.51.2002http://dx.doi.org/10.7498/aps.51.2002
XU S J, CHEN J, CHEN L Y, et al. Optimal doping content of red emitting Y4GeO8∶Bi3+,Eu3+ phosphor designed by response surface methodology [J]. Chin. J. Lumin., 2022, 43(5): 633-641. (in Chinese). doi: 10.37188/cjl.20220021http://dx.doi.org/10.37188/cjl.20220021
WEN X, TANG G W, YANG Q, et al. Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser [J]. Sci. Rep., 2016, 6: 20344-1-10. doi: 10.1038/srep20344http://dx.doi.org/10.1038/srep20344
LIPINSKA K, CAVALLO F, AYITOU A J L, et al. Quench-free enhanced emission in cluster-free Er-doped heavy metal oxide glasses [J]. Opt. Mater. Express, 2019, 9(3): 1072-1084. doi: 10.1364/ome.9.001072http://dx.doi.org/10.1364/ome.9.001072
FANG Y, WANG H. Fluorescence lifetime measurements: modern methods and applications [J]. Chemistry, 2001, 64(10): 631-636. (in Chinese). doi: 10.3969/j.issn.0441-3776.2001.10.006http://dx.doi.org/10.3969/j.issn.0441-3776.2001.10.006
CAMPBELL J H, SURATWALA T I. Nd-doped phosphate glasses for high-energy/high-peak-power lasers [J]. J. Non. Cryst. Solids, 2000, 263-264: 318-341. doi: 10.1016/s0022-3093(99)00645-6http://dx.doi.org/10.1016/s0022-3093(99)00645-6
LIU Y H, XU Q. The effect of Er3+ concentrations on the fluorescence concentration quenching in bismuth borate glasses [J]. J. Qiqihar Univ., 2010, 26(2): 41-45. (in Chinese). doi: 10.3969/j.issn.1007-984X.2010.02.011http://dx.doi.org/10.3969/j.issn.1007-984X.2010.02.011
RISEBERG L A, MOOS H W. Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals [J]. Phys. Rev., 1968, 174(2): 429-438. doi: 10.1103/physrev.174.429http://dx.doi.org/10.1103/physrev.174.429
INOKUTI M, HIRAYAMA F. Influence of energy transfer by the exchange mechanism on donor luminescence [J]. J. Chem. Phys., 1965, 43(6): 1978-1989. doi: 10.1063/1.1697063http://dx.doi.org/10.1063/1.1697063
BURSHTEIN A I. Hopping mechanism of energy transfer [J]. Sov. J. Exp. Theor. Phys., 1972, 35(5): 882-885.
CARNALL W T, FIELDS P R, WYBOURNE B G. Spectral intensities of the trivalent lanthanides and actinides in solution. I. Pr3+, Nd3+, Er3+, Tm3+, and Yb3+ [J]. J. Chem. Phys., 1965, 42(11): 3797-3806. doi: 10.1063/1.1695840http://dx.doi.org/10.1063/1.1695840
KESAVULU C R, SREEDHAR V B, JAYASANKAR C K, et al. Structural, thermal and spectroscopic properties of highly Er3+-doped novel oxyfluoride glasses for photonic application [J]. Mater. Res. Bull., 2014, 51: 336-344. doi: 10.1016/j.materresbull.2013.12.023http://dx.doi.org/10.1016/j.materresbull.2013.12.023
ZHAO Y G, SHI D M. Effect of alkali metal oxides R2O(R=Na, K) on 1.53 μm luminescence of Er3+-doped Ga2O3-GeO2 glasses for optical amplification [J]. J. Rare Earths, 2013, 31(9): 857-863. doi: 10.1016/s1002-0721(12)60370-6http://dx.doi.org/10.1016/s1002-0721(12)60370-6
Calculation and Prediction of Quenching Concentration of Nd3+-doped Phosphate Laser Glass
Temperature Dependence of Upconversion Luminescence in NaYF4:Yb3+, Er3+ Nanoparticles
Upconversion Luminescence and Temperature Sensing Characteristics of Tm3+/Yb3+ Co-doped Germanate Glass Ceramics Containing LaF3 Nanocrystals
Related Author
WAN Jie
OUYANG Sha
JI Yao
DUAN Taiyu
WANG Weichao
WAN Jie
WANG Weichao
ZHAO Cheng-zhou
Related Institution
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory ofFiber Laser Materials and Applied Techniques, School of Physics and Optoelectronics, South China University of Technology
University of Chinese Academy of Sciences, Beijing 100049, China
State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
Key Laboratory of Rare Earth Optoelectronic Materials and Deices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, College of Optical and Electronic Technology, China Jiliang University
Department of Physics, University of Science and Technology of China