浏览全部资源
扫码关注微信
1.太原理工大学 新材料界面科学与工程教育部重点实验室, 山西 太原 030024
2.江苏三月科技股份有限公司, 江苏 无锡 214112
Published:05 June 2023,
Received:16 December 2022,
Revised:03 January 2023,
移动端阅览
丁川,姜雪松,许正印等.基于PtOEP分子温度探针对OLED结温的判定及实验研究[J].发光学报,2023,44(06):1069-1076.
DING Chuan,JIANG Xuesong,XU Zhengyin,et al.Determination and Experimental Study of OLED Junction Temperature Based on PtOEP Molecular Temperature Probe[J].Chinese Journal of Luminescence,2023,44(06):1069-1076.
丁川,姜雪松,许正印等.基于PtOEP分子温度探针对OLED结温的判定及实验研究[J].发光学报,2023,44(06):1069-1076. DOI: 10.37188/CJL.20220417.
DING Chuan,JIANG Xuesong,XU Zhengyin,et al.Determination and Experimental Study of OLED Junction Temperature Based on PtOEP Molecular Temperature Probe[J].Chinese Journal of Luminescence,2023,44(06):1069-1076. DOI: 10.37188/CJL.20220417.
使用正性光敏聚酰亚胺(PSPI)和光刻技术制备了一系列不同图案化的有机发光二极管(OLED)器件,以铂八乙基卟啉(PtOEP)作为分子温度探针探究不同图案化OLED所产生的热效应,并进一步研究不同热效应对OLED器件的影响。结果表明,像素尺寸在500 μm以下时,器件工作中产生的热效应与像素尺寸呈正相关,且与线宽和总开口面积无关;而像素尺寸达到500 μm以上时,器件中产生的热效应没有进一步增长。其中5 μm孔径的像素在室温10 mA/cm
2
电流密度下工作时,器件的温度为303.29 K,而相同条件下像素尺寸为 2 000 μm时,器件温度可高达314.65 K;当环境温度升至323.15 K时,器件所产生的热效应呈现相同的趋势。具有不同热效应器件的外量子效率曲线表明,器件温度的升高导致外量子效率降低,其原因是温度升高导致载流子迁移速率加快,但同时也使三线态激子之间及激子与极化子之间的碰撞概率升高,从而加剧激子猝灭,导致效率下降。
The thermal effect of OLED device was studied by PtOEP molecular temperature probe and different patterned OLED substrate, which was prepared with positive photosensitive polyimide (PSPI) and photolithography. The results show when the pixel size is less than 500 μm, the thermal effect is positively correlated with the pixel size, and independent of the line width and total opening area. However, when the pixel size reaches more than 500 μm, the thermal effect does not increase further. When 5 μm pixel works at a current density of 10 mA/cm
2
at room temperature, the temperature of the device is 303.29 K. When the pixel size is 2 000 μm under the same conditions, the device temperature can reach 314.65 K. When the ambient temperature rises to 323.15 K, the thermal effect of the device shows the same trend. The EQE curves of devices with different thermal effects show that the increase of device temperature leads to the decrease of external quantum efficiency. The reason is that the increase of temperature improves carrier migration rate, but also increases the probability of collision between triplet excitons and between excitons and polarons, which leads to the exciton quenching and the decrease of efficiency.
图案化OLEDPtOEP分子温度探针结温
patterned OLEDPtOEPmolecular temperature probejunction temperature
GHOSH A, KHAYRULLIN I, WANG Q, et al. 3.1: Invited paper: OLED micro-displays for VR/AR applications [J]. SID Symp. Dig. Tech. Papers, 2019, 50(S1): 26-27. doi: 10.1002/sdtp.13372http://dx.doi.org/10.1002/sdtp.13372
WEI B, FURUKAWA K, AMAGAI J, et al. A dynamic model for injection and transport of charge carriers in pulsed organic light-emitting diodes [J]. Semicond. Sci. Technol., 2004, 19(5): L56-L59. doi: 10.1088/0268-1242/19/5/l04http://dx.doi.org/10.1088/0268-1242/19/5/l04
YANG L Q, CHEN W, WEI B, et al. Temperature and emitting area dependence of red organic light-emitting diode performance [J]. Phys. Status Solidi A, 2014, 211(7): 1488-1492. doi: 10.1002/pssa.201330437http://dx.doi.org/10.1002/pssa.201330437
倪传勇. 低成本智能手机自主散热仿真与改进方案的研究 [D]. 哈尔滨: 哈尔滨工业大学, 2021.
NI C Y. Simulation Analysis and Improvement of Low⁃cost Cellphone Autonomous Heat Dissipation [D]. Harbin: Harbin Institute of Technology, 2021. (in Chinese)
STURM J C, WILSON W, IODICE H. Thermal effects and scaling in organic light-emitting flat-panel displays [J]. IEEE J. Sel. Top. Quantum Electron., 1998, 4(1): 75-82. doi: 10.1109/2944.669471http://dx.doi.org/10.1109/2944.669471
PAN S H, YU H, XU H F, et al. Simulated and experimental analyses of the thermal dissipation of organic light-emitting diodes [J]. Optik, 2023, 272: 170332-1-8. doi: 10.1016/j.ijleo.2022.170332http://dx.doi.org/10.1016/j.ijleo.2022.170332
KIRCH A, FISCHER A, LIERO M, et al. Experimental proof of Joule heating-induced switched-back regions in OLEDs [J]. Light Sci. Appl., 2020, 9(1): 5-1-10. doi: 10.1038/s41377-019-0236-9http://dx.doi.org/10.1038/s41377-019-0236-9
VU M C, MANI D, JEONG T H, et al. Nacre-inspired nanocomposite papers of graphene fluoride integrated 3D aramid nanofibers towards heat-dissipating applications [J]. Chem. Eng. J., 2022, 429: 132182-1-10. doi: 10.1016/j.cej.2021.132182http://dx.doi.org/10.1016/j.cej.2021.132182
魏娜, 熊凌昊, 张民艳, 等. 超微OLED的制备及其光电特性的研究 [J]. 光电子·激光, 2012, 23(10): 1876-1879.
WEI N, XIONG L H, ZHANG M Y, et al. Fabrication of tiny-size OLED and its optical and electrical properties [J]. J. Optoelectron. Laser, 2012, 23(10): 1876-1879. (in Chinese)
POHL L, KOHÁRI Z, POPPE A. Vertical natural convection models and their effect on failure analysis in electro-thermal simulation of large-surface OLEDs [J]. Microelectron. Reliab., 2018, 85: 198-206. doi: 10.1016/j.microrel.2018.05.002http://dx.doi.org/10.1016/j.microrel.2018.05.002
吴福宝, 石修灯. 基于OLED光源的煤矿照明灯具的散热性分析 [J]. 能源技术与管理, 2016, 41(S1): 191-192.
WU F B, SHI X D. Heat dissipation analysis of coal mine lighting based on OLED light source [J]. Energy Technol. Manage., 2016, 41(S1): 191-192. (in Chinese)
UCHIYAMA S, DE SILVA A P, IWAI K. Luminescent molecular thermometers [J]. J. Chem. Educ., 2006, 83(5): 720. doi: 10.1021/ed083p720http://dx.doi.org/10.1021/ed083p720
BANSAL A K, HOLZER W, PENZKOFER A, et al. Absorption and emission spectroscopic characterization of platinum-octaethyl-porphyrin (PtOEP) [J]. Chem. Phys., 2006, 330(1-2): 118-129. doi: 10.1016/j.chemphys.2006.08.002http://dx.doi.org/10.1016/j.chemphys.2006.08.002
KALINOWSKI J, STAMPOR W, SZMYTKOWSKI J, et al. Photophysics of an electrophosphorescent platinum (Ⅱ) porphyrin in solid films [J]. J. Chem. Phys., 2005, 122(15): 154710-1-16. doi: 10.1063/1.1878612http://dx.doi.org/10.1063/1.1878612
LUPTON J M, KLEIN J. Hot band emission and energy transfer in organic electrophosphorescent devices [J]. Chem. Phys. Lett., 2002, 363(3-4): 204-210. doi: 10.1016/s0009-2614(02)00987-9http://dx.doi.org/10.1016/s0009-2614(02)00987-9
LUPTON J M. A molecular thermometer based on long-lived emission from platinum octaethyl porphyrin [J]. Appl. Phys. Lett., 2002, 81(13): 2478-2480. doi: 10.1063/1.1509115http://dx.doi.org/10.1063/1.1509115
MANNA B, NANDI A. The triplet exciton dynamics and diffusion properties of zinc and platinum-octaethylporphyrin nanoaggregates [J]. J. Photochem. Photobiol. A: Chem., 2021, 408: 113105-1-9. doi: 10.1016/j.jphotochem.2020.113105http://dx.doi.org/10.1016/j.jphotochem.2020.113105
MATSUSHIMA T, ADACHI C. Observation of extremely high current densities on order of MA/cm2 in copper phthalocyanine thin-film devices with submicron active areas [J]. Jpn. J. Appl. Phys., 2007, 46(12L): L1179-L1181. doi: 10.1143/jjap.46.l1179http://dx.doi.org/10.1143/jjap.46.l1179
VAN EERSEL H, BOBBERT P A, JANSSEN R A J, et al. Monte Carlo study of efficiency roll-off of phosphorescent organic light-emitting diodes: evidence for dominant role of triplet-polaron quenching [J]. Appl. Phys. Lett., 2014, 105(14): 143303-1-5. doi: 10.1063/1.4897534http://dx.doi.org/10.1063/1.4897534
WEI B, ICHIKAWA M, FURUKAWA K, et al. High peak luminance of molecularly dye-doped organic light-emitting diodes under intense voltage pulses [J]. J. Appl. Phys., 2005, 98(4): 044506-1-5. doi: 10.1063/1.2009081http://dx.doi.org/10.1063/1.2009081
JOO W J, KYOUNG J, ESFANDYARPOUR M, et al. Metasurface-driven OLED displays beyond 10 000 pixels per inch [J]. Science, 2020, 370(6515): 459-463. doi: 10.1126/science.abc8530http://dx.doi.org/10.1126/science.abc8530
KWON S K, BAEK J H, CHOI H C, et al. OLED pixel shrinkage dependence with cathode influenced by thermal effect [J]. IEEE Electron Device Lett., 2018, 39(10): 1536-1539.
NAKANOTANI H, SASABE H, ADACHI C. Singlet-singlet and singlet-heat annihilations in fluorescence-based organic light-emitting diodes under steady-state high current density [J]. Appl. Phys. Lett., 2005, 86(21): 213506-1-3. doi: 10.1063/1.1939075http://dx.doi.org/10.1063/1.1939075
NAKANOTANI H, OYAMADA T, KAWAMURA Y, et al. Injection and transport of high current density over 1 000 A/cm2 in organic light emitting diodes under pulse excitation [J]. Jpn. J. Appl. Phys., 2005, 44(6R): 3659-3662. doi: 10.1143/jjap.44.3659http://dx.doi.org/10.1143/jjap.44.3659
AZRAIN M M, MANSOR M R, OMAR G, et al. Effect of high thermal stress on the organic light emitting diodes (OLEDs) performances [J]. Synth. Met., 2019, 247: 191-201. doi: 10.1016/j.synthmet.2018.12.008http://dx.doi.org/10.1016/j.synthmet.2018.12.008
0
Views
212
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution