浏览全部资源
扫码关注微信
西华大学 理学院, 四川 成都 610039
Published:05 April 2023,
Received:29 December 2022,
Revised:09 January 2023,
移动端阅览
刘小春,李海蓉,唐会等.近红外二区聚集诱导发光材料在手术导航上的应用[J].发光学报,2023,44(04):717-728.
LIU Xiaochun,LI Hairong,TANG Hui,et al.Application of NIR-Ⅱ Aggregation Induced Emission Materials in Surgical Navigation[J].Chinese Journal of Luminescence,2023,44(04):717-728.
刘小春,李海蓉,唐会等.近红外二区聚集诱导发光材料在手术导航上的应用[J].发光学报,2023,44(04):717-728. DOI: 10.37188/CJL.20220432.
LIU Xiaochun,LI Hairong,TANG Hui,et al.Application of NIR-Ⅱ Aggregation Induced Emission Materials in Surgical Navigation[J].Chinese Journal of Luminescence,2023,44(04):717-728. DOI: 10.37188/CJL.20220432.
临床手术仍然是治疗疾病的主要办法之一,而目前外科手术中医生难以通过肉眼观察、超声等方法确定肿瘤边界、残余病灶以及微小转移病灶,这些传统方法在很大程度上可能会造成癌症术后复发。近红外二区聚集诱导发光(NIR⁃Ⅱ AIE)材料作为荧光手术导航试剂,其快速发展为解决这个问题提供了新的技术支持。本文基于NIR⁃Ⅱ AIE分子的结构设计,通过分析其结构,依据NIR⁃Ⅱ AIE荧光在手术导航中的研究进展,分别就NIR⁃Ⅱ AIE材料在肿瘤切除手术、检测切除淋巴结手术以及在其他组织中的应用进行详细分析,讨论了目前存在的一些问题,并对NIR⁃Ⅱ AIE材料手术导航应用的未来发展进行了展望。
Clinical surgery is one of the main methods to treat diseases. At present, visual observation and ultrasonic technology are commonly used by surgeons to determine tumor boundaries, residual lesions and micrometastasis lesions, which probably cause cancer recurrence to a large extent. The rapid development of the second near-infrared (NIR-Ⅱ) aggregation-induced emission (AIE) materials as fluorescent surgery navigation reagents provides new avenue to solve the problem. In this review, structural design of NIR-Ⅱ AIE materials in surgical navigation is first summarized. Then the applications of NIR-Ⅱ AIE material in tumor resection surgery, in detection of lymph node resection surgery, and in other tissues are discussed. At last, the future development of NIR-Ⅱ AIE materials in surgical navigation is prospected.
近红外二区聚集诱导发光手术导航供体受体
the second near-infraredaggregation-induced emissionsurgical navigationdonoracceptor
YANG R Q, LOU K L, WANG P Y, et al. Surgical navigation for malignancies guided by near-Infrared-Ⅱ fluorescence imaging [J]. Small Methods, 2021, 5(3): 2001066-1-19. doi: 10.1002/smtd.202001066http://dx.doi.org/10.1002/smtd.202001066
ITO R, KAMIYA M, URANO Y. Molecular probes for fluorescence image-guided cancer surgery [J]. Curr. Opin. Chem. Biol., 2022, 67: 102112-1-9. doi: 10.1016/j.cbpa.2021.102112http://dx.doi.org/10.1016/j.cbpa.2021.102112
VAHRMEIJER A L, HUTTEMAN M, VAN DER VORST J R, et al. Image-guided cancer surgery using near-infrared fluorescence [J]. Nat. Rev. Clin. Oncol., 2013, 10(9): 507-518. doi: 10.1038/nrclinonc.2013.123http://dx.doi.org/10.1038/nrclinonc.2013.123
VAN DAM G M, THEMELIS G, CRANE L M A, et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results [J]. Nat. Med., 2011, 17(10): 1315-1319. doi: 10.1038/nm.2472http://dx.doi.org/10.1038/nm.2472
TUMMERS W S, WARRAM J M, TIPIRNENI K E, et al. Regulatory aspects of optical methods and exogenous targets for cancer detection [J]. Cancer Res., 2017, 77(9): 2197-2206. doi: 10.1158/0008-5472.can-16-3217http://dx.doi.org/10.1158/0008-5472.can-16-3217
ZHONG D N, CHEN W Y, XIA Z M, et al. Aggregation-induced emission luminogens for image-guided surgery in non-human primates [J]. Nat. Commun., 2021, 12(1): 6485-1-13. doi: 10.1038/s41467-021-26417-2http://dx.doi.org/10.1038/s41467-021-26417-2
徐云雪, 刘仁发, 徐坤, 等. 手术导航用荧光探针 [J]. 化学进展, 2021, 33(1): 52-65. doi: 10.7536/PC201014http://dx.doi.org/10.7536/PC201014
XUN Y X, LIU R F, XU K, et al. Fluorescent probes for intraoperative navigation [J]. Prog. Chem., 2021, 33(1): 52-65. (in Chinese). doi: 10.7536/PC201014http://dx.doi.org/10.7536/PC201014
KOKADO K, SADA K. Consideration of molecular structure in the excited state to design new luminogens with aggregation-induced emission [J]. Angew. Chem. Int. Ed., 2019, 58(26): 8632-8639. doi: 10.1002/anie.201814462http://dx.doi.org/10.1002/anie.201814462
LUO J D, XIE Z L, LAM J W Y, et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole [J]. Chem. Commun., 2001, (18): 1740-1741. doi: 10.1039/b105159hhttp://dx.doi.org/10.1039/b105159h
GU X G, KWOK R T K, LAM J W Y, et al. AIEgens for biological process monitoring and disease theranostics [J]. Biomaterials, 2017, 146: 115-135. doi: 10.1016/j.biomaterials.2017.09.004http://dx.doi.org/10.1016/j.biomaterials.2017.09.004
ZHANG Z J, XU W H, KANG M M, et al. An all-round athlete on the track of phototheranostics: subtly regulating the balance between radiative and nonradiative decays for multimodal imaging-guided synergistic therapy [J]. Adv. Mater., 2020, 32(36): 2003210-1-11. doi: 10.1002/adma.202003210http://dx.doi.org/10.1002/adma.202003210
YANG Y, WANG L, CAO H Q, et al. Photodynamic therapy with liposomes encapsulating photosensitizers with aggregation-induced emission [J]. Nano Lett., 2019, 19(3): 1821-1826. doi: 10.1021/acs.nanolett.8b04875http://dx.doi.org/10.1021/acs.nanolett.8b04875
WANG J J, ZHU X J, ZHANG J, et al. AIE-based theranostic agent: in situ tracking mitophagy prior to late apoptosis to guide the photodynamic therapy [J]. ACS Appl. Mater. Interfaces, 2020, 12(2): 1988-1996. doi: 10.1021/acsami.9b15577http://dx.doi.org/10.1021/acsami.9b15577
张志军, 康苗苗, 王媛玮, 等. 聚集诱导发光材料在光学诊疗中的研究进展 [J]. 发光学报, 2021, 42(3): 361-378. doi: 10.37188/CJL.20210029http://dx.doi.org/10.37188/CJL.20210029
ZHANG Z J, KANG M M, WANG Y W, et al. Recent advances of aggregation-induced emission materials in phototheranostics [J]. Chin. J. Lumin., 2021, 42(3): 361-378. (in Chinese). doi: 10.37188/CJL.20210029http://dx.doi.org/10.37188/CJL.20210029
杨学琴, 来守军, 丁媛媛, 等. 四苯乙烯类聚集诱导发光探针在生物分子检测领域的应用 [J]. 发光学报, 2022, 43(6): 961-985. doi: 10.37188/cjl.20220080http://dx.doi.org/10.37188/cjl.20220080
YANG X Q, LAI S J, DING Y Y, et al. Application of tetraphenylene aggregation-induced emission probes in field of biomolecular detection [J]. Chin. J. Lumin., 2022, 43(6): 961-985. (in Chinese). doi: 10.37188/cjl.20220080http://dx.doi.org/10.37188/cjl.20220080
XU Y L, ZHANG Y, LI J, et al. NIR-Ⅱ emissive multifunctional AIEgen with single laser-activated synergistic photodynamic/photothermal therapy of cancers and pathogens [J]. Biomaterials, 2020, 259: 120315-1-8. doi: 10.1016/j.biomaterials.2020.120315http://dx.doi.org/10.1016/j.biomaterials.2020.120315
LI Y X, HU D H, SHENG Z H, et al. Self-assembled AIEgen nanoparticles for multiscale NIR-Ⅱ vascular imaging [J]. Biomaterials, 2021, 264: 120365-1-10. doi: 10.1016/j.biomaterials.2020.120365http://dx.doi.org/10.1016/j.biomaterials.2020.120365
SHENG Z H, LI Y X, HU D H, et al. Centimeter-deep NIR-Ⅱ fluorescence imaging with nontoxic AIE probes in nonhuman primates [J]. Research, 2020, 2020: 4074593-1-14. doi: 10.34133/2020/4074593http://dx.doi.org/10.34133/2020/4074593
ZHU S J, TIAN R, ANTARIS A L, et al. Near-infrared-Ⅱ molecular dyes for cancer imaging and surgery [J]. Adv. Mater, 2019, 31(24): 1900321-1-25.
GUO B, FENG Z, HU D H, et al. Precise deciphering of brain vasculatures and microscopic tumors with dual NIR-Ⅱ fluorescence and photoacoustic imaging [J]. Adv. Mater, 2019, 31(30): 1902504-1-8. doi: 10.1002/adma.201902504http://dx.doi.org/10.1002/adma.201902504
REN T B, WANG Z Y, XIANG Z, et al. A general strategy for development of activatable NIR-Ⅱ fluorescent probes for in vivo high-contrast bioimaging [J]. Angew. Chem. Int. Ed., 2021, 60(2): 800-805. doi: 10.1002/anie.202009986http://dx.doi.org/10.1002/anie.202009986
JIANG R M, DAI J, DONG X Q, et al. Improving image-guided surgical and immunological tumor treatment efficacy by photothermal and photodynamic therapies based on a multifunctional NIR AIEgen [J]. Adv. Mater., 2021, 33(22): 2101158-1-13. doi: 10.1002/adma.202101158http://dx.doi.org/10.1002/adma.202101158
JIA R Z, XU H, WANG C L, et al. NIR-Ⅱ emissive AIEgen photosensitizers enable ultrasensitive imaging-guided surgery and phototherapy to fully inhibit orthotopic hepatic tumors [J]. J. Nanobiotechnol., 2021, 19(1): 419-1-12. doi: 10.1186/s12951-021-01168-whttp://dx.doi.org/10.1186/s12951-021-01168-w
LI Y Y, ZHANG J Q, LIU S J, et al. Enlarging the reservoir: high absorption coefficient dyes enable synergetic near infrared-Ⅱ fluorescence imaging and near infrared-Ⅰ photothermal therapy [J]. Adv. Funct. Mater., 2021, 31(29): 2102213-1-10. doi: 10.1002/adfm.202102213http://dx.doi.org/10.1002/adfm.202102213
MIN X H, ZHANG J, LI R H, et al. Encapsulation of NIR-Ⅱ AIEgens in virus-like particles for bioimaging [J]. ACS Appl. Mater. Interfaces, 2021, 13(15): 17372-17379. doi: 10.1021/acsami.1c02691http://dx.doi.org/10.1021/acsami.1c02691
RAMIREZ-SUAREZ K I, TIERRADENTRO-GARCIA L O, SMITH C L, et al. Dynamic contrast-enhanced magnetic resonance lymphangiography [J]. Pediatr. Radiol., 2022, 52(2): 285-294. doi: 10.1007/s00247-021-05051-6http://dx.doi.org/10.1007/s00247-021-05051-6
XU W H, WANG D, TANG B Z. NIR-Ⅱ AIEgens: a win-win integration towards bioapplications [J]. Angew. Chem. Int. Ed., 2021, 60(14): 7476-7487. doi: 10.1002/anie.202005899http://dx.doi.org/10.1002/anie.202005899
LIU S, LI Y, ZHANG J, et al. A two-in-one Janus NIR-ⅡAIEgen with balanced absorption and emission for image-guided precision surgery [J]. Mater. Today Bio, 2021, 10: 100087-1-10. doi: 10.1016/j.mtbio.2020.100087http://dx.doi.org/10.1016/j.mtbio.2020.100087
QU Q J, ZHANG Z Y, GUO X Y, et al. Novel multifunctional NIR-Ⅱ aggregation-induced emission nanoparticles-assisted intraoperative identification and elimination of residual tumor [J]. J. Nanobiotechnol., 2022, 20(1): 143-1-15. doi: 10.1186/s12951-022-01325-9http://dx.doi.org/10.1186/s12951-022-01325-9
FAN X X, XIA Q M, LIU S J, et al. NIR-Ⅱ and visible fluorescence hybrid imaging-guided surgery via aggregation-induced emission fluorophores cocktails [J]. Mater. Today Bio, 2022, 16: 100399-1-13. doi: 10.1016/j.mtbio.2022.100399http://dx.doi.org/10.1016/j.mtbio.2022.100399
ZHENG Z, ZHANG H Q, CAO H, et al. Intra- and intermolecular synergistic engineering of aggregation-induced emission luminogens to boost three-photon absorption for through-skull brain imaging [J]. ACS Nano, 2022, 16(4): 6444-6454. doi: 10.1021/acsnano.2c00672http://dx.doi.org/10.1021/acsnano.2c00672
LIU S J, CHEN R Z, ZHANG J Q, et al. Incorporation of planar blocks into twisted skeletons: boosting brightness of fluorophores for bioimaging beyond 1 500 nanometer [J]. ACS Nano, 2020, 14(10): 14228-14239. doi: 10.1021/acsnano.0c07527http://dx.doi.org/10.1021/acsnano.0c07527
LIU S J, CHEN C, LI Y Y, et al. Constitutional isomerization enables bright NIR-Ⅱ AIEgen for brain-inflammation imaging [J]. Adv. Funct. Mater., 2020, 30(7): 1908125-1-10. doi: 10.1002/adfm.201908125http://dx.doi.org/10.1002/adfm.201908125
DU J, LIU S J, ZHANG P F, et al. Highly stable and bright NIR-Ⅱ AIE dots for intraoperative identification of ureter [J]. ACS Appl. Mater. Interfaces, 2020, 12(7): 8040-8049. doi: 10.1021/acsami.9b22957http://dx.doi.org/10.1021/acsami.9b22957
ALIFU N, ZEBIBULA A, QI J, et al. Single-molecular near-infrared-Ⅱ theranostic systems: ultrastable aggregation-induced emission nanoparticles for long-term tracing and efficient photothermal therapy [J]. ACS Nano, 2018, 12(11): 11282-11293. doi: 10.1021/acsnano.8b05937http://dx.doi.org/10.1021/acsnano.8b05937
FAN X X, XIA Q M, ZHANG Y Y, et al. Aggregation-induced emission(AIE) nanoparticles-assisted NIR-Ⅱ fluorescence imaging-guided diagnosis and surgery for inflammatory bowel disease(IBD) [J]. Adv. Healthc. Mater., 2021, 10(24): 2101043-1-12. doi: 10.1002/adhm.202101043http://dx.doi.org/10.1002/adhm.202101043
0
Views
376
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution