浏览全部资源
扫码关注微信
1.江苏大学 材料科学与工程学院, 江苏 镇江 212013
2.中国科学院上海硅酸盐究所 透明陶瓷研究中心, 上海 201899
3.中国科学院大学 材料科学与光电工程中心, 北京 100049
Published:05 June 2023,
Received:31 December 2022,
Revised:30 January 2023,
移动端阅览
黄新友,王雁斌,程梓秋等.高亮度固态照明用LuYAG∶Ce荧光陶瓷[J].发光学报,2023,44(06):964-974.
HUANG Xinyou,WANG Yanbin,CHENG Ziqiu,et al.LuYAG∶Ce Transparent Ceramic Phosphors for High-brightness Solid-state Lighting Application[J].Chinese Journal of Luminescence,2023,44(06):964-974.
黄新友,王雁斌,程梓秋等.高亮度固态照明用LuYAG∶Ce荧光陶瓷[J].发光学报,2023,44(06):964-974. DOI: 10.37188/CJL.20220435.
HUANG Xinyou,WANG Yanbin,CHENG Ziqiu,et al.LuYAG∶Ce Transparent Ceramic Phosphors for High-brightness Solid-state Lighting Application[J].Chinese Journal of Luminescence,2023,44(06):964-974. DOI: 10.37188/CJL.20220435.
实现高发光效率、高亮度和良好的热稳定性是固态照明的迫切要求。因此,用于高功率发光二极管或激光二极管(LED/LD)的高性能荧光转换材料具有重要的研究意义。在这项工作中, 通过将Lu
3+
离子引入YAG∶Ce荧光陶瓷中方法作为有效策略来改善YAG∶Ce荧光材料的发光性能。采用固相反应和真空烧结法制备了不同Lu
3+
含量的(Lu,Y)
3
Al
5
O
12
∶Ce荧光陶瓷(LuYAG∶Ce荧光陶瓷)。随着Lu
3+
含量的增加,LuYAG∶Ce荧光陶瓷中的Y
3+
位点被Lu
3+
位点取代,Ce
3+
的发射峰呈现从573 nm到563 nm的蓝移现象。当Lu
3+
含量为60%时,通过将LuYAG∶Ce荧光陶瓷与蓝光LED组合,其发光强度达到最大值,流明效率达到114 lm∙W
-1
。使用450 nm激光源与LuYAG∶Ce荧光陶瓷构建了透射模式下的激光驱动照明装置。随着功率密度从2.2 W·mm
-2
增加到39 W·mm
-2
,Lu
3+
含量为60%的荧光陶瓷光通量从128 lm增加到1 874 lm,且没有发光饱和的迹象,最佳发光效率达到128 lm·W
-1
。因此,LuYAG∶Ce荧光陶瓷有望成为高功率LED/LD照明的潜在荧光转换材料。
Achieving high luminous efficiency, high brightness and good thermal stability is an urgent requirement for solid-state lighting. Therefore, the high-performance color converters for high-power light-emitting diodes or laser diodes (LEDs/LDs) are significant to be explored. In this work, an effective strategy to improve the luminescent properties of YAG∶Ce color converters through method of component regulation was realized in YAG∶Ce transparent ceramic phosphors(TCPs) by incorporating Lu
3+
ions. We prepared (Lu,Y)
3
Al
5
O
12
∶Ce TCPs(LuYAG∶Ce TCPs) with different Lu
3+
contents by the solid-state reaction and vacuum sintering method. With the increase of Lu
3+
content, the Y
3+
sites in LuYAG∶Ce TCPs were substituted by Lu
3+
sites, and the emission peaks of Ce
3+
were blue-shifted from 573 nm to 563 nm. When the Lu
3+
content was 60%, the emission intensity reached the maximum value and the luminous efficiency reached 114 lm∙W
-1
by combining the LuYAG∶Ce TCPs with a blue LED. A 450 nm laser source was used to construct a laser-driven lighting device in a transmission mode. As the power density increased from 2.2 W·mm
-2
to 39 W·mm
-2
, the luminous flux of the TCP with 60% Lu
3+
substitution increased from 128 lm to 1 874 lm with no signs of luminescence saturation and the optimum luminous efficiency reached 128 lm·W
-1
. Thus, the LuYAG∶Ce TCPs are expected to be potential color conversion materials for high-power LEDs/LDs lighting.
(Lu,Y)3Al5O12∶Ce荧光陶瓷固态照明荧光转换材料高亮度
(Lu,Y)3Al5O12∶Ce transparent ceramic phosphors(TCPs)solid-state lightingcolor conversion materialshigh-brightness
CI H N, CHANG H L, WANG R Y, et al. Enhancement of heat dissipation in ultraviolet light-emitting diodes by a vertically oriented graphene nanowall buffer layer [J]. Adv. Mater., 2019, 31(29): 1901624-1-8. doi: 10.1002/adma.201901624http://dx.doi.org/10.1002/adma.201901624
LING J R, ZHOU Y F, XU W T, et al. Red-emitting YAG∶Ce, Mn transparent ceramics for warm WLEDs application [J]. J. Adv. Ceram., 2020, 9(1): 45-54. doi: 10.1007/s40145-019-0346-0http://dx.doi.org/10.1007/s40145-019-0346-0
TANG Y, LIU B, YAN N, et al. Perovskite quantum dot-coated YAG∶Ce composites for warm white light-emitting diodes [J]. Opt. Mater., 2022, 127: 112309-1-9. doi: 10.1016/j.optmat.2022.112309http://dx.doi.org/10.1016/j.optmat.2022.112309
彭星淋, 李淑星, 刘泽华, 等. 大功率固态照明用荧光陶瓷研究进展 [J]. 无机材料学报, 2021, 36(8): 807-819. doi: 10.15541/jim20200652http://dx.doi.org/10.15541/jim20200652
PENG X L, LI S X, LIU Z H, et al. Phosphor ceramics for high-power solid-state lighting [J]. J. Inorg. Mater., 2021, 36(8): 807-819. (in Chinese). doi: 10.15541/jim20200652http://dx.doi.org/10.15541/jim20200652
PUST P, SCHMIDT P J, SCHNICK W. A revolution in lighting [J]. Nat. Mater., 2015, 14(5): 454-458. doi: 10.1038/nmat4270http://dx.doi.org/10.1038/nmat4270
ZHANG J F, GU G R, DI X X, et al. Optical characteristics of Ce, Eu∶YAG single crystal grown by Czochralski method [J]. J. Rare Earths, 2019, 37(2): 145-150. doi: 10.1016/j.jre.2018.08.002http://dx.doi.org/10.1016/j.jre.2018.08.002
邵秀晨, 周圣明, 唐燕如, 等. Ce∶YAG荧光陶瓷掺杂Gd对白光LED发光性能的影响 [J]. 无机材料学报, 2018, 33(10): 1119-1123. doi: 10.15541/jim20170616http://dx.doi.org/10.15541/jim20170616
SHAO X C, ZHOU S M, TANG Y R, et al. Luminescence characteristics of Ce∶YAG ceramic phosphors with Gd3+ doping for white light-emitting diodes [J]. J. Inorg. Mater., 2018, 33(10): 1119-1123. (in Chinese). doi: 10.15541/jim20170616http://dx.doi.org/10.15541/jim20170616
XU J, LIU X, LI J. Solid⁃state lighting [M]. IKESUE A. Processing of Ceramics: Breakthroughs in Optical Materials. Hoboken: Wiley, 2021. doi: 10.1002/9781119538806.ch5http://dx.doi.org/10.1002/9781119538806.ch5
ZHANG Y Q, LIU J M, ZHANG Y J, et al. Robust YAG∶Ce single crystal for ultra-high efficiency laser lighting [J]. J. Rare Earths, 2022, 40(5): 717-724. doi: 10.1016/j.jre.2021.03.006http://dx.doi.org/10.1016/j.jre.2021.03.006
ZHAO H Y, YU H Q, XU J, et al. Novel high-thermal-conductivity composite ceramic phosphors for high-brightness laser-driven lighting [J]. J. Mater. Chem. C, 2021, 9(32): 10487-10496. doi: 10.1039/d1tc02202dhttp://dx.doi.org/10.1039/d1tc02202d
ZHAO H Y, LI Z, ZHANG M W, et al. High-performance Al2O3-YAG∶Ce composite ceramic phosphors for miniaturization of high-brightness white light-emitting diodes [J]. Ceram. Int., 2020, 46(1): 653-662. doi: 10.1016/j.ceramint.2019.09.017http://dx.doi.org/10.1016/j.ceramint.2019.09.017
TIAN Y N, CHEN J, YI X Z, et al. A new BaAl2O4-YAG∶Ce composite ceramic phosphor for white LEDs and LDs lighting [J]. J. Eur. Ceram. Soc., 2021, 41(7): 4343-4348. doi: 10.1016/j.jeurceramsoc.2021.02.027http://dx.doi.org/10.1016/j.jeurceramsoc.2021.02.027
LU H, SONG Q S, XU X D, et al. Improving the CRI of Al2O3-YAG∶Ce eutectic for high-power white LEDs applications: energy-transfer and co-luminescence [J]. Opt. Mater., 2021, 121: 111415. doi: 10.1016/j.optmat.2021.111415http://dx.doi.org/10.1016/j.optmat.2021.111415
LIU X, QIAN X L, ZHENG P, et al. Composition and structure design of three-layered composite phosphors for high color rendering chip-on-board light-emitting diode devices [J]. J. Adv. Ceram., 2021, 10(4): 729-740. doi: 10.1007/s40145-021-0467-0http://dx.doi.org/10.1007/s40145-021-0467-0
YAO Q, HU P, SUN P, et al. YAG∶Ce3+ transparent ceramic phosphors brighten the next-generation laser-driven lighting [J]. Adv. Mater., 2020, 32(19): 1907888-1-7. doi: 10.1002/adma.201907888http://dx.doi.org/10.1002/adma.201907888
TIAN Y N, TANG Y R, YI X Z, et al. The analyses of structure and luminescence in (MgyY3-y)(Al5-ySiy)O12 and Y3(MgxAl5-2xSix)O12 ceramic phosphors [J]. J. Alloys Compd., 2020, 813: 152236-1-8. doi: 10.1016/j.jallcom.2019.152236http://dx.doi.org/10.1016/j.jallcom.2019.152236
JIA J J, QIANG Y C, XU J F, et al. A comparison study on the substitution of Y3+-Al3+ by M2+-Si4+(M=Ba, Sr, Ca, Mg) in Y3Al5O12∶Ce3+ phosphor [J]. J. Am. Ceram. Soc., 2020, 103(9): 5111-5119. doi: 10.1111/jace.17204http://dx.doi.org/10.1111/jace.17204
DU A C, DU Q Y, LIU X, et al. Ce∶YAG transparent ceramics enabling high luminous efficacy for high-power LEDs/LDs [J]. J. Inorg. Mater., 2021, 36(8): 883-892.
ZHENG P, LI S X, WEI R, et al. Unique design strategy for laser-driven color converters enabling superhigh-luminance and high-directionality white light [J]. Laser Photonics Rev., 2019, 13(10): 1900147-1-10. doi: 10.1002/lpor.201900147http://dx.doi.org/10.1002/lpor.201900147
MA Y L, ZHANG L, ZHOU T Y, et al. Weak thermal quenching and tunable luminescence in Ce∶Y3(Al, Sc)5O12 transparent ceramics for high power white LEDs/LDs [J]. Chem. Eng. J., 2020, 398: 125486-1-14. doi: 10.1016/j.cej.2020.125486http://dx.doi.org/10.1016/j.cej.2020.125486
MA Y L, ZHANG L, HUANG J, et al. Broadband emission Gd3Sc2Al3O12∶Ce3+ transparent ceramics with a high color rendering index for high-power white LEDs/LDs [J]. Opt. Express, 2021, 29(6): 9474-9493. doi: 10.1364/oe.417464http://dx.doi.org/10.1364/oe.417464
FENG S W, QIN H M, WU G Q, et al. Spectrum regulation of YAG∶Ce transparent ceramics with Pr, Cr doping for white light emitting diodes application [J]. J. Eur. Ceram. Soc., 2017, 37(10): 3403-3409. doi: 10.1016/j.jeurceramsoc.2017.03.061http://dx.doi.org/10.1016/j.jeurceramsoc.2017.03.061
李江, 李万圆, 刘欣, 等. 固态照明/显示用荧光陶瓷研究进展 [J]. 发光学报, 2021, 42(5): 580-604. doi: 10.37188/CJL.20200402http://dx.doi.org/10.37188/CJL.20200402
LI J, LI W Y, LIU X, et al. Research progress on phosphor ceramics for solid-state lighting/display [J]. J. Inorg. Mater., 2021, 42(5): 580-604. (in Chinese). doi: 10.37188/CJL.20200402http://dx.doi.org/10.37188/CJL.20200402
丁慧, 胡盼, 刘永福, 等. LuAG∶Ce3+在激光照明应用中的研究进展 [J]. 发光学报, 2021, 42(10): 1531-1548. doi: 10.37188/cjl.20210110http://dx.doi.org/10.37188/cjl.20210110
DING H, HU P, LIU Y F, et al. Recent progress of LuAG∶Ce3+ for white laser diode lighting application [J]. Chin. J. Lumin., 2021, 42(10): 1531-1548. (in Chinese). doi: 10.37188/cjl.20210110http://dx.doi.org/10.37188/cjl.20210110
LING J R, ZHANG Y, YANG J, et al. A single-structured LuAG∶Ce,Mn phosphor ceramics with high CRI for high-power white LEDs [J]. J. Am. Ceram. Soc., 2022, 105(9): 5738-5750. doi: 10.1111/jace.18531http://dx.doi.org/10.1111/jace.18531
XU J, WANG J, GONG Y X, et al. Investigation of an LuAG∶Ce translucent ceramic synthesized via spark plasma sintering: towards a facile synthetic route, robust thermal performance, and high-power solid state laser lighting [J]. J. Eur. Ceram. Soc., 2018, 38(1): 343-347. doi: 10.1016/j.jeurceramsoc.2017.07.036http://dx.doi.org/10.1016/j.jeurceramsoc.2017.07.036
ZHOU T Y, HOU C, ZHANG L, et al. Efficient spectral regulation in Ce∶Lu3(Al,Cr)5O12 and Ce∶Lu3(Al,Cr)5O12/Ce∶Y3Al5O12 transparent ceramics with high color rendering index for high-power white LEDs/LDs [J]. J. Adv. Ceram., 2021, 10(5): 1107-1118. doi: 10.1007/s40145-021-0496-8http://dx.doi.org/10.1007/s40145-021-0496-8
刘强, 李万圆, 刘欣, 等. 高亮度固态照明用黄绿光发射Ce∶LuAG透明陶瓷 [J]. 发光学报, 2021, 42(10): 1520-1530. doi: 10.37188/cjl.20210116http://dx.doi.org/10.37188/cjl.20210116
LIU Q, LI W Y, LIU X, et al. Green-yellow emission Ce∶LuAG transparent ceramics for high-brightness solid-state lighting [J]. Chin. J. Lumin., 2021, 42(10): 1520-1530. (in Chinese). doi: 10.37188/cjl.20210116http://dx.doi.org/10.37188/cjl.20210116
TANG F, SU Z C, LAO X Z, et al. The key roles of 4f-level splitting and vibronic coupling in the high-efficiency luminescence of Ce3+ ion in LuAG transparent ceramic phosphors [J]. J. Lumin., 2020, 225: 117360. doi: 10.1016/j.jlumin.2020.117360http://dx.doi.org/10.1016/j.jlumin.2020.117360
李金生, 孙旭东, 李晓东, 等. 硬脂酸盐熔融法合成(Y, Lu)AG∶Ce荧光粉及荧光性能研究 [J]. 无机材料学报, 2015, 30(2): 177-182. doi: 10.15541/jim20140254http://dx.doi.org/10.15541/jim20140254
LI J S, SUN X D, LI X D, et al. (Y, Lu)AG∶Ce phosphors synthesized by stearate melting method and their fluorescence properties [J]. J. Inorg. Mater., 2015, 30(2): 177-182. (in Chinese). doi: 10.15541/jim20140254http://dx.doi.org/10.15541/jim20140254
KUMAR S A, SUBALAKSHMI K, KUMAR K A, et al. Microstructure, luminescence, and dielectric properties of microwave-sintered Ce∶LuAG nano-ceramics [J]. Ceram. Int., 2020, 46(17): 27092-27098. doi: 10.1016/j.ceramint.2020.07.186http://dx.doi.org/10.1016/j.ceramint.2020.07.186
CHEN L, CHEN X L, LIU F Y, et al. Charge deformation and orbital hybridization: intrinsic mechanisms on tunable chromaticity of Y3Al5O12∶Ce3+ luminescence by doping Gd3+ for warm white LEDs [J]. Sci. Rep., 2015, 5: 11514-1-17. doi: 10.1038/srep11514http://dx.doi.org/10.1038/srep11514
XU Y R, LI S X, ZHENG P, et al. A search for extra-high brightness laser-driven color converters by investigating thermally-induced luminance saturation [J]. J. Mater. Chem. C, 2019, 7(37): 11449-11456. doi: 10.1039/c9tc03919hhttp://dx.doi.org/10.1039/c9tc03919h
YANG X F, FANG Z Q, KONG W B, et al. Efficient Tm∶LuYAG laser resonantly pumped by an Er∶LuYAG laser [J]. Opt. Eng., 2022, 61(8): 086106. doi: 10.1117/1.oe.61.8.086106http://dx.doi.org/10.1117/1.oe.61.8.086106
LING J R, XU W T, YANG J, et al. The effect of Lu3+ doping upon YAG∶Ce phosphor ceramics for high-power white LEDs [J]. J. Eur. Ceram. Soc., 2021, 41(12): 5967-5976. doi: 10.1016/j.jeurceramsoc.2021.05.005http://dx.doi.org/10.1016/j.jeurceramsoc.2021.05.005
FENG Y G, XIE T F, CHEN X P, et al. Fabrication, microstructure and optical properties of Yb∶LuxY3-xAl5O12 transparent ceramics [J]. Opt. Mater., 2020, 110: 110478. doi: 10.1016/j.optmat.2020.110478http://dx.doi.org/10.1016/j.optmat.2020.110478
LI D Y, XU W, ZHOU D L, et al. Cerium-doped perovskite nanocrystals for extremely high-performance deep-ultraviolet photoelectric detection [J]. Adv. Opt. Marer., 2021, 9(22): 2100423-1-8. doi: 10.1002/adom.202100423http://dx.doi.org/10.1002/adom.202100423
CAO X, SUN S C, LU B, et al. Spectral photoluminescence properties of YAG∶Ce, R (R: Gd3+, Pr3+, Gd3+ and Pr3+) transparent fluorescent thin film prepared by pulse laser deposition [J]. J. Lumin., 2020, 223: 117222-1-9. doi: 10.1016/j.jlumin.2020.117222http://dx.doi.org/10.1016/j.jlumin.2020.117222
DORENBOS P. Relating the energy of the [Xe]5d1 configuration of Ce3+ in inorganic compounds with anion polarizability and cation electronegativity [J]. Phys. Rev. B, 2002, 65(23): 235110-1-1. doi: 10.1103/physrevb.65.235110http://dx.doi.org/10.1103/physrevb.65.235110
SEIJO L, BARANDIARAN Z. Host effects on the optically active 4f and 5d levels of Ce3+ in garnets [J]. Phys. Chem. Chem. Phys., 2013, 15(44): 19221-19231. doi: 10.1039/c3cp53465khttp://dx.doi.org/10.1039/c3cp53465k
LIU Z H, LI S X, HUANG Y H, et al. Composite ceramic with high saturation input powder in solid-state laser lighting: microstructure, properties, and luminous emittances [J]. Ceram. Int., 2018, 44(16): 20232-20238. doi: 10.1016/j.ceramint.2018.08.008http://dx.doi.org/10.1016/j.ceramint.2018.08.008
FANG H L, ZHOU B Y, WANG J C, et al. Y2O3-YAG∶Ce composite phosphor ceramics with enhanced light extraction efficiency for solid-state laser lighting [J]. J. Mater. Chem. C, 2022, 10(42): 16147-16156. doi: 10.1039/d2tc03606ahttp://dx.doi.org/10.1039/d2tc03606a
0
Views
340
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution