浏览全部资源
扫码关注微信
福州大学 物理与信息工程学院, 福建 福州 350108
Published:05 June 2023,
Received:18 January 2023,
Revised:03 February 2023,
移动端阅览
郑金平,杨开宇,李福山.强化载流子传输实现高亮度高效率钙钛矿量子点发光二极管[J].发光学报,2023,44(06):933-941.
ZHENG Jinping,YANG Kaiyu,LI Fushan.Strengthening Carrier Transmission to Achieve High Brightness and High Efficiency of Perovskite Quantum Dot Light Emitting Diodes[J].Chinese Journal of Luminescence,2023,44(06):933-941.
郑金平,杨开宇,李福山.强化载流子传输实现高亮度高效率钙钛矿量子点发光二极管[J].发光学报,2023,44(06):933-941. DOI: 10.37188/CJL.20230009.
ZHENG Jinping,YANG Kaiyu,LI Fushan.Strengthening Carrier Transmission to Achieve High Brightness and High Efficiency of Perovskite Quantum Dot Light Emitting Diodes[J].Chinese Journal of Luminescence,2023,44(06):933-941. DOI: 10.37188/CJL.20230009.
金属卤化物钙钛矿量子点因其具有高光致发光量子产率、高色纯度、带隙可调等优良的光学性能,具备成为下一代发光显示材料的潜力。目前,红绿钙钛矿量子点发光二极管(PQLED)的电致发光效率已经达到有机发光二极管(OLED)的水平。然而,有机长链配体阻碍了电荷的传输,导致钙钛矿量子点发光二极管在最大外量子效率(EQE)下的亮度较低。为了实现钙钛矿量子点发光二极管在最大EQE下仍然具有较高的发光亮度,我们用无机配体CaBr
2
部分替换有机长链配体,强化PQLED中的载流子传输,并提升电致发光的载流子注入。同有机长链配体和有机短链配体相比,无机配体能够减缓有机链存在所造成的电绝缘性,改善QDs电导性,进一步增强QDs的发光特性。基于这种策略,我们实现了在3 753 cd/m
2
高亮度下峰值EQE为10.57%的钙钛矿量子点发光二极管。在6.6 V的工作电压下,PQLED的最大亮度高达116 612 cd/m
2
。
Metal halide perovskite quantum dots have the potential to become the next generation of luminescent display material because of their excellent optical properties such as high photoluminescence quantum yield, high color purity and adjustable band gap. At present, the electroluminescence efficiency of red-green perovskite quantum dot light-emitting diode (PQLED) has reached the level of organic light-emitting diodes (OLED). However, organic long-chain ligands hinder charge transport, resulting in a lower brightness of perovskite quantum dot light-emitting diodes at maximum external quantum efficiency (EQE). In order to realize that the perovskite QDs still have high luminescence brightness at the maximum EQE, we replaced the organic long-chain ligand with the inorganic ligand CaBr
2
, strengthened the carrier transmission in PQLED, and enhanced the electroluminescent carrier injection. Compared with organic long-chain ligand and organic short-chain ligand, inorganic ligand can slow down the electrical insulation caused by the existence of organic chains, improve the conductance of QDs, and further enhance the luminescence characteristics of QDs. Based on this strategy, we achieved perovskite quantum dot light-emitting diodes with a peak EQE of 10.57% at a high brightness of 3 753 cd/m
2
. At an operating voltage of 6.6 V, the maximum brightness of the PQLED is 116 612 cd/m
2
.
钙钛矿高亮度载流子传输CaBr2
perovskitehigh brightnesscarrier transportCaBr2
TAN Z K, MOGHADDAM R S, LAI M L, et al. Bright light-emitting diodes based on organometal halide perovskite [J]. Nat. Nanotechnol., 2014, 9(9): 687-692. doi: 10.1038/nnano.2014.149http://dx.doi.org/10.1038/nnano.2014.149
KIM Y H, CHO H, HEO J H, et al. Multicolored organic/inorganic hybrid perovskite light-emitting diodes [J]. Adv. Mater., 2015, 27(7): 1248-1254. doi: 10.1002/adma.201570047http://dx.doi.org/10.1002/adma.201570047
CHO H, JEONG S H, PARK M H, et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes [J]. Science, 2015, 350(6265): 1222-1225. doi: 10.1126/science.aad1818http://dx.doi.org/10.1126/science.aad1818
PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut [J]. Nano Lett., 2015, 15(6): 3692-3696. doi: 10.1021/nl5048779http://dx.doi.org/10.1021/nl5048779
SCHMIDT L C, PERTEGÁS A, GONZÁLEZ-CARRERO S, et al. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles [J]. J. Am. Chem. Soc., 2014, 136(3): 850-853. doi: 10.1021/ja4109209http://dx.doi.org/10.1021/ja4109209
KIM Y H, CHO H, LEE T W. Metal halide perovskite light emitters [J]. Proc. Natl. Acad. Sci. USA, 2016, 113(42): 11694-11702. doi: 10.1073/pnas.1607471113http://dx.doi.org/10.1073/pnas.1607471113
KIM Y H, KIM J S, LEE T W. Strategies to improve luminescence efficiency of metal-halide perovskites and light-emitting diodes [J]. Adv. Mater., 2019, 31(47): 1804595-1-28. doi: 10.1002/adma.201970335http://dx.doi.org/10.1002/adma.201970335
KOSCHER B A, SWABECK J K, BRONSTEIN N D, et al. Essentially trap-free CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment [J]. J. Am. Chem. Soc., 2017, 139(19): 6566-6569. doi: 10.1021/jacs.7b02817http://dx.doi.org/10.1021/jacs.7b02817
DE ROO J, IBÁÑEZ M, GEIREGAT P, et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals [J]. ACS Nano, 2016, 10(2): 2071-2081. doi: 10.1021/acsnano.5b06295http://dx.doi.org/10.1021/acsnano.5b06295
WANG H C, WANG W G, TANG A C, et al. High-performance CsPb1-xSnxBr3 perovskite quantum dots for light-emitting diodes [J]. Angew. Chem. Int. Ed., 2017, 56(44): 13650-13654. doi: 10.1002/anie.201706860http://dx.doi.org/10.1002/anie.201706860
CHIBA T, HAYASHI Y, EBE H, et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices [J]. Nat. Photonics, 2018, 12(11): 681-687. doi: 10.1038/s41566-018-0260-yhttp://dx.doi.org/10.1038/s41566-018-0260-y
SONG J Z, FANG T, LI J H, et al. Organic-inorganic hybrid passivation enables perovskite QLEDs with an EQE of 16.48% [J]. Adv. Mater., 2018, 30(50): 1805409-1-9. doi: 10.1002/adma.201805409http://dx.doi.org/10.1002/adma.201805409
KIM Y H, KIM S, KAKEKHANI A, et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes [J]. Nat. Photonics, 2021, 15(2): 148-155. doi: 10.1038/s41566-020-00732-4http://dx.doi.org/10.1038/s41566-020-00732-4
KIM Y H, PARK J, KIM S, et al. Exploiting the full advantages of colloidal perovskite nanocrystals for large-area efficient light-emitting diodes [J]. Nat. Nanotechnol., 2022, 17(6): 590-597. doi: 10.1038/s41565-022-01113-4http://dx.doi.org/10.1038/s41565-022-01113-4
WANG Y K, SINGH K, LI J Y, et al. In situ inorganic ligand replenishment enables bandgap stability in mixed‐halide perovskite quantum dot solids [J]. Adv. Mater., 2022, 34(21): 2200854-1-6. doi: 10.1002/adma.202200854http://dx.doi.org/10.1002/adma.202200854
ZHU H W, TONG G Q, LI J C, et al. Enriched-bromine surface state for stable sky-blue spectrum perovskite QLEDs with an EQE of 14.6% [J]. Adv. Mater., 2022, 34(37): 2205092-1-9. doi: 10.1002/adma.202205092http://dx.doi.org/10.1002/adma.202205092
LU M, GUO J, SUN S Q, et al. Bright CsPbI3 perovskite quantum dot light-emitting diodes with top-emitting structure and a low efficiency roll-off realized by applying zirconium acetylacetonate surface modification [J]. Nano Lett., 2020, 20(4): 2829-2836. doi: 10.1021/acs.nanolett.0c00545http://dx.doi.org/10.1021/acs.nanolett.0c00545
HAN B N, YUAN S C, CAI B, et al. Green perovskite light-emitting diodes with 200 hours stability and 16% efficiency: cross-linking strategy and mechanism [J]. Adv. Funct. Mater., 2021, 31(26): 2011003-1-12. doi: 10.1002/adfm.202011003http://dx.doi.org/10.1002/adfm.202011003
LI J H, XU L M, WANG T, et al. 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control [J]. Adv. Mater., 2017, 29(5): 1603885-1-9. doi: 10.1002/adma.201603885http://dx.doi.org/10.1002/adma.201603885
ZHAO B D, LIAN Y X, CUI L S, et al. Efficient light-emitting diodes from mixed-dimensional perovskites on a fluoride interface [J]. Nat. Electronics, 2020, 3(11): 704-710. doi: 10.1038/s41928-020-00487-4http://dx.doi.org/10.1038/s41928-020-00487-4
LIU F, ZHANG Y H, DING C, et al. Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield [J]. ACS Nano, 2017, 11(10): 10373-10383. doi: 10.1021/acsnano.7b05442http://dx.doi.org/10.1021/acsnano.7b05442
IP A H, THON S M, HOOGLAND S, et al. Hybrid passivated colloidal quantum dot solids [J]. Nat. Nanotechnol., 2012, 7(9): 577-582. doi: 10.1038/nnano.2012.127http://dx.doi.org/10.1038/nnano.2012.127
TANG J, KEMP K W, HOOGLAND S, et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation [J]. Nat. Mater., 2011, 10(10): 765-771. doi: 10.1038/nmat3118http://dx.doi.org/10.1038/nmat3118
SONG J Z, LI J H, XU L M, et al. Room-temperature triple-ligand surface engineering synergistically boosts ink stability, recombination dynamics, and charge injection toward EQE-11.6% perovskite QLEDs [J]. Adv. Mater., 2018, 30(30): 1800764-1-7. doi: 10.1002/adma.201800764http://dx.doi.org/10.1002/adma.201800764
ZHANG J B, YIN C Y, YANG F, et al. Highly luminescent and stable CsPbI3 perovskite nanocrystals with sodium dodecyl sulfate ligand passivation for red-light-emitting diodes [J]. J. Phys. Chem. Lett., 2021, 12(9): 2437-2443. doi: 10.1021/acs.jpclett.1c00008http://dx.doi.org/10.1021/acs.jpclett.1c00008
YANG J N, SONG Y, YAO J S, et al. Potassium bromide surface passivation on CsPbI3-xBrx nanocrystals for efficient and stable pure red perovskite light-emitting diodes [J]. J. Am. Chem. Soc., 2020, 142(6): 2956-2967. doi: 10.1021/jacs.9b11719http://dx.doi.org/10.1021/jacs.9b11719
QU X W, ZHANG N, CAI R, et al. Improving blue quantum dot light-emitting diodes by a lithium fluoride interfacial layer [J]. Appl. Phys. Lett., 2019, 114(7): 071101-1-5. doi: 10.1063/1.5087102http://dx.doi.org/10.1063/1.5087102
ZHANG W D, DING S H, ZHUANG W D, et al. InP/ZnS/ZnS core/shell blue quantum dots for efficient light-emitting diodes [J]. Adv. Funct. Mater., 2020, 30(49): 2005303-1-9. doi: 10.1002/adfm.202005303http://dx.doi.org/10.1002/adfm.202005303
0
Views
458
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution