浏览全部资源
扫码关注微信
吉林大学 电子科学与工程学院, 吉林 长春 130012
Published:05 May 2023,
Received:15 December 2022,
Revised:28 December 2022,
扫 描 看 全 文
柳贺夫,刘岳峰,冯晶.气相沉积全无机钙钛矿传输层和发光层提高红光钙钛矿发光二极管性能[J].发光学报,2023,44(05):873-880.
LIU Hefu,LIU Yuefeng,FENG Jing.Vapor Deposition of All Inorganic Perovskite Transport Layer and Emission Layer to Improve Performance of Red Perovskite Light-emitting Diodes[J].Chinese Journal of Luminescence,2023,44(05):873-880.
柳贺夫,刘岳峰,冯晶.气相沉积全无机钙钛矿传输层和发光层提高红光钙钛矿发光二极管性能[J].发光学报,2023,44(05):873-880. DOI: 10.37188/CJL.20220416.
LIU Hefu,LIU Yuefeng,FENG Jing.Vapor Deposition of All Inorganic Perovskite Transport Layer and Emission Layer to Improve Performance of Red Perovskite Light-emitting Diodes[J].Chinese Journal of Luminescence,2023,44(05):873-880. DOI: 10.37188/CJL.20220416.
在PEDOT∶PSS空穴传输层上气相沉积了CsPbBr
3
和CsPbBrI
2
全无机钙钛矿传输层和发光层,以PEDOT∶PSS/CsPbBr
3
作为双空穴传输层,显著提高了基于CsPbBrI
2
发光的全无机红光钙钛矿发光二极管(Perovskite light emitting diodes,PeLEDs)性能。相比基于PEDOT∶PSS空穴传输层的PeLEDs器件,其亮度、电流效率和外量子效率提升幅度分别达到了44%、157%和180%。器件性能提升一方面归因于PEDOT∶PSS/CsPbBr
3
双空穴传输层的能级匹配提高了空穴传输效率,并有效抑制了PEDOT∶PSS酸性导致的激子猝灭;另一方面归因于生长在CsPbBr
3
传输层上的CsPbBrI
2
发光层具有更好的薄膜结晶质量。在PeLEDs中通过气相沉积生长传输层和发光层是一种简单有效的制备方案,在提高气相沉积全无机PeLEDs的性能方面有巨大潜力。
The CsPbBr
3
and CsPbBrI
2
all inorganic perovskite transport layer and emission layer were vapor deposited on the PEDOT∶PSS hole transport layer. The performance of the all inorganic red light emitting diodes(PeLEDs) based on CsPbBrI
2
luminescence was significantly improved by using PEDOT∶PSS/CsPbBr
3
as the double hole transport layers.Compared with the traditional PeLEDs using PEDOT∶PSS as the hole transport layer, the enhancement ratio of luminance, current efficiency and external quantum efficiency is up to 44%, 157% and 180% respectively. This obvious performance improvement is attributed to the improvement of hole injection efficiency caused by the promoted energy level alignment for the hole transport and the suppressed exciton quenching by the negative impact of PEDOT∶PSS acidity. Meanwhile, the crystallization quality of the CsPbBrI
2
emission layer grown on the CsPbBr
3
layer was improved. This is a simple and effective strategy to grow transport layer and emission layer in PeLEDs by vapor deposition, which has great potential in improving the performance of vacuum-evaporated all-inorganic PeLEDs.
全无机钙钛矿发光器件气相沉积铯铅溴空穴传输层
all-inorganic perovskite light-emitting diodesvapor depositionCsPbBr3hole transport layer
GRÄTZEL M. The light and shade of perovskite solar cells [J]. Nat. Mater., 2014, 13(9): 838-842. doi: 10.1038/nmat4065http://dx.doi.org/10.1038/nmat4065
TAN Z K, MOGHADDAM R S, LAI M L, et al. Bright light-emitting diodes based on organometal halide perovskite [J]. Nat. Nanotechnol., 2014, 9(9): 687-692. doi: 10.1038/nnano.2014.149http://dx.doi.org/10.1038/nnano.2014.149
ZHENG L H, SUN X Y, MAO R H, et al. Luminescence properties of Ce3+-doped lithium borophosphate glasses and their correlations with the optical basicity [J]. J. Non⁃Cryst. Solids, 2014, 403: 1-4. doi: 10.1016/j.jnoncrysol.2014.06.010http://dx.doi.org/10.1016/j.jnoncrysol.2014.06.010
杨晓晖, 王琦, 肖择武, 等. 混合阳离子钙钛矿的高效率绿色发光器件 [J]. 光学学报, 2019, 39(10): 1016002-1-7. doi: 10.3788/aos201939.1016002http://dx.doi.org/10.3788/aos201939.1016002
YANG X H, WANG Q, XIAO Z W, et al. Highly efficient green-emitting devices based on mixed-cation perovskites [J]. Acta Opt. Sinica, 2019, 39(10): 1016002-1-7. (in Chinese). doi: 10.3788/aos201939.1016002http://dx.doi.org/10.3788/aos201939.1016002
黄斯豪, 刘征征, 杜鹃, 等. 钙钛矿微纳激光器研究进展 [J]. 激光与光电子学进展, 2020, 57(7): 071602-1-17. doi: 10.3788/lop57.071602http://dx.doi.org/10.3788/lop57.071602
HUANG S H, LIU Z Z, DU J, et al. Review of perovskite micro-and nano-lasers [J]. Laser Optoelectron. Progress, 2020, 57(7): 071602-1-17. (in Chinese). doi: 10.3788/lop57.071602http://dx.doi.org/10.3788/lop57.071602
时月晴, 李如雪, 余佳豪, 等. 高增益CsPbBr3钙钛矿纳米棒的研制及其稳定性研究 [J]. 中国激光, 2020, 47(7): 0701024-1-8. doi: 10.3788/cjl202047.0701024http://dx.doi.org/10.3788/cjl202047.0701024
SHI Y Q, LI R X, YU J H, et al. Synthesis and stability of CsPbBr3 perovskite nanorods with high optical gain [J]. Chin. J. Lasers, 2020, 47(7): 0701024-1-8. (in Chinese). doi: 10.3788/cjl202047.0701024http://dx.doi.org/10.3788/cjl202047.0701024
刘艳珍, 李国辉, 崔艳霞, 等. 钙钛矿光电探测器的研究进展 [J]. 激光与光电子学进展, 2019, 56(1): 010001-1-20. doi: 10.3788/lop56.010001http://dx.doi.org/10.3788/lop56.010001
LIU Y Z, LI G H, CUI Y X, et al. Research progress in perovskite photodetectors [J]. Laser Optoelectron. Progress, 2019, 56(1): 010001-1-20. (in Chinese). doi: 10.3788/lop56.010001http://dx.doi.org/10.3788/lop56.010001
BHAUMIK S, KAR M R, THORAT B N, et al. Vacuum-processed metal halide perovskite light-emitting diodes: prospects and challenges [J]. ChemPlusChem, 2021, 86(4): 558-573. doi: 10.1002/cplu.202000795http://dx.doi.org/10.1002/cplu.202000795
ALESHIN A N, WILLIAMS S R, HEEGER A J. Transport properties of poly(3, 4-ethylenedioxythiophene)/poly(styrenesulfonate) [J]. Synthetic Met., 1998, 94(2): 173-177. doi: 10.1016/s0379-6779(97)04167-2http://dx.doi.org/10.1016/s0379-6779(97)04167-2
KIM Y H, SACHSE C, MACHALA M L, et al. Highlyconductive PEDOT∶PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells [J]. Adv. Funct. Mater., 2011, 21(6): 1076-1081. doi: 10.1002/adfm.201002290http://dx.doi.org/10.1002/adfm.201002290
ANAND V, RAMACHANDRAN E, DHAMODHARAN R. Conjugated polymers with carbazole, fluorene, and ethylene dioxythiophene in the main chain and a pendant cyano group: synthesis, photophysical, and electrochemical studies [J]. J. Polym. Sci. Part A Polym. Chem., 2016, 54(17): 2774-2784. doi: 10.1002/pola.28160http://dx.doi.org/10.1002/pola.28160
ZHAO X M, WANG S R, YOU J, et al. Solution-processed thermally stable amorphous films of small molecular hole injection/transport bi-functional materials and their application in high efficiency OLEDs [J]. J. Mater. Chem. C, 2015, 3(43): 11377-11384. doi: 10.1039/c5tc02559ahttp://dx.doi.org/10.1039/c5tc02559a
JIANG Z Q, YE T L, YANG C L, et al. Star-shaped oligotriarylamines with planarized triphenylamine core: solution-processable, high-Tg hole-injecting and hole-transporting materials for organic light-emitting devices [J]. Chem. Mater., 2011, 23(3): 771-777. doi: 10.1021/cm1018585http://dx.doi.org/10.1021/cm1018585
HUANG J S, CHOU C Y, LIU M Y, et al. Solution-processed vanadium oxide as an anode interlayer for inverted polymer solar cells hybridized with ZnO nanorods [J]. Org. Electron., 2009, 10(6): 1060-1065. doi: 10.1016/j.orgel.2009.05.017http://dx.doi.org/10.1016/j.orgel.2009.05.017
HECHT D S, HU L B, IRVIN G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures [J]. Adv. Mater, 2011, 23(13): 1482-1513. doi: 10.1002/adma.201003188http://dx.doi.org/10.1002/adma.201003188
VOROSHAZI E, VERREET B, BURI A, et al. Influence of cathode oxidation via the hole extraction layer in polymer: fullerene solar cells [J]. Org. Electron., 2011, 12(5): 736-744. doi: 10.1016/j.orgel.2011.01.025http://dx.doi.org/10.1016/j.orgel.2011.01.025
DE JONG M P, VAN IJZENDOORN L J, DE VOIGT M J A. Stability of the interface between indium-tin-oxide and poly(3, 4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes [J]. Appl. Phys. Lett., 2000, 77(14): 2255-2257. doi: 10.1063/1.1315344http://dx.doi.org/10.1063/1.1315344
TIAN Y, LING Y C, SHU Y, et al. A solution-processed organometal halide perovskite hole transport layer for highly efficient organic light-emitting diodes [J]. Adv. Electron. Mater., 2016, 2(7): 1600165-1-5. doi: 10.1002/aelm.201600165http://dx.doi.org/10.1002/aelm.201600165
ZHANG Y, YU F X, MA X J, et al. Efficient red phosphorescent organic light emitting diodes based on solution processed all-inorganic cesium lead halide perovskite as hole transporting layer [J]. Org. Electron., 2017, 50: 411-417. doi: 10.1016/j.orgel.2017.08.015http://dx.doi.org/10.1016/j.orgel.2017.08.015
LEI J, GAO F, WANG H X, et al. Efficient planar CsPbBr3 perovskite solar cells by dual-source vacuum evaporation [J]. Sol. Energy Mater. Sol. Cells, 2018, 187: 1-8. doi: 10.1016/j.solmat.2018.07.009http://dx.doi.org/10.1016/j.solmat.2018.07.009
GUO S, LIU H F, LIU Y F. Efficient all-inorganic red perovskite light-emitting diodes with dual-interface-modified perovskites by vapor deposition [J]. Opt. Lett., 2022, 47(11): 2694-2697. doi: 10.1364/ol.458832http://dx.doi.org/10.1364/ol.458832
HU Y, WANG Q, SHI Y L, et al. Vacuum-evaporated all-inorganic cesium lead bromine perovskites for high-performance light-emitting diodes [J]. J. Mater. Chem. C, 2017, 5(32): 8144-8149. doi: 10.1039/c7tc02477khttp://dx.doi.org/10.1039/c7tc02477k
LIAN X J, WANG X, LING Y C, et al. Light emitting diodes based on inorganic composite halide perovskites [J]. Adv. Funct. Mater., 2019, 29(5): 1807345-1-7. doi: 10.1002/adfm.201807345http://dx.doi.org/10.1002/adfm.201807345
JIA K F, SONG L, HU Y S, et al. Improved performance for thermally evaporated perovskite light-emitting devices via defect passivation and carrier regulation [J]. ACS Appl. Mater. Interfaces, 2020, 12(13): 15928-15933. doi: 10.1021/acsami.0c01173http://dx.doi.org/10.1021/acsami.0c01173
SONG L, HUANG L X, LIU Y, et al. Efficient thermally evaporated perovskite light-emitting devices via a bilateral interface engineering strategy [J]. J. Phys. Chem. Lett., 2021, 12(26): 6165-6173. doi: 10.1021/acs.jpclett.1c01592http://dx.doi.org/10.1021/acs.jpclett.1c01592
KIM N, SHIN M, JUN S, et al. Highly efficient vacuum-evaporated CsPbBr3 perovskite light-emitting diodes with an electrical conductivity enhanced polymer-assisted passivation layer [J]. ACS Appl. Mater. Interfaces, 2021, 13(31): 37323-37330. doi: 10.1021/acsami.1c05447http://dx.doi.org/10.1021/acsami.1c05447
DU P P, LI J H, WANG L, et al. Efficient and large-area all vacuum-deposited perovskite light-emitting diodes via spatial confinement [J]. Nat. Commun., 2021, 12(1): 4751-1-10. doi: 10.1038/s41467-021-25093-6http://dx.doi.org/10.1038/s41467-021-25093-6
RAVI V K, MARKAD G B, NAG A. Band edge energies and excitonic transition probabilities of colloidal CsPbX3 (X = Cl, Br, I) perovskite nanocrystals [J]. ACS Energy Lett., 2016, 1(4): 665-671. doi: 10.1021/acsenergylett.6b00337http://dx.doi.org/10.1021/acsenergylett.6b00337
LIANG J, WANG C X, WANG Y R, et al. All-inorganic perovskite solar cells [J]. J. Am. Chem. Soc., 2016, 138(49): 15829-15832. doi: 10.1021/jacs.6b10227http://dx.doi.org/10.1021/jacs.6b10227
MENG Y, AHMADI M, WU X Y, et al. High performance and stable all-inorganic perovskite light emitting diodes by reducing luminescence quenching at PEDOT∶PSS/perovskites interface [J]. Org. Electron., 2018, 64: 47-53. doi: 10.1016/j.orgel.2018.10.014http://dx.doi.org/10.1016/j.orgel.2018.10.014
LIU F, ZHANG Y H, DING C, et al. Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield [J]. ACS Nano, 2017, 11(10): 10373-10383. doi: 10.1021/acsnano.7b05442http://dx.doi.org/10.1021/acsnano.7b05442
LIU Y, CUI J Y, DU K, et al. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures [J]. Nat. Photonics, 2019, 13(11): 760-764. doi: 10.1038/s41566-019-0505-4http://dx.doi.org/10.1038/s41566-019-0505-4
0
Views
180
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution