浏览全部资源
扫码关注微信
1.生态环境和信息特种功能材料教育部重点实验室(河北工业大学), 天津 300130
2.河北工业大学 材料科学与工程学院, 天津 300130
[ "张荣 (1999-),女,陕西西安人,博士研究生,2021 年于河北工业大学获得硕士学位,主要从事稀土发光材料的研究。Email: zhangrong@hebut.edu.cn" ]
[ "孙剑锋(1983-),男,辽宁辽阳人,博士,副教授,2014 年于清华大学获得博士学位,主要从事稀土发光材料的研究。Email: sunjianfeng10@hebut.edu.cn" ]
Published:05 May 2023,
Received:12 December 2022,
Revised:03 January 2023,
扫 描 看 全 文
张荣,孙剑锋.基于双发光位点能量传递构建高效窄带钙钛矿构型K2BaPO4F∶Eu2+荧光粉[J].发光学报,2023,44(05):819-836.
ZHANG Rong,SUN Jianfeng.Efficiently Narrow-band Perovskite-type Phosphor K2BaPO4F∶Eu2+ Based on Dual-sites-triggered Energy Transfer Behavior[J].Chinese Journal of Luminescence,2023,44(05):819-836.
张荣,孙剑锋.基于双发光位点能量传递构建高效窄带钙钛矿构型K2BaPO4F∶Eu2+荧光粉[J].发光学报,2023,44(05):819-836. DOI: 10.37188/CJL.20220412.
ZHANG Rong,SUN Jianfeng.Efficiently Narrow-band Perovskite-type Phosphor K2BaPO4F∶Eu2+ Based on Dual-sites-triggered Energy Transfer Behavior[J].Chinese Journal of Luminescence,2023,44(05):819-836. DOI: 10.37188/CJL.20220412.
随着近紫外芯片激发三基色荧光粉技术的发展,开发用于液晶显示背光源以满足高品质显示需求的新型窄带蓝色荧光粉已经成为材料研究者日益关注的焦点。本文采用高温固相法合成了具有钙钛矿结构原型的K
2
BaPO
4
F∶Eu
2+
窄带蓝色荧光粉。K
2
BaPO
4
F基质由[FK
4
Ba
2
]八面体以共享Ba、K原子的方式相连形成三维网状阴离子框架,进而与孔道中的[PO
4
]四面体连接形成K
2
BaPO
4
F钙钛矿结构框架。Rietveld精修分析表明,Eu
2+
同时占据Ba
2+
和K
+
位点形成[Eu(1)O
8
F
2
]和[Eu(2)O
6
F
2
]配位多面体,两种多面体发光中心存在由偶极⁃偶极效应引起的Eu(1)→Eu(2)能量传递过程,使荧光粉具有发射峰值波长为432 nm、半峰宽为43 nm的高亮度窄带蓝光发射。基于密度泛函理论的第一性原理计算表明,K
2
BaPO
4
F基质为间接带隙化合物,理论带隙值为5.035 eV。K
2
BaPO
4
F∶Eu
2+
荧光粉展现了合适的荧光热稳定性(
I
493 K
/
I
293 K
=64%)和较高的内、外量子效率(分别为72.8%和46.4%),其性能指标虽然劣于BaMgAl
10
O
17
∶Eu
2+
、K
1.6
Al
11
O
17+
δ
∶Eu
2+
、Na
3
Sc
2
(PO
4
)
3
∶Eu
2+
等典型蓝粉,但优于其他一些已报道的蓝色荧光粉。上述研究工作不仅展现了K
2
BaPO
4
F∶Eu
2+
作为一种新型窄带蓝色荧光粉的应用潜力,而且也为基于矿物结构原型策略探索新型荧光粉提供了可能性。
Along with the development of versatile trichromatic phosphors, exploring novel narrow-band blue-emitting phosphors has been an ongoing focus in liquid crystal display backlighting to satisfy the high-quality display demands. Herein, an intriguing narrow-band blue-emitting phosphor K
2
BaPO
4
F∶Eu
2+
belonging to the perovskite-type structural prototype is synthesized
via
the solid-state reaction. Structural analysis indicates that the [FK
4
Ba
2
] octahedra is interlinked with each other by sharing Ba and K atoms to build a three-dimensional network together with [PO
4
] tetrahedra in the cavities. Rietveld refinement analysis shows that the Eu
2+
ions reside in both Ba
2+
and K
+
sites to form the [Eu(1)O
8
F
2
] and [Eu(2)O
6
F
2
] polyhedra, which totally induce an intense blue emission peaking at 432 nm with a narrow full width at half-maximum of 43 nm, theoretically verified by the dipole-dipole interaction in the Eu(1)→Eu(2) energy transfer process. The electronic structure of K
2
BaPO
4
F matrix is studied by the first-principle calculation on the basis of the density functional theory, demonstrating that it has a large indirect band of 5.035 eV. The K
2
BaPO
4
F∶Eu
2+
phosphor exhibits a suitable thermal stability (
I
493 K
/
I
293 K
=64%) and possesses the satisfactory internal/external quantum efficiency of 72.8%/46.4%, which although is inferior to that of the representative BaMgAl
10
O
17
∶Eu
2+
,
K
1.6
Al
11
O
17+
δ
∶Eu
2+
and Na
3
Sc
2
(PO
4
)
3
∶Eu
2+
phosphors, yet surpasses some other recently reported blue-emitting phosphors. Consequently, the present work not only demonstrates the potential of K
2
BaPO
4
F∶Eu
2+
phosphor as a new narrow-band blue-emitting phosphor candidate, but provides the possibility for exploring the novel phosphors inspired by the mineral-type structural prototypes.
钙钛矿型结构K2BaPO4F∶Eu2+能量传递光致发光
perovskite-type structureK2BaPO4F∶Eu2+energy transferphotoluminescence
郑鹏, 丁国真, 解荣军. Ce3+和Eu2+掺杂荧光材料的光猝灭机理研究进展 [J]. 发光学报, 2021, 42(10): 1447-1457. doi: 10.37188/cjl.20210173http://dx.doi.org/10.37188/cjl.20210173
ZHENG P, DING G Z, XIE R J. Research progress on optical quenching of Ce3+- and Eu2+-doped luminescent materials [J]. Chin. J. Lumin., 2021, 42(10): 1447-1457. (in Chinese). doi: 10.37188/cjl.20210173http://dx.doi.org/10.37188/cjl.20210173
LIAO H X, ZHAO M, ZHOU Y Y, et al. Polyhedron transformation toward stable narrow-band green phosphors for wide-color-gamut liquid crystal display [J]. Adv. Funct. Mater., 2019, 29(30): 1901988-1-7. doi: 10.1002/adfm.201901988http://dx.doi.org/10.1002/adfm.201901988
LIAO M, WANG Q, LIN Q M, et al. Na replaces Rb towards high-performance narrow-band green phosphors for backlight display applications [J]. Adv. Opt. Mater., 2021, 9(17): 2100465-1-10. doi: 10.1002/adom.202100465http://dx.doi.org/10.1002/adom.202100465
TOLHURST T M, SCHMIECHEN S, PUST P, et al. Electronic structure, bandgap, and thermal quenching of Sr⁃[Mg3SiN4]∶Eu2+ in comparison to Sr[LiAl3N4]∶Eu2+ [J]. Adv. Opt. Mater., 2016, 4(4): 584-591. doi: 10.1002/adom.201500615http://dx.doi.org/10.1002/adom.201500615
PUST P, WEILER V, HECHT C, et al. Narrow-band red-emitting Sr[LiAl3N4]∶Eu2+ as a next-generation LED-phosphor material [J]. Nat. Mater., 2014, 13(9): 891-896. doi: 10.1038/nmat4012http://dx.doi.org/10.1038/nmat4012
PUST P, WOCHNIK A S, BAUMANN E, et al. Ca[LiAl3N4]∶Eu2+—a narrow-band red-emitting nitridolithoaluminate [J]. Chem. Mater., 2014, 26(11): 3544-3549. doi: 10.1021/cm501162nhttp://dx.doi.org/10.1021/cm501162n
ZHAO M, LIAO H X, NING L X, et al. Next-generation narrow-band green-emitting RbLi(Li3SiO4)2∶Eu2+ phosphor for backlight display application [J]. Adv. Mater., 2018, 30(38): 1802489-1-7. doi: 10.1002/adma.201802489http://dx.doi.org/10.1002/adma.201802489
DUTZLER D, SEIBALD M, BAUMANN D, et al. Alkali lithosilicates: renaissance of a reputable substance class with surprising luminescence properties [J]. Angew. Chem. Int. Ed., 2018, 57(41): 13676-13680. doi: 10.1002/anie.201808332http://dx.doi.org/10.1002/anie.201808332
LIAO H X, ZHAO M, MOLOKEEV M S, et al. Learning from a mineral structure toward an ultra-narrow-band blue-emitting silicate phosphor RbNa3(Li3SiO4)4∶Eu2+ [J]. Angew. Chem. Int. Ed., 2018, 57(36): 11728-11731. doi: 10.1002/anie.201807087http://dx.doi.org/10.1002/anie.201807087
ZHU H M, LIN C C, LUO W Q, et al. Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes [J]. Nat. Commun., 2014, 5(1): 4312-1-7. doi: 10.1038/ncomms5312http://dx.doi.org/10.1038/ncomms5312
HUANG L, ZHU Y W, ZHANG X J, et al. HF-free hydrothermal route for synthesis of highly efficient narrow-band red emitting phosphor K2Si1-xF6∶xMn4+ for warm white light-emitting diodes [J]. Chem. Mater., 2016, 28(5): 1495-1502. doi: 10.1021/acs.chemmater.5b04989http://dx.doi.org/10.1021/acs.chemmater.5b04989
YI X D, LI R F, ZHU H M, et al. K2NaAlF6∶Mn4+ red phosphor: room-temperature synthesis and electronic/vibronic structures [J]. J. Mater. Chem. C, 2018, 6(8): 2069-2076. doi: 10.1039/c7tc05784ahttp://dx.doi.org/10.1039/c7tc05784a
DENG T T, SONG E H, SUN J, et al. The design and preparation of the thermally stable, Mn4+ ion activated, narrow band, red emitting fluoride Na3GaF6∶Mn4+ for warm WLED applications [J]. J. Mater. Chem. C, 2017, 5(11): 2910-2918. doi: 10.1039/c7tc00011ahttp://dx.doi.org/10.1039/c7tc00011a
HOU Z Y, TANG X Y, LUO X F, et al. A green synthetic route to the highly efficient K2SiF6∶Mn4+ narrow-band red phosphor for warm white light-emitting diodes [J]. J. Mater. Chem. C, 2018, 6(11): 2741-2746. doi: 10.1039/c8tc00133bhttp://dx.doi.org/10.1039/c8tc00133b
BLASSE G, BRIL A. A new phosphor for flying-spot cathode-ray tubes for color television: yellow-emitting Y3Al5O12-Ce3+ [J]. Appl. Phys. Lett., 1967, 11(2): 53-55. doi: 10.1063/1.1755025http://dx.doi.org/10.1063/1.1755025
CHEN L, LIN C C, YEH C W, et al. Light converting inorganic phosphors for white light-emitting diodes [J]. Materials, 2020, 3(3): 2172-2195.
PAN Z F, LI W Q, XU Y, et al. Structure and redshift of Ce3+ emission in anisotropically expanded garnet phosphor MgY2Al4SiO12∶Ce3+ [J]. RSC Adv., 2016, 6(25): 20458-20466. doi: 10.1039/c6ra00356ghttp://dx.doi.org/10.1039/c6ra00356g
JI H P, WANG L, MOLOKEEV M S, et al. Structure evolution and photoluminescence of Lu3(Al,Mg)2(Al,Si)3O12∶Ce3+ phosphors: new yellow-color converters for blue LED-driven solid state lighting [J]. J. Mater. Chem. C, 2016, 4(28): 6855-6863. doi: 10.1039/c6tc00966bhttp://dx.doi.org/10.1039/c6tc00966b
SETLUR A A, HEWARD W J, GAO Y, et al. Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si,Ge)3O12 and its use in LED based lighting [J]. Chem. Mater., 2006, 18(14): 3314-3322. doi: 10.1021/cm060898chttp://dx.doi.org/10.1021/cm060898c
XIA Z G, POEPPELMEIER K R. Chemistry-inspired adaptable framework structures [J]. Acc. Chem. Res., 2017, 50(5): 1222-1230. doi: 10.1021/acs.accounts.7b00033http://dx.doi.org/10.1021/acs.accounts.7b00033
EGGER D A, RAPPE A M, KRONIK L. Hybrid organic-inorganic perovskites on the move [J]. Acc. Chem. Res., 2016, 49(3): 573-581. doi: 10.1021/acs.accounts.5b00540http://dx.doi.org/10.1021/acs.accounts.5b00540
苏彬彬, 夏志国. 新兴零维金属卤化物的光致发光与应用研究进展 [J]. 发光学报, 2021, 42(6): 733-754. doi: 10.37188/CJL.20210088http://dx.doi.org/10.37188/CJL.20210088
SU B, XIA Z G. Research progresses of photoluminescence and application for emerging zero-dimensional metal halides luminescence materials [J]. Chin. J. Lumin., 2021, 42(6): 733-754. (in Chinese). doi: 10.37188/CJL.20210088http://dx.doi.org/10.37188/CJL.20210088
SUN Y M, FERNÁNDEZ-CARRIÓN A J, LIU Y H, et al. Bismuth-based halide double perovskite Cs2LiBiCl6: crystal structure, luminescence, and stability [J]. Chem. Mater., 2021, 33(15): 5905-5916. doi: 10.1021/acs.chemmater.1c00854http://dx.doi.org/10.1021/acs.chemmater.1c00854
MAJHER J D, GRAY M B, STROM T A, et al. Cs2NaBiCl6∶Mn2+—a new orange-red halide double perovskite phosphor [J]. Chem. Mater., 2019, 31(5): 1738-1744.
HOLZAPFEL N P, MAJHER J D, STROM T A, et al. Cs4Cd1-xMnxBi2Cl12—a vacancy-ordered halide perovskite phosphor with high-efficiency orange-red emission [J]. Chem. Mater., 2020, 32(8): 3510-3516. doi: 10.1021/acs.chemmater.0c00454http://dx.doi.org/10.1021/acs.chemmater.0c00454
ZHANG X Y, SUN J F. Intense blue emission of perovskite-type fluoride phosphor Cs4Mg3CaF12∶Eu2+ as a promising pc-WLEDs material [J]. J. Alloys Compd., 2020, 835: 155225. doi: 10.1016/j.jallcom.2020.155225http://dx.doi.org/10.1016/j.jallcom.2020.155225
CHAI K, CHENG S C, LI H Y, et al. Modulation of perovskite-related frameworks induced by alkaline earth metals in phosphate fluorides A2MPO4F(A=K, Rb; M=Ba, Ca) [J]. New J. Chem., 2019, 43(20): 7839-7845. doi: 10.1039/c9nj01051chttp://dx.doi.org/10.1039/c9nj01051c
DAICHO H, SHINOMIYA Y, ENOMOTO K, et al. A novel red-emitting K2Ca(PO4)F∶Eu2+ phosphor with a large Stokes shift [J]. Chem. Commun., 2018, 54(8): 884-887. doi: 10.1039/c7cc08202ahttp://dx.doi.org/10.1039/c7cc08202a
LI Y, QIU Z X, ZHANG J L, et al. Highly efficient and thermally stable single-activator white-emitting phosphor K2Ca⁃(PO4)F∶Eu2+ for white light-emitting diodes [J]. J. Mater. Chem. C, 2019, 7(29): 8982-8991. doi: 10.1039/c9tc02844ghttp://dx.doi.org/10.1039/c9tc02844g
WU D W, SHI C, ZHOU J C, et al. Full-visible-spectrum lighting enabled by site-selective occupation in the high efficient and thermal stable(Rb,K)2CaPO4F∶Eu2+ solid-solution phosphors [J]. Chem. Eng. J., 2022, 430: 133062-1-10. doi: 10.1016/j.cej.2021.133062http://dx.doi.org/10.1016/j.cej.2021.133062
ZHANG R, SUN J F. An efficient perovskite-type Rb2CaPO4F∶Eu2+ phosphor with high brightness towards closing the cyan gap [J]. J. Alloys Compd., 2021, 872: 159698-1-16. doi: 10.1016/j.jallcom.2021.159698http://dx.doi.org/10.1016/j.jallcom.2021.159698
ZHANG M S, CHANG L X, WANG L, et al. Synthesis, structure and electronic structure calculation of a new perovskite-type phosphate fluoride K2BaPO4F [J]. Inorg. Chem. Commun., 2018, 93: 110-114. doi: 10.1016/j.inoche.2018.05.013http://dx.doi.org/10.1016/j.inoche.2018.05.013
ZHAO M, ZHOU Y Y, MOLOKEEV M S, et al. Discovery of new narrow-band phosphors with the UCr4C4-related type structure by alkali cation effect [J]. Adv. Opt. Mater., 2019, 7(6): 1801631-1-9. doi: 10.1002/adom.201801631http://dx.doi.org/10.1002/adom.201801631
LENG Z H, ZHANG D, BAI H, et al. A zero-thermal-quenching perovskite-like phosphor with an ultra-narrow-band blue-emission for wide color gamut backlight display applications [J]. J. Mater. Chem. C, 2021, 9(39): 13722-13732. doi: 10.1039/d1tc03317dhttp://dx.doi.org/10.1039/d1tc03317d
WU X L, SHI R, ZHANG J L, et al. Highly efficient and zero-thermal-quenching blue-emitting Eu2+-activated K-beta-alumina phosphors [J]. Chem. Eng. J., 2022, 429: 132225-1-10. doi: 10.1016/j.cej.2021.132225http://dx.doi.org/10.1016/j.cej.2021.132225
KIM Y H, ARUNKUMAR P, KIM B Y, et al. A zero-thermal-quenching phosphor [J]. Nat. Mater., 2017, 16(5): 543-550. doi: 10.1038/nmat4843http://dx.doi.org/10.1038/nmat4843
LIU Y F, ZHANG C H, CHENG Z X, et al. Origin and luminescence of anomalous red-emitting center in rhombohedral Ba9Lu2Si6O24∶Eu2+ blue phosphor [J]. Inorg. Chem., 2016, 55(17): 8628-8635. doi: 10.1021/acs.inorgchem.6b01196http://dx.doi.org/10.1021/acs.inorgchem.6b01196
FENG N N, TIAN Y, WANG L, et al. Band structure, energy transfer and temperature-dependent luminescence of novel blue emitting KBaYSi2O7∶Eu2+ phosphor [J]. J. Alloys Compd., 2016, 654: 133-139. doi: 10.1016/j.jallcom.2015.09.083http://dx.doi.org/10.1016/j.jallcom.2015.09.083
WANG X, WANG J, LI X Y, et al. Novel bismuth activated blue-emitting phosphor Ba2Y5B5O17∶Bi3+ with strong NUV excitation for WLEDs [J]. J. Mater. Chem. C, 2019, 7(36): 11227-11233. doi: 10.1039/c9tc03729bhttp://dx.doi.org/10.1039/c9tc03729b
TOBY B H. EXPGUI, a graphical user interface for GSAS [J]. J. Appl. Crystallogr., 2001, 34(2): 210-213. doi: 10.1107/s0021889801002242http://dx.doi.org/10.1107/s0021889801002242
NIELSEN O H, MARTIN R M. First-principles calculation of stress [J]. Phys. Rev. Lett., 1983, 50(9): 697-700. doi: 10.1103/physrevlett.50.697http://dx.doi.org/10.1103/physrevlett.50.697
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77(18): 3865-3868. doi: 10.1103/physrevlett.77.3865http://dx.doi.org/10.1103/physrevlett.77.3865
张少伯, 杨秋红, 胡娟. ZrSiO4∶Mn4+荧光粉的制备及光谱性能 [J]. 人工晶体学报, 2021, 50(8): 1438-1443.
ZHANG S B, YANG Q H, HU J. Synthesis and spectroscopic properties of ZrSiO4∶Mn4+ phosphor [J]. J. Synth. Cryst., 2021, 50(8): 1438-1443. (in Chinese)
SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides [J]. Acta Cryst. A, 1976, 32(5): 751-767. doi: 10.1107/s0567739476001551http://dx.doi.org/10.1107/s0567739476001551
SUN J F, ZHANG W L, SHI Y M, et al. Green-emitting Ca6Sr4(Si2O7)3Cl2∶Eu2+ phosphors for white light-emitting diodes [J]. J. Electrochem. Soc., 2011, 159(1): J5-J12.
KUBELKA P. New contributions to the optics of intensely light-scattering materials. Part I [J]. J. Opt. Soc. Am., 1948, 38(5): 448-457. doi: 10.1364/josa.38.000448http://dx.doi.org/10.1364/josa.38.000448
ZHANG W L, SUN J F, WANG X Q, et al. Crystal growth and optical properties of a noncentrosymmetric molybdenum tellurite, Na2Te3Mo3O16 [J]. CrystEngComm, 2012, 14(10): 3490-3494. doi: 10.1039/c2ce06658khttp://dx.doi.org/10.1039/c2ce06658k
XIAO Y, HAO Z D, ZHANG L L, et al. An efficient blue phosphor Ba2Lu5B5O17∶Ce3+ stabilized by La2O3: photoluminescence properties and potential use in white LEDs [J]. Dyes Pigm., 2018, 154: 121-127. doi: 10.1016/j.dyepig.2018.02.036http://dx.doi.org/10.1016/j.dyepig.2018.02.036
ZHANG X G, SONG J H, ZHOU C Y, et al. High efficiency and broadband blue-emitting NaCaBO3∶Ce3+ phosphor for NUV light-emitting diodes [J]. J. Lumin., 2014, 149: 69-74. doi: 10.1016/j.jlumin.2014.01.012http://dx.doi.org/10.1016/j.jlumin.2014.01.012
SHANG M M, LI G G, GENG D L, et al. Blue emitting Ca8La2(PO4)6O2∶Ce3+/Eu2+ phosphors with high color purity and brightness for white LED: soft-chemical synthesis, luminescence, and energy transfer properties [J]. J. Phys. Chem. C, 2012, 116(18): 10222-10231. doi: 10.1021/jp302252khttp://dx.doi.org/10.1021/jp302252k
TALWAR G J, JOSHI C P, MOHARIL S V, et al. Combustion synthesis of Sr3MgSi2O8∶Eu2+ and Sr2MgSi2O7∶Eu2+ phosphors [J]. J. Lumin., 2009, 129(11): 1239-1241. doi: 10.1016/j.jlumin.2009.06.006http://dx.doi.org/10.1016/j.jlumin.2009.06.006
LEE S H, KOO H Y, KIM J H, et al. BaMgAl10O17∶Eu2+ phosphor powders prepared from precursor powders with a hollow and thin wall structure containing NH4F flux [J]. Electron. Mater. Lett., 2010, 6(2): 81-86. doi: 10.3365/eml.2010.06.081http://dx.doi.org/10.3365/eml.2010.06.081
DEXTER D L. A theory of sensitized luminescence in solids [J]. J. Chem. Phys., 1953, 21(5): 836-850. doi: 10.1063/1.1699044http://dx.doi.org/10.1063/1.1699044
ZHANG X J, HUANG L, PAN F J, et al. Highly thermally stable single-component white-emitting silicate glass for organic-resin-free white-light-emitting diodes [J]. ACS Appl. Mater. Interfaces, 2014, 6(4): 2709-2717. doi: 10.1021/am405228xhttp://dx.doi.org/10.1021/am405228x
HUANG S, SHANG M M, YAN Y, et al. Ultra-broadband green-emitting phosphors without cyan gap based on double-heterovalent substitution strategy for full-spectrum WLED lighting [J]. Laser Photonics Rev., 2022, 16(12): 2200473. doi: 10.1002/lpor.202200473http://dx.doi.org/10.1002/lpor.202200473
张荣 (1999-),女,陕西西安人,博士研究生,2021年于河北工业大学获得硕士学位,主要从事稀土发光材料的研究。. doi: 10.1002/lpor.202200473http://dx.doi.org/10.1002/lpor.202200473
E⁃mail: zhangrong@hebut.edu.cn. doi: 10.1002/lpor.202200473http://dx.doi.org/10.1002/lpor.202200473
孙剑锋(1983-),男,辽宁辽阳人,博士,副教授,2014年于清华大学获得博士学位,主要从事稀土发光材料的研究。. doi: 10.1002/lpor.202200473http://dx.doi.org/10.1002/lpor.202200473
E⁃mail: sunjianfeng10@hebut.edu.cn. doi: 10.1002/lpor.202200473http://dx.doi.org/10.1002/lpor.202200473
0
Views
116
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution