浏览全部资源
扫码关注微信
1.沈阳理工大学 理学院, 辽宁 沈阳 110158
2.沈阳大学 科技创新研究院, 辽宁 沈阳 110003
Published:05 June 2023,
Received:03 January 2023,
Revised:28 January 2023,
移动端阅览
孟竹,徐豪.基于大尺寸量子阱结构的多激子复合动力学[J].发光学报,2023,44(06):1051-1058.
MENG Zhu,XU Hao.Multiexcitons Recombination Dynamics Based on Large-scale Quantum Well Structure[J].Chinese Journal of Luminescence,2023,44(06):1051-1058.
孟竹,徐豪.基于大尺寸量子阱结构的多激子复合动力学[J].发光学报,2023,44(06):1051-1058. DOI: 10.37188/CJL.20230002.
MENG Zhu,XU Hao.Multiexcitons Recombination Dynamics Based on Large-scale Quantum Well Structure[J].Chinese Journal of Luminescence,2023,44(06):1051-1058. DOI: 10.37188/CJL.20230002.
半导体纳米晶的多激子复合过程在激光器件、发光二极管和光伏等方面具有巨大的应用价值,但粒子体积的减小会加速多激子态的非辐射俄歇复合,这极大地阻碍了相关应用的发展。因此,抑制俄歇复合成为纳米晶体领域一个重要的研究课题。本文基于球形量子阱结构CdS/CdSe/CdS,通过共格应变减小由材料间晶格失配引起的缺陷,制备出高荧光量子产率的大尺寸纳米晶。应用时间分辨荧光光谱技术,在光谱学以及动力学领域研究了大尺寸量子阱的多激子复合特性,分析了单激子及多激子的衰减寿命和谱线特征,并证实了大尺寸量子阱对俄歇复合的抑制作用。本研究有望促进纳米结构在多激子应用中的发展。
Colloidal semiconductor nanocrystals present unique electronic and optical properties. The multiexcitons recombination process of semiconductor nanocrystals has attracted extensive attention motivated by the needs of prospective applications in lasing devices, light-emitting diodes, and photovoltaic cells. However, the reduction of particle size will accelerate the non-radiative Auger recombination of multiexcitons states, which significantly hinders the development of related applications. Therefore, suppressing Auger recombination has become an important research topic in the nanocrystal field. Increasing the volume of nanocrystals is considered to be an effective means to decrease Auger recombination. Here, we have synthesized a spherical quantum well structure CdS/CdSe/CdS by hot injection method. As a result of coherent strain, this sandwich like structure can diminish the strain on the interface which is caused by the material lattice mismatch, thus reducing dislocation defects and fabricating large-scale nanocrystals with quantum yield over 80%. By using time-resolved fluorescence spectroscopy, the multiexcitons recombination characteristics of large-scale quantum well are investigated in the fields of spectroscopy and dynamics. The decay lifetime and spectral characteristics of single exciton, biexcitons and high-order multiexcitons are analyzed, and the suppression effect on Auger non-radiative recombination of large-scale quantum well is confirmed. The study of multiexcitons recombination and Auger process in large-scale quantum well is expected to promote the development of nanostructures in multiexcitons applications.
大尺寸量子阱多激子时间分辨荧光光谱技术非辐射复合
large-scale quantum wellmultiexcitonstime-resolved fluorescence spectroscopynon-radiative recombination
KLIMOV V I. Nanocrystal Quantum Dots [M]. 2nd ed. Boca Raton: CRC Press, 2017. doi: 10.1201/9781420079272http://dx.doi.org/10.1201/9781420079272
EFROS A L, BRUS L E. Nanocrystal quantum dots: from discovery to modern development [J]. ACS Nano, 2021, 15(4): 6192-6210. doi: 10.1021/acsnano.1c01399http://dx.doi.org/10.1021/acsnano.1c01399
CASSIDY J, HARANKAHAGE D, POROTNIKOV D, et al. Colloidal quantum shells: an emerging 2D semiconductor for energy applications [J]. ACS Energy Lett., 2022, 7(3): 1202-1213. doi: 10.1021/acsenergylett.2c00153http://dx.doi.org/10.1021/acsenergylett.2c00153
吕玫, 张丽, 张彦, 等. 量子点发光二极管稳定性提高策略 [J]. 中国光学, 2021, 14(1): 117-134.
LYU M, ZHANG L, ZHANG Y, et al. Strategies for improving the stability of quantum dots light-emitting diodes [J]. Chin. Opt., 2021, 14(1): 117-134. (in Chinese)
GRIM J Q, CHRISTODOULOU S, DI STASIO F, et al. Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells [J]. Nat. Nanotechnol., 2014, 9(11): 891-895. doi: 10.1038/nnano.2014.213http://dx.doi.org/10.1038/nnano.2014.213
LIU L, NAJAR A, WANG K, et al. Perovskite quantum dots in solar cells [J]. Adv. Sci.(Weinh.), 2022, 9(7): 2104577-1-20. doi: 10.1002/advs.202104577http://dx.doi.org/10.1002/advs.202104577
严兴茂, 王庆康. CdSe/ZnSe/ZnS量子点在单晶太阳能电池中的应用 [J]. 发光学报, 2013, 34(10): 1358-1361. doi: 10.3788/fgxb20133410.1358http://dx.doi.org/10.3788/fgxb20133410.1358
YAN X M, WANG Q K. Application of CdSe/ZnSe/ZnS quantum dots in monocrystalline silicon solar cells [J]. Chin. J. Lumin., 2013, 34(10): 1358-1361. (in Chinese). doi: 10.3788/fgxb20133410.1358http://dx.doi.org/10.3788/fgxb20133410.1358
ROBEL I, GRESBACK R, KORTSHAGEN U, et al. Universal size-dependent trend in auger recombination in direct-gap and indirect-gap semiconductor nanocrystals [J]. Phys. Rev. Lett., 2009, 102(17): 177404-1-4. doi: 10.1103/physrevlett.102.177404http://dx.doi.org/10.1103/physrevlett.102.177404
李斌, 张国峰, 陈瑞云, 等. 单量子点光谱与激子动力学研究进展 [J]. 物理学报, 2022, 71(6): 067802-1-17. doi: 10.7498/aps.71.20212050http://dx.doi.org/10.7498/aps.71.20212050
LI B, ZHANG G F, CHEN R Y, et al. Research progress of single quantum-dot spectroscopy and exciton dynamics [J]. Acta Phys. Sinica, 2022, 71(6): 067802-1-17. (in Chinese). doi: 10.7498/aps.71.20212050http://dx.doi.org/10.7498/aps.71.20212050
GARCÍA-SANTAMARÍA F, CHEN Y F, VELA J, et al. Suppressed auger recombination in “giant” nanocrystals boosts optical gain performance [J]. Nano Lett., 2009, 9(10): 3482-3488. doi: 10.1021/nl901681dhttp://dx.doi.org/10.1021/nl901681d
KLIMOV V I, MCGUIRE J A, SCHALLER R D, et al. Scaling of multiexciton lifetimes in semiconductor nanocrystals [J]. Phys. Rev. B, 2008, 77(19): 195324-1-12. doi: 10.1103/physrevb.77.195324http://dx.doi.org/10.1103/physrevb.77.195324
HTOON H, MALKO A V, BUSSIAN D, et al. Highly emissive multiexcitons in steady-state photoluminescence of individual “Giant” CdSe/CdS Core/Shell nanocrystals [J]. Nano Lett., 2010, 10(7): 2401-2407. doi: 10.1021/nl1004652http://dx.doi.org/10.1021/nl1004652
ZHANG L, LI H, LIAO C, et al. New insights into the multiexciton dynamics in phase-pure thick-shell CdSe/CdS quantum dots [J]. J. Phys. Chem. C, 2018, 122(43): 25059-25066. doi: 10.1021/acs.jpcc.8b07787http://dx.doi.org/10.1021/acs.jpcc.8b07787
TAGHIPOUR N, DELIKANLI S, SHENDRE S, et al. Sub-single exciton optical gain threshold in colloidal semiconductor quantum wells with gradient alloy shelling [J]. Nat. Commun., 2020, 11(1): 3305. doi: 10.1038/s41467-020-17032-8http://dx.doi.org/10.1038/s41467-020-17032-8
秦朝朝, 崔明焕, 宋迪迪, 等. CdSeS合金结构量子点的多激子俄歇复合过程 [J]. 物理学报, 2019, 68(10): 107801-1-8. doi: 10.1088/0256-307x/35/10/107801http://dx.doi.org/10.1088/0256-307x/35/10/107801
QIN C C, CUI M H, SONG D D, et al. Ultrafast multiexciton Auger recombination of CdSeS [J]. Acta Phys. Sinica, 2019, 68(10): 107801-1-8. (in Chinese). doi: 10.1088/0256-307x/35/10/107801http://dx.doi.org/10.1088/0256-307x/35/10/107801
SITT A, SALA F D, MENAGEN G, et al. Multiexciton engineering in seeded core/shell nanorods: transfer from type-Ⅰ to quasi-type-Ⅱ regimes [J]. Nano Lett., 2009, 9(10): 3470-3476. doi: 10.1021/nl901679qhttp://dx.doi.org/10.1021/nl901679q
JEONG B G, PARK Y S, CHANG J H, et al. Colloidal spherical quantum wells with near-unity photoluminescence quantum yield and suppressed blinking [J]. ACS Nano, 2016, 10(10): 9297-9305. doi: 10.1021/acsnano.6b03704http://dx.doi.org/10.1021/acsnano.6b03704
POROTNIKOV D, DIROLL B T, HARANKAHAGE D, et al. Low-threshold laser medium utilizing semiconductor nanoshell quantum dots [J]. Nanoscale, 2020, 12(33): 17426-17436. doi: 10.1039/d0nr03582chttp://dx.doi.org/10.1039/d0nr03582c
NAGAMINE G, JEONG B G, FERREIRA T A C, et al. Efficient optical gain in spherical quantum wells enabled by engineering biexciton interactions [J]. ACS Photon., 2020, 7(8): 2252-2264. doi: 10.1021/acsphotonics.0c00812http://dx.doi.org/10.1021/acsphotonics.0c00812
NASILOWSKI M, SPINICELLI P, PATRIARCHE G, et al. Gradient CdSe/CdS quantum dots with room temperature biexciton unity quantum yield [J]. Nano Lett., 2015, 15(6): 3953-3958. doi: 10.1021/acs.nanolett.5b00838http://dx.doi.org/10.1021/acs.nanolett.5b00838
LIM J, PARK Y S, KLIMOV V I. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping [J]. Nat. Mater., 2018, 17(1): 42-49. doi: 10.1038/nmat5011http://dx.doi.org/10.1038/nmat5011
FRANCO C V, MAHLER B, CORNAGGIA C, et al. Auger recombination and multiple exciton generation in colloidal two-dimensional perovskite nanoplatelets: implications for light-emitting devices [J]. ACS Appl. Nano Mater., 2021, 4(1): 558-567. doi: 10.1021/acsanm.0c02868http://dx.doi.org/10.1021/acsanm.0c02868
胡逢睿. 单个半导体纳米晶多激子相关性质的研究 [D]. 南京: 南京大学, 2015.
HU F R. Investigation of the Properties of Multi⁃excitons in Single Semiconductor Nanocrystals [D]. Nanjing: Nanjing University, 2015. (in Chinese)
MCGUIRE J A, JOO J, PIETRYGA J M, et al. New aspects of carrier multiplication in semiconductor nanocrystals [J]. Acc. Chem. Res., 2008, 41(12): 1810-1819. doi: 10.1021/ar800112vhttp://dx.doi.org/10.1021/ar800112v
BAE W K, PADILHA L A, PARK Y S, et al. Controlled alloying of the core-shell interface in CdSe/CdS quantum dots for suppression of Auger recombination [J]. ACS Nano, 2013, 7(4): 3411-3419. doi: 10.1021/nn4002825http://dx.doi.org/10.1021/nn4002825
PARK Y S, BAE W K, PADILHA L A, et al. Effect of the core/shell interface on auger recombination evaluated by single-quantum-dot spectroscopy [J]. Nano Lett., 2014, 14(2): 396-402. doi: 10.1021/nl403289whttp://dx.doi.org/10.1021/nl403289w
KHOLMICHEVA N, BUDKINA D S, CASSIDY J, et al. Sustained biexciton populations in nanoshell quantum dots [J]. ACS Photonics, 2019, 6(4): 1041-1050. doi: 10.1021/acsphotonics.9b00068http://dx.doi.org/10.1021/acsphotonics.9b00068
CIHAN A F, KELESTEMUR Y, GUZELTURK B, et al. Attractive versus repulsive excitonic interactions of colloidal quantum dots control blue- to red-shifting (and non-shifting) amplified spontaneous emission [J]. J. Phys. Chem. Lett., 2013, 4(23): 4146-4152. doi: 10.1021/jz402211mhttp://dx.doi.org/10.1021/jz402211m
SHULENBERGER K E, BISCHOF T S, CARAM J R, et al. Multiexciton lifetimes reveal triexciton emission pathway in CdSe nanocrystals [J]. Nano Lett., 2018, 18(8): 5153-5158. doi: 10.1021/acs.nanolett.8b02080http://dx.doi.org/10.1021/acs.nanolett.8b02080
ACHERMANN M, HOLLINGSWORTH J A, KLIMOV V I. Multiexcitons confined within a sub-excitonic volume: spectroscopic and dynamical signatures of neutral and charged biexcitons in ultrasmall semiconductor nanocrystals [J]. Phys. Rev. B, 2003, 68(24): 245302-1-5. doi: 10.1103/physrevb.68.245302http://dx.doi.org/10.1103/physrevb.68.245302
0
Views
261
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution