浏览全部资源
扫码关注微信
1.宁波大学 高等技术研究院, 浙江 宁波 315211
2.宁波海洋研究院, 浙江 宁波 315832
3.浙江师范大学 物理系, 浙江 金华 321004
4.井冈山大学 机电工程学院, 江西 吉安 343009
Published:05 May 2023,
Received:26 December 2022,
Revised:12 January 2023,
移动端阅览
于曼,刘雪云,郭海等.α/β⁃Zn2SiO4∶Mn2+双相玻璃陶瓷制备与宽带可调控发光[J].发光学报,2023,44(05):852-862.
YU Man,LIU Xueyun,GUO Hai,et al.Preparation and Tunable Broadband Emission of α/β-Zn2SiO4∶Mn2+ Dual-phase Nanocrystals Embedded in Glass Ceramics[J].Chinese Journal of Luminescence,2023,44(05):852-862.
于曼,刘雪云,郭海等.α/β⁃Zn2SiO4∶Mn2+双相玻璃陶瓷制备与宽带可调控发光[J].发光学报,2023,44(05):852-862. DOI: 10.37188/CJL.20220431.
YU Man,LIU Xueyun,GUO Hai,et al.Preparation and Tunable Broadband Emission of α/β-Zn2SiO4∶Mn2+ Dual-phase Nanocrystals Embedded in Glass Ceramics[J].Chinese Journal of Luminescence,2023,44(05):852-862. DOI: 10.37188/CJL.20220431.
含单相纳米晶体的玻璃陶瓷尽管能够为激活离子提供良好的发光环境,然而因其晶体场环境较为单一,在构造多色、多模式以及超宽带发光的光功能材料时受到了一定限制。基于此,研发双相纳米晶复合玻璃陶瓷对拓展该类功能材料的应用领域具有重要的研究意义。本文采用熔融淬火法在硅铝酸盐玻璃体系中成功析出了α
⁃
Zn
2
SiO
4
和β
⁃
Zn
2
SiO
4
纳米晶,通过调控Al
2
O
3
含量、热处理温度可以实现β
⁃
Zn
2
SiO
4
单相纳米晶向α/β
⁃
Zn
2
SiO
4
双相纳米晶共存的转变。进一步引入Mn
2+
, 在285 nm激发下,制得的玻璃陶瓷呈现可调谐的单带 (~580 nm)和连续双模(~530/580 nm)发射,并且双宽带发光强度随Mn
2+
浓度和热处理温度而可调变化,对应样品的发光颜色逐渐由橘黄色变为黄绿色。结合纳米晶体结构和光谱数据对Mn
2+
可调控发光机理进行了解释。本研究结果对过渡金属离子掺杂双相玻璃陶瓷制备与可调宽带发光的基础研究及应用探索具有一定参考价值。
Glass ceramics embedded with only one kind of nanocrystals are usually cannot meet the requirements of multi-color, multi-mode and ultra-wideband luminescence applications due to the limitation of single crystal field environment. It is thus of significance to develop dual-phase nanocrystal-based glass ceramics for expanding the application field of this kind of functional materials. In this paper, an aluminosilicate glass ceramic containing α-Zn
2
SiO
4
and β-Zn
2
SiO
4
nanocrystals was successfully prepared by a melt quenching technique. The transition from single-phase to dual-phase nanocrystals can be achieved by varying Al
2
O
3
content and heat treatment temperature. The obtained glass ceramics exhibit tunable single-band (~580 nm) and continuous dual-mode (~530/580 nm) emission under the excitation of 285 nm, and the luminescence intensity varies with the concentration of Mn
2+
and heat treatment temperature, resulting in a tunable emissive color from orange to yellowish. The related luminescence mechanism was explained by combining with the structure of nanocrystals and spectral data. This research may be of reference value for the preparation of dual-phase glass ceramics and exploration of broadband light source.
微晶玻璃双相纳米晶锰离子宽带发光
glass-ceramicsdual-phase nanocrystalsMn2+ ionsbroadband luminescence
LIORDÉS A, GARCIA G, GAZQUEZ J, et al. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites [J]. Nature, 2013, 500(7462): 323-326. doi: 10.1038/nature12398http://dx.doi.org/10.1038/nature12398
YU Y Z, FANG Z J, MA C S, et al. Mesoscale engineering of photonic glass for tunable luminescence [J]. NPG Asia Mater., 2016, 8(10): e318-1-10. doi: 10.1038/am.2016.156http://dx.doi.org/10.1038/am.2016.156
ZHU B, QIAN B, LIU Y, et al. A volumetric full-color display realized by frequency upconversion of a transparent composite incorporating dispersed nonlinear optical crystals [J]. NPG Asia Mater., 2017, 9(6): e394-1-10. doi: 10.1038/am.2017.89http://dx.doi.org/10.1038/am.2017.89
高志刚, 肖静, 任晶. 掺杂双相纳米晶复合光子玻璃的研究进展 [J]. 激光与光电子学进展, 2021, 58(15): 1516016-1-16. doi: 10.3788/lop202158.1516016http://dx.doi.org/10.3788/lop202158.1516016
GAO Z G, XIAO J, REN J. Progress in luminescent ions-doped photonic glasses containing dual-phase nanocrystals [J]. Laser. Optoelectron. Progr., 2021, 58(15): 1516016-1-16. (in Chinese). doi: 10.3788/lop202158.1516016http://dx.doi.org/10.3788/lop202158.1516016
CORMIER L, ZHOU S. Transition metals as optically active dopants in glass-ceramics [J]. Appl. Phys. Lett., 2020, 116(26): 260503-1-21. doi: 10.1063/5.0014618http://dx.doi.org/10.1063/5.0014618
LIN C G, LIU C, ZHAO Z Y, et al. Broadband near-IR emission from cubic perovskite KZnF3∶Ni2+ nanocrystals embedded glass-ceramics [J]. Opt. Lett., 2015, 40(22): 5263-5266. doi: 10.1364/ol.40.005263http://dx.doi.org/10.1364/ol.40.005263
ZHANG Y D, SUN B C, YANG L, et al. Multi-phase induced ultra-broad 1 100-2 100 nm emission of Ni2+ in nano-glass composites containing hybrid ZnGa2O4 and ZnF2 nanocrystals [J]. J. Eur. Ceram. Soc., 2020, 40(5): 2229-2233. doi: 10.1016/j.jeurceramsoc.2020.01.019http://dx.doi.org/10.1016/j.jeurceramsoc.2020.01.019
CHEN G, GUO X, QIN S K, et al. Broadband near-infrared emission in Cr3+-doped MgO-Al2O3-SiO2 dual-phase glass-ceramics for near-infrared spectroscopy applications [J]. J. Non⁃Cryst. Solids, 2022, 586: 121560-1-9. doi: 10.1016/j.jnoncrysol.2022.121560http://dx.doi.org/10.1016/j.jnoncrysol.2022.121560
王红玉, 刘小峰. 3d过渡金属离子激活的宽带近红外发光材料研究进展 [J]. 硅酸盐学报, 2022, 50(9): 2567-2578.
WANG H Y, LIU X F. Recent developments on broadband near-infrared luminescent materials activated by 3d transition metal ions [J]. J. Chin. Ceram. Soc., 2022, 50(9): 2567-2578. (in Chinese)
屈冰雁, 王雷. 3d过渡金属离子在无机化合物中的基态能级及变价趋势理论探索 [J]. 发光学报, 2022, 43(12): 1815-1822. doi: 10.37188/CJL.20220222http://dx.doi.org/10.37188/CJL.20220222
QU B Y, WANG L. Theoretical research on the ground state of 3d transition metal ions in inorganic compounds and their charge transition tendencies [J]. Chin. J. Lumin., 2022, 43(12): 1815-1822. (in Chinese). doi: 10.37188/CJL.20220222http://dx.doi.org/10.37188/CJL.20220222
SONG E H, JIANG X X, ZHOU Y Y, et al. Heavy Mn2+ doped MgAl2O4 phosphor for high-efficient near-infrared light-emitting diode and the night-vision application [J]. Adv. Opt. Mater., 2019, 7(24): 1901105-1-9. doi: 10.1002/adom.201901105http://dx.doi.org/10.1002/adom.201901105
朱兴路, 宋恩海, 邹炳锁, 等. 磁耦合Mn2+-Mn2+离子对发光行为研究进展 [J]. 发光学报, 2022, 43(4) 482-500.
ZHU X L, SONG E H, ZOU B S, et al. Progress of luminescent behaviors of Mn2+-Mn2+ pair with magnetic coupling interaction [J]. Chin. J. Lumin., 2022, 43(4) 482-500. (in Chinese)
WANG Z, HUANG F F, YANG Q H, et al. Efficient controllable NIR-MIR luminescence conversion in optical nanostructured silicate glasses [J]. J. Phys. Chem. C, 2019, 123(23): 14662-14668. doi: 10.1021/acs.jpcc.9b02943http://dx.doi.org/10.1021/acs.jpcc.9b02943
YE R G, MA H P, ZHANG C, et al. Luminescence properties and energy transfer mechanism of Ce3+/Mn2+ co-doped transparent glass-ceramics containing β-Zn2SiO4 nano-crystals for white light emission [J]. J. Alloys Compd., 2013, 566: 73-77. doi: 10.1016/j.jallcom.2013.03.020http://dx.doi.org/10.1016/j.jallcom.2013.03.020
YE R G, JIA G H, DENG D G, et al. Controllable synthesis and tunable colors of α- and β-Zn2SiO4∶Mn2+ nanocrystals for UV and blue chip excited white LEDs [J]. J. Phys. Chem. C, 2011, 115(21): 10851-10858. doi: 10.1021/jp2023633http://dx.doi.org/10.1021/jp2023633
HU T, LIN H, XU J, et al. Color-tunable persistent luminescence in oxyfluoride glass and glass ceramic containing Mn2+:α-Zn2SiO4 nanocrystals [J]. J. Mater. Chem. C, 2017, 5(6): 1479-1487. doi: 10.1039/c6tc05340hhttp://dx.doi.org/10.1039/c6tc05340h
LIN C G, WANG J S, ZHAO X H, et al. Competitive crystallization of β-Zn2SiO4 and ZnO in an aluminosilicate glass [J]. Ceram. Int., 2018, 44(6): 7209-7213. doi: 10.1016/j.ceramint.2018.01.168http://dx.doi.org/10.1016/j.ceramint.2018.01.168
JIANG Z H, ZHANG Q Y. The structure of glass: a phase equilibrium diagram approach [J]. Prog. Mater. Sci., 2014, 61: 144-215. doi: 10.1016/j.pmatsci.2013.12.001http://dx.doi.org/10.1016/j.pmatsci.2013.12.001
ZHANG W T, HE F, XIAO Y L, et al. Structure, crystallization mechanism, and properties of glass ceramics from molten blast furnace slag with different B2O3/Al2O3 [J]. Mater. Chem. Phys., 2020, 243: 122664-1-7. doi: 10.1016/j.matchemphys.2020.122664http://dx.doi.org/10.1016/j.matchemphys.2020.122664
徐利华, 刘亮光. CaO-BaO-Al2O3-B2O3-SiO2封接玻璃中Si/Al比对玻璃的热稳定性的影响 [J]. 中国陶瓷, 2021, 57(12): 39-44.
XU L H, LIU L G. The influence of Si/Al ratio in CaO-BaO-Al2O3-B2O3-SiO2 sealing glass on the thermal stability of glass [J]. China. Ceram., 2021, 57(12): 39-44. (in Chinese)
龚伟, 钟良, 刘传慧, 等. 热处理制度对LZAS系微晶玻璃析晶行为的影响 [J]. 人工晶体学报, 2015, 44(11): 3140-3146. doi: 10.3969/j.issn.1000-985X.2015.11.038http://dx.doi.org/10.3969/j.issn.1000-985X.2015.11.038
GONG W, ZHONG L, LIU C H, et al. Effects of heat treatment schedule on crystallization behaviors of LZAS system glass-ceramics [J]. J. Synth. Cryst., 2015, 44(11): 3140-3146. (in Chinese). doi: 10.3969/j.issn.1000-985X.2015.11.038http://dx.doi.org/10.3969/j.issn.1000-985X.2015.11.038
WANG C, WANG J R, JIANG J, et al. Redesign and manually control the commercial plasma green Zn2SiO4∶Mn2+ phosphor with high quantum efficiency for white light emitting diodes [J]. J. Alloys Compd., 2020, 814: 152340-1-8. doi: 10.1016/j.jallcom.2019.152340http://dx.doi.org/10.1016/j.jallcom.2019.152340
KANG T, KANG H, PARK S, et al. Critical synthesis parameters of β-phase Zn2SiO4∶Mn2+ phosphor and its metastability [J]. Mater. Today Commun., 2021, 26: 101798-1-6. doi: 10.1016/j.mtcomm.2020.101798http://dx.doi.org/10.1016/j.mtcomm.2020.101798
LOIKO P, DYMSHITS O, VOLOKITINA A, et al. Structural transformations and optical properties of glass-ceramics based on ZnO, β- and α-Zn2SiO4 nanocrystals and doped with Er2O3 and Yb2O3: Part I. The role of heat-treatment [J]. J. Lumin., 2018, 202: 47-56. doi: 10.1016/j.jlumin.2018.05.010http://dx.doi.org/10.1016/j.jlumin.2018.05.010
LI X Y, YU Y L, GUAN X F, et al. Dual-emitting Tm3+/Mn2+ co-doped glass ceramic for wide-range optical thermometer [J]. J. Alloys Compd., 2020, 836: 155507-1-9. doi: 10.1016/j.jallcom.2020.155507http://dx.doi.org/10.1016/j.jallcom.2020.155507
陈畅, 张琦, 王大校, 等. 连续可调宽光谱荧光玻璃的制备及性能 [J]. 发光学报, 2021, 42(9): 1412-1418. doi: 10.37188/CJL.20210136http://dx.doi.org/10.37188/CJL.20210136
CHEN C, ZHANG Q, WANG D X, et al. Preparation and performance of continuous tunable broadband fluorescent glass [J]. Chin. J. Lumin., 2021, 42(9): 1412-1418. (in Chinese). doi: 10.37188/CJL.20210136http://dx.doi.org/10.37188/CJL.20210136
GURIA A K, DUTTA S K, ADHIKARI S D, et al. Doping Mn2+ in lead halide perovskite nanocrystals: successes and challenges [J]. ACS Energy Lett., 2017, 2(5): 1014-1021. doi: 10.1021/acsenergylett.7b00177http://dx.doi.org/10.1021/acsenergylett.7b00177
FEDOROV P P, LUGININA A A, POPOV A I. Transparent oxyfluoride glass ceramics [J]. J. Fluor. Chem., 2015, 172: 22-50. doi: 10.1016/j.jfluchem.2015.01.009http://dx.doi.org/10.1016/j.jfluchem.2015.01.009
LIU X Y, CHENG C M, ZENG N, et al. Tunable broadband upconversion luminescence from Yb3+/Mn2+ co-doped dual-phase glass ceramics [J]. Ceram. Int., 2020, 46(4): 5271-5277. doi: 10.1016/j.ceramint.2019.10.276http://dx.doi.org/10.1016/j.ceramint.2019.10.276
SONG E H, CHEN M H, CHEN Z T, et al. Mn2+-activated dual-wavelength emitting materials toward wearable optical fibre temperature sensor [J]. Nat. Commun., 2022, 13(1): 2166-1-9. doi: 10.1038/s41467-022-29881-6http://dx.doi.org/10.1038/s41467-022-29881-6
林坚, 陈德睢, 沈家辉, 等. 金属硫族簇基半导体中的Mn2+发光 [J]. 发光学报, 2021, 42(7): 953-975. doi: 10.37188/cjl.20210047http://dx.doi.org/10.37188/cjl.20210047
LIN J, CHEN D S, SHEN J H, et al. Luminescence of Mn2+ in metal chalcogenide cluster-based semiconductors [J]. Chin. J. Lumin., 2021, 42(7): 953-975. (in Chinese). doi: 10.37188/cjl.20210047http://dx.doi.org/10.37188/cjl.20210047
WANG X, CHU Y S, YANG Z Y, et al. Broadband multicolor upconversion from Yb3+-Mn2+ codoped fluorosilicate glasses and transparent glass ceramics [J]. Opt. Lett., 2018, 43(20): 5013-5016. doi: 10.1364/ol.43.005013http://dx.doi.org/10.1364/ol.43.005013
YU Y L, LI X Y. Controllable synthesis and tunable luminescence of glass ceramic containing Mn2+∶ZnAl2O4 and Pr3+∶YF3 nano-crystals [J]. Mater. Res. Bull., 2016, 73: 96-101. doi: 10.1016/j.materresbull.2015.08.029http://dx.doi.org/10.1016/j.materresbull.2015.08.029
ROBBINS D J. On predicting the maximum efficiency of phosphor systems excited by ionizing radiation [J]. J. Electrochem. Soc., 1980, 127(12): 2694-2702. doi: 10.1149/1.2129574http://dx.doi.org/10.1149/1.2129574
RAO J L, PURANDAR K. Electronic absorption spectrum of Mn2+ ions doped in diglycine barium chloride monohydrate [J]. Solid State Commun., 1981, 37(12): 983-986. doi: 10.1016/0038-1098(81)91200-xhttp://dx.doi.org/10.1016/0038-1098(81)91200-x
GAO G J, REIBSTEIN S, PENG M Y, et al. Tunable dual-mode photoluminescence from nanocrystalline Eu-doped Li2ZnSiO4 glass ceramic phosphors [J]. J. Mater. Chem., 2011, 21(9): 3156-3161. doi: 10.1039/c0jm03273ehttp://dx.doi.org/10.1039/c0jm03273e
PANG R, LI C Y, SHI L L, et al. A novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7∶Eu2+,Y3+ [J]. J. Phys. Chem. Solids, 2009, 70(2): 303-306. doi: 10.1016/j.jpcs.2008.10.016http://dx.doi.org/10.1016/j.jpcs.2008.10.016
0
Views
311
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution