浏览全部资源
扫码关注微信
吉林大学电子科学与工程学院 集成光电子学国家重点实验室, 吉林 长春 130012
Published:05 May 2023,
Received:03 December 2022,
Revised:20 December 2022,
扫 描 看 全 文
黄启章,孙思琦,刘铭泽等.面向显示应用的胶体量子点电致发光二极管:进展与挑战[J].发光学报,2023,44(05):739-758.
HUANG Qizhang,SUN Siqi,LIU Mingze,et al.Colloidal Quantum Dot Electroluminescent Diodes for Display Applications: Progress and Challenges[J].Chinese Journal of Luminescence,2023,44(05):739-758.
黄启章,孙思琦,刘铭泽等.面向显示应用的胶体量子点电致发光二极管:进展与挑战[J].发光学报,2023,44(05):739-758. DOI: 10.37188/CJL.20220400.
HUANG Qizhang,SUN Siqi,LIU Mingze,et al.Colloidal Quantum Dot Electroluminescent Diodes for Display Applications: Progress and Challenges[J].Chinese Journal of Luminescence,2023,44(05):739-758. DOI: 10.37188/CJL.20220400.
胶体量子点(Quantum dots,QDs)具有发光波长易调谐、窄发射、高效率等优点,且相应的量子点发光二极管(Quantum dots light emitting diodes,QLEDs)具有可溶液处理、低成本的制造工艺,有利于实现下一代广色域、高对比度、大面积和柔性显示。然而,基于QLED的显示应用还存在器件性能和图案化技术等方面的挑战。随着材料和器件的优化,QLED显示研究得到了进一步的发展。本文首先介绍了面向显示应用的QDs和QLED的发展历程,然后说明QLED在显示应用方面的挑战和研究进展,最后总结全文并展望显示领域的发展方向。
Colloidal quantum dots (QDs) have the advantages of easy tunable wavelength, narrow emission, high efficiency, and so on. Corresponding electroluminescent (EL) QD light-emitting diodes (QLED) have the advantages of solution treatment, simple and low cost manufacturing process, which is beneficial to realize the wide color gamut, high contrast, large area and flexible display. However, there are still challenges in device performance and patterning technology for QLED-based display applications. With the progress of material and device engineering, the research of QLED display has made further progress. This paper first introduces the development of QDs and QLED in display application, then indicates the challenge and research progress of QLED in display application.
胶体量子点电致发光二极管显示技术
colloidal quantum dotselectroluminescent diodesdisplay technology
李继军, 聂晓梦, 李根生, 等. 平板显示技术比较及研究进展 [J]. 中国光学, 2018, 11(5): 695-710. doi: 10.3788/CO.20181105.0695http://dx.doi.org/10.3788/CO.20181105.0695
LI J J, NIE X M, LI G S, et al. Comparison and research progress of flat panel display technology [J]. Chin. Opt., 2018, 11(5): 695-710. (in Chinese). doi: 10.3788/CO.20181105.0695http://dx.doi.org/10.3788/CO.20181105.0695
BRUS L E. Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state [J]. J. Chem. Phys., 1984, 80(9): 4403-4409. doi: 10.1063/1.447218http://dx.doi.org/10.1063/1.447218
LIU Y H, HUANG H, CAO W J, et al. Advances in carbon dots: from the perspective of traditional quantum dots [J]. Mater. Chem. Front., 2020, 4(6): 1586-1613. doi: 10.1039/d0qm00090fhttp://dx.doi.org/10.1039/d0qm00090f
GAPONENKO S V. Optical Properties of Semiconductor Nanocrystals [M]. Cambridge: Cambridge University Press, 1998. doi: 10.1017/cbo9780511524141http://dx.doi.org/10.1017/cbo9780511524141
TIAN P, TANG L, TENG K S, et al. Graphene quantum dots from chemistry to applications [J]. Mater. Today Chem., 2018, 10: 221-258. doi: 10.1016/j.mtchem.2018.09.007http://dx.doi.org/10.1016/j.mtchem.2018.09.007
SHIRASAKI Y, SUPRAN G J, BAWENDI M G, et al. Emergence of colloidal quantum-dot light-emitting technologies [J]. Nat. Photonics, 2013, 7(1): 13-23. doi: 10.1038/nphoton.2012.328http://dx.doi.org/10.1038/nphoton.2012.328
GARCÍA DE ARQUER F P, TALAPIN D V, KLIMOV V I, et al. Semiconductor quantum dots: technological progress and future challenges [J]. Science, 2021, 373(6555): eaaz8541-1-14. doi: 10.1126/science.aaz8541http://dx.doi.org/10.1126/science.aaz8541
HUTTON G A M, MARTINDALE B C M, REISNER E. Carbon dots as photosensitisers for solar-driven catalysis [J]. Chem. Soc. Rev., 2017, 46(20): 6111-6123. doi: 10.1039/c7cs00235ahttp://dx.doi.org/10.1039/c7cs00235a
GRUNDMANN M. The present status of quantum dot lasers [J]. Phys. E Low Dimens. Syst. Nanostruct., 1999, 5(3): 167-184. doi: 10.1016/s1386-9477(99)00041-7http://dx.doi.org/10.1016/s1386-9477(99)00041-7
MURRAY C B, NORRIS D J, BAWENDI M G. Synthesis and characterization of nearly monodisperse CdE(E = sulfur, selenium, tellurium) semiconductor nanocrystallites [J]. J. Am. Chem. Soc., 1993, 115(19): 8706-8715. doi: 10.1021/ja00072a025http://dx.doi.org/10.1021/ja00072a025
MICIC O I, CURTIS C J, JONES K M, et al. Synthesis and characterization of InP quantum dots [J]. J. Phys. Chem., 1994, 98(19): 4966-4969. doi: 10.1021/j100070a004http://dx.doi.org/10.1021/j100070a004
WISE F W. Lead salt quantum dots: the limit of strong quantum confinement [J]. Acc. Chem. Res., 2000, 33(11): 773-780. doi: 10.1021/ar970220qhttp://dx.doi.org/10.1021/ar970220q
BLEY R A, KAUZLARICH S M. A low-temperature solution phase route for the synthesis of silicon nanoclusters [J]. J. Am. Chem. Soc., 1996, 118(49): 12461-12462. doi: 10.1021/ja962787shttp://dx.doi.org/10.1021/ja962787s
VAUGHN II D D, SCHAAK R E. Synthesis, properties and applications of colloidal germanium and germanium-based nanomaterials [J]. Chem. Soc. Rev., 2013, 42(7): 2861-2879. doi: 10.1039/c2cs35364dhttp://dx.doi.org/10.1039/c2cs35364d
WANG F, PANG S P, WANG L, et al. One-step synthesis of highly luminescent carbon dots in noncoordinating solvents [J]. Chem. Mater., 2010, 22(16): 4528-4530. doi: 10.1021/cm101350uhttp://dx.doi.org/10.1021/cm101350u
PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut [J]. Nano Lett., 2015, 15(6): 3692-3696. doi: 10.1021/nl5048779http://dx.doi.org/10.1021/nl5048779
REISS P, CARRIÈRE M, LINCHENEAU C, et al. Synthesis of semiconductor nanocrystals, focusing on nontoxic and earth-abundant materials [J]. Chem. Rev., 2016, 116(18): 10731-10819. doi: 10.1021/acs.chemrev.6b00116http://dx.doi.org/10.1021/acs.chemrev.6b00116
DABBOUSI B O, RODRIGUEZ-VIEJO J, MIKULEC F V, et al. (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites [J]. J. Phys. Chem. B, 1997, 101(46): 9463-9475. doi: 10.1021/jp971091yhttp://dx.doi.org/10.1021/jp971091y
MAHLER B, SPINICELLI P, BUIL S, et al. Towards non-blinking colloidal quantum dots [J]. Nat. Mater., 2008, 7(8): 659-664. doi: 10.1038/nmat2222http://dx.doi.org/10.1038/nmat2222
CHEN O, ZHAO J, CHAUHAN V P, et al. Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking [J]. Nat. Mater., 2013, 12(5): 445-451. doi: 10.1038/nmat3539http://dx.doi.org/10.1038/nmat3539
WANG A Q, SHEN H B, ZANG S P, et al. Bright, efficient, and color-stable violet ZnSe-based quantum dot light-emitting diodes [J]. Nanoscale, 2015, 7(7): 2951-2959. doi: 10.1039/c4nr06593jhttp://dx.doi.org/10.1039/c4nr06593j
YANG X Y, ZHAO D W, LECK K S, et al. Full visible range covering InP/ZnS nanocrystals with high photometric performance and their application to white quantum dot light-emitting diodes [J]. Adv. Mater., 2012, 24(30): 4180-4185. doi: 10.1002/adma.201104990http://dx.doi.org/10.1002/adma.201104990
XI L F, CHO D Y, DUCHAMP M, et al. Understanding the role of single molecular ZnS precursors in the synthesis of In(Zn)P/ZnS nanocrystals [J]. ACS Appl. Mater. Interfaces, 2014, 6(20): 18233-18242. doi: 10.1021/am504988jhttp://dx.doi.org/10.1021/am504988j
JANG E, KIM Y, WON Y H, et al. Environmentally friendly InP-based quantum dots for efficient wide color gamut displays [J]. ACS Energy Lett., 2020, 5(4): 1316-1327. doi: 10.1021/acsenergylett.9b02851http://dx.doi.org/10.1021/acsenergylett.9b02851
COLVIN V L, SCHLAMP M C, ALIVISATOS A P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer [J]. Nature, 1994, 370(6488): 354-357. doi: 10.1038/370354a0http://dx.doi.org/10.1038/370354a0
TANG C W, VANSLYKE S A. Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51(12): 913-915. doi: 10.1063/1.98799http://dx.doi.org/10.1063/1.98799
SUN Y Z, JIANG Y B, SUN X W, et al. Beyond OLED: efficient quantum dot light-emitting diodes for display and lighting application [J]. Chem. Rec., 2019, 19(8): 1729-1752. doi: 10.1002/tcr.201800191http://dx.doi.org/10.1002/tcr.201800191
关小雅, 王洪哲, 申怀彬, 等. 面向显示应用的量子点发光器件研究进展 [J]. 液晶与显示, 2021, 36(1): 176-186. doi: 10.37188/CJLCD.2020-0263http://dx.doi.org/10.37188/CJLCD.2020-0263
GUAN X Y, WANG H Z, SHEN H B, et al. Research progress of quantum dot light-emitting devices for display application [J]. Chin. J. Liq. Cryst. Disp., 2021, 36(1): 176-186. (in Chinese). doi: 10.37188/CJLCD.2020-0263http://dx.doi.org/10.37188/CJLCD.2020-0263
DAI X L, ZHANG Z X, JIN Y Z, et al. Solution-processed, high-performance light-emitting diodes based on quantum dots [J]. Nature, 2014, 515(7525): 96-99. doi: 10.1038/nature13829http://dx.doi.org/10.1038/nature13829
YANG Y X, ZHENG Y, CAO W R, et al. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures [J]. Nat. Photonics, 2015, 9(4): 259-266. doi: 10.1038/nphoton.2015.36http://dx.doi.org/10.1038/nphoton.2015.36
SHEN H B, GAO Q, ZHANG Y B, et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency [J]. Nat. Photonics, 2019, 13(3): 192-197. doi: 10.1038/s41566-019-0364-zhttp://dx.doi.org/10.1038/s41566-019-0364-z
CHEN D S, CHEN D, DAI X L, et al. Shelf-stable quantum-dot light-emitting diodes with high operational performance [J]. Adv. Mater., 2020, 32(52): 2006178-1-10. doi: 10.1002/adma.202006178http://dx.doi.org/10.1002/adma.202006178
LEE T, KIM B J, LEE H, et al. Bright and stable quantum dot light-emitting diodes [J]. Adv. Mater., 2022, 34(4): 2106276-1-9. doi: 10.1002/adma.202106276http://dx.doi.org/10.1002/adma.202106276
DENG Y Z, PENG F, LU Y, et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage [J]. Nat. Photonics, 2022, 16(7): 505-511. doi: 10.1038/s41566-022-00999-9http://dx.doi.org/10.1038/s41566-022-00999-9
SHEN H B, LIN Q L, CAO W R, et al. Efficient and long-lifetime full-color light-emitting diodes using high luminescence quantum yield thick-shell quantum dots [J]. Nanoscale, 2017, 9(36): 13583-13591. doi: 10.1039/c7nr04953fhttp://dx.doi.org/10.1039/c7nr04953f
PU C D, DAI X L, SHU Y F, et al. Electrochemically-stable ligands bridge the photoluminescence-electroluminescence gap of quantum dots [J]. Nat. Commun., 2020, 11(1): 937-1-10. doi: 10.1038/s41467-020-14756-5http://dx.doi.org/10.1038/s41467-020-14756-5
WANG F F, HUA Q Z, LIN Q L, et al. High-performance blue quantum-dot light-emitting diodes by alleviating electron trapping [J]. Adv. Opt. Mater., 2022, 10(13): 2200319-1-8. doi: 10.1002/adom.202200319http://dx.doi.org/10.1002/adom.202200319
WON Y H, CHO O, KIM T, et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes [J]. Nature, 2019, 575(7784): 634-638. doi: 10.1038/s41586-019-1771-5http://dx.doi.org/10.1038/s41586-019-1771-5
JANG E P, HAN C Y, LIM S W, et al. Synthesis of alloyed ZnSeTe quantum dots as bright, color-pure blue emitters [J]. ACS Appl. Mater. Interfaces, 2019, 11(49): 46062-46069. doi: 10.1021/acsami.9b14763http://dx.doi.org/10.1021/acsami.9b14763
MEI G D, TAN Y Z, SUN J Y, et al. Light extraction employing optical tunneling in blue InP quantum dot light-emitting diodes [J]. Appl. Phys. Lett., 2022, 120(9): 091101-1-7. doi: 10.1063/5.0084416http://dx.doi.org/10.1063/5.0084416
刘迪萱, 钟锦耀, 唐彪, 等. 柔性与印刷OLED研究进展 [J]. 液晶与显示, 2021, 36(2): 217-228. doi: 10.37188/CJLCD.2020-0232http://dx.doi.org/10.37188/CJLCD.2020-0232
LIU D X, ZHONG J Y, TANG B, et al. Research progress of flexible and printed OLED [J]. Chin. J. Liq. Cryst. Disp., 2021, 36(2): 217-228. (in Chinese). doi: 10.37188/CJLCD.2020-0232http://dx.doi.org/10.37188/CJLCD.2020-0232
KIM K H, JO J H, JO D Y, et al. Cation-exchange-derived InGaP alloy quantum dots toward blue emissivity [J]. Chem. Mater., 2020, 32(8): 3537-3544. doi: 10.1021/acs.chemmater.0c00551http://dx.doi.org/10.1021/acs.chemmater.0c00551
ZOU S H, LIU Y S, LI J H, et al. Stabilizing cesium lead halide perovskite lattice through Mn(Ⅱ) substitution for air-stable light-emitting diodes [J]. J. Am. Chem. Soc., 2017, 139(33): 11443-11450. doi: 10.1021/jacs.7b04000http://dx.doi.org/10.1021/jacs.7b04000
YANG L, FU B W, LI X, et al. Poly(vinylidene fluoride)-passivated CsPbBr3 perovskite quantum dots with near-unity photoluminescence quantum yield and superior stability [J]. J. Mater. Chem. C, 2021, 9(6): 1983-1991. doi: 10.1039/d0tc05103ahttp://dx.doi.org/10.1039/d0tc05103a
KIM Y H, KIM S, KAKEKHANI A, et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes [J]. Nat. Photonics, 2021, 15(2): 148-155. doi: 10.1038/s41566-020-00732-4http://dx.doi.org/10.1038/s41566-020-00732-4
DABBOUSI B O, BAWENDI M G, ONITSUKA O, et al. Electroluminescence from CdSe quantum-dot/polymer composites [J]. Appl. Phys. Lett., 1995, 66(11): 1316-1318. doi: 10.1063/1.113227http://dx.doi.org/10.1063/1.113227
SCHLAMP M C, PENG X G, ALIVISATOS A P. Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer [J]. J. Appl. Phys., 1997, 82(11): 5837-5842. doi: 10.1063/1.366452http://dx.doi.org/10.1063/1.366452
COE S, WOO W K, BAWENDI M, et al. Electroluminescence from single monolayers of nanocrystals in molecular organic devices [J]. Nature, 2002, 420(6917): 800-803. doi: 10.1038/nature01217http://dx.doi.org/10.1038/nature01217
ZHAO J L, BARDECKER J A, MUNRO A M, et al. Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer [J]. Nano Lett., 2006, 6(3): 463-467. doi: 10.1021/nl052417ehttp://dx.doi.org/10.1021/nl052417e
STOUWDAM J W, JANSSEN R A J. Electroluminescent Cu-doped CdS quantum dots [J]. Adv. Mater., 2009, 21(28): 2916-2920. doi: 10.1002/adma.200803223http://dx.doi.org/10.1002/adma.200803223
ANIKEEVA P O, HALPERT J E, BAWENDI M G, et al. Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum [J]. Nano Lett., 2009, 9(7): 2532-2536. doi: 10.1021/nl9002969http://dx.doi.org/10.1021/nl9002969
CARUGE J M, HALPERT J E, WOOD V, et al. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers [J]. Nat. Photonics, 2008, 2(4): 247-250. doi: 10.1038/nphoton.2008.34http://dx.doi.org/10.1038/nphoton.2008.34
YALCIN S E, YANG B Q, LABASTIDE J A, et al. Electrostatic force microscopy and spectral studies of electron attachment to single quantum dots on indium tin oxide substrates [J]. J. Phys. Chem. C, 2012, 116(29): 15847-15853. doi: 10.1021/jp305857dhttp://dx.doi.org/10.1021/jp305857d
SONG N H, ZHU H M, LIU Z, et al. Unraveling the exciton quenching mechanism of quantum dots on antimony-doped SnO2 films by transient absorption and single dot fluorescence spectroscopy [J]. ACS Nano, 2013, 7(2): 1599-1608. doi: 10.1021/nn3054494http://dx.doi.org/10.1021/nn3054494
STOUWDAM J W, JANSSEN R A J. Red, green, and blue quantum dot LEDs with solution processable ZnO nanocrystal electron injection layers [J]. J. Mater. Chem., 2008, 18(16): 1889-1894. doi: 10.1039/b800028jhttp://dx.doi.org/10.1039/b800028j
CHO K S, LEE E K, JOO W J, et al. High-performance crosslinked colloidal quantum-dot light-emitting diodes [J]. Nat. Photonics, 2009, 3(6): 341-345. doi: 10.1038/nphoton.2009.92http://dx.doi.org/10.1038/nphoton.2009.92
KIM H Y, PARK Y J, KIM J, et al. Transparent InP quantum dot light-emitting diodes with ZrO2 electron transport layer and indium zinc oxide top electrode [J]. Adv. Funct. Mater., 2016, 26(20): 3454-3461. doi: 10.1002/adfm.201505549http://dx.doi.org/10.1002/adfm.201505549
QIAN L, ZHENG Y, XUE J G, et al. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures [J]. Nat. Photonics, 2011, 5(9): 543-548. doi: 10.1038/nphoton.2011.171http://dx.doi.org/10.1038/nphoton.2011.171
KWAK J, BAE W K, LEE D, et al. Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure [J]. Nano Lett., 2012, 12(5): 2362-2366. doi: 10.1021/nl3003254http://dx.doi.org/10.1021/nl3003254
MASHFORD B S, STEVENSON M, POPOVIC Z, et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection [J]. Nat. Photonics, 2013, 7(5): 407-412. doi: 10.1038/nphoton.2013.70http://dx.doi.org/10.1038/nphoton.2013.70
KIM T, KIM K H, KIM S, et al. Efficient and stable blue quantum dot light-emitting diode [J]. Nature, 2020, 586(7829): 385-389. doi: 10.1038/s41586-020-2791-xhttp://dx.doi.org/10.1038/s41586-020-2791-x
LIM J, PARK Y S, WU K F, et al. Droop-free colloidal quantum dot light-emitting diodes [J]. Nano Lett., 2018, 18(10): 6645-6653. doi: 10.1021/acs.nanolett.8b03457http://dx.doi.org/10.1021/acs.nanolett.8b03457
CAO W R, XIANG C Y, YANG Y X, et al. Highly stable QLEDs with improved hole injection via quantum dot structure tailoring [J]. Nat. Commun., 2018, 9(1): 2608-1-6. doi: 10.1038/s41467-018-04986-zhttp://dx.doi.org/10.1038/s41467-018-04986-z
BA G H, XU Q L, LI X Y, et al. Quantum dot light-emitting diodes with high efficiency at high brightness via shell engineering [J]. Opt. Express, 2021, 29(8): 12169-12178. doi: 10.1364/oe.421029http://dx.doi.org/10.1364/oe.421029
LI X Y, ZHAO Y B, FAN F J, et al. Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination [J]. Nat. Photonics, 2018, 12(3): 159-164. doi: 10.1038/s41566-018-0105-8http://dx.doi.org/10.1038/s41566-018-0105-8
WANG L S, LIN J, HU Y S, et al. Blue quantum dot light-emitting diodes with high electroluminescent efficiency [J]. ACS Appl. Mater. Interfaces, 2017, 9(44): 38755-38760. doi: 10.1021/acsami.7b10785http://dx.doi.org/10.1021/acsami.7b10785
JIA H R, WANG F Z, TAN Z. Material and device engineering for high-performance blue quantum dot light-emitting diodes [J]. Nanoscale, 2020, 12(25): 13186-13224. doi: 10.1039/d0nr02074ehttp://dx.doi.org/10.1039/d0nr02074e
SHEN H B, CAO W R, SHEWMON N T, et al. High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes [J]. Nano Lett., 2015, 15(2): 1211-1216. doi: 10.1021/nl504328fhttp://dx.doi.org/10.1021/nl504328f
EFROS A L, NESBITT D J. Origin and control of blinking in quantum dots [J]. Nat. Nanotechnol., 2016, 11(8): 661-671. doi: 10.1038/nnano.2016.140http://dx.doi.org/10.1038/nnano.2016.140
LEE K H, LEE J H, SONG W S, et al. Highly efficient, color-pure, color-stable blue quantum dot light-emitting devices [J]. ACS Nano, 2013, 7(8): 7295-7302. doi: 10.1021/nn402870ehttp://dx.doi.org/10.1021/nn402870e
QU X W, ZHANG N, CAI R, et al. Improving blue quantum dot light-emitting diodes by a lithium fluoride interfacial layer [J]. Appl. Phys. Lett., 2019, 114(7): 071101-1-5. doi: 10.1063/1.5087102http://dx.doi.org/10.1063/1.5087102
CHEN S, CAO W R, LIU T L, et al. On the degradation mechanisms of quantum-dot light-emitting diodes [J]. Nat. Commun., 2019, 10(1): 765-1-9. doi: 10.1038/s41467-019-08749-2http://dx.doi.org/10.1038/s41467-019-08749-2
PAN J Y, CHEN J, HUANG Q Q, et al. Size tunable ZnO nanoparticles to enhance electron injection in solution processed QLEDs [J]. ACS Photonics, 2016, 3(2): 215-222. doi: 10.1021/acsphotonics.5b00267http://dx.doi.org/10.1021/acsphotonics.5b00267
BAE W K, PARK Y S, LIM J, et al. Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes [J]. Nat. Commun., 2013, 4: 2661-1-8. doi: 10.1038/ncomms3661http://dx.doi.org/10.1038/ncomms3661
PAL B N, GHOSH Y, BROVELLI S, et al. ‘Giant’ cdse/cds core/shell nanocrystal quantum dots as efficient electroluminescent materials: strong influence of shell thickness on light-emitting diode performance [J]. Nano Lett., 2012, 12(1): 331-336. doi: 10.1021/nl203620fhttp://dx.doi.org/10.1021/nl203620f
LIM J, JEONG B G, PARK M, et al. Influence of shell thickness on the performance of light-emitting devices based on CdSe/Zn1-XCdXS core/shell heterostructured quantum dots [J]. Adv. Mater., 2014, 26(47): 8034-8040. doi: 10.1002/adma.201403620http://dx.doi.org/10.1002/adma.201403620
ZHANG W J, ZHANG H, FENG Y Y, et al. Scalable single-step noninjection synthesis of high-quality core/shell quantum dots with emission tunable from violet to near infrared [J]. ACS Nano, 2012, 6(12): 11066-11073. doi: 10.1021/nn304765khttp://dx.doi.org/10.1021/nn304765k
KIM H M, CHO S, KIM J, et al. Li and Mg co-doped zinc oxide electron transporting layer for highly efficient quantum dot light-emitting diodes [J]. ACS Appl. Mater. Interfaces, 2018, 10(28): 24028-24036. doi: 10.1021/acsami.8b04721http://dx.doi.org/10.1021/acsami.8b04721
KIM H H, PARK S, YI Y, et al. Inverted quantum dot light emitting diodes using polyethylenimine ethoxylated modified ZnO [J]. Sci. Rep., 2015, 5: 8968-1-5. doi: 10.1038/srep08968http://dx.doi.org/10.1038/srep08968
WANG F Z, SUN W D, LIU P, et al. Achieving balanced charge injection of blue quantum dot light-emitting diodes through transport layer doping strategies [J]. J. Phys. Chem. Lett., 2019, 10(5): 960-965. doi: 10.1021/acs.jpclett.9b00189http://dx.doi.org/10.1021/acs.jpclett.9b00189
HAN C Y, LEE S H, SONG S W, et al. More than 9% efficient ZnSeTe quantum dot-based blue electroluminescent devices [J]. ACS Energy Lett., 2020, 5(5): 1568-1576. doi: 10.1021/acsenergylett.0c00638http://dx.doi.org/10.1021/acsenergylett.0c00638
WU Z H, LIU P, ZHANG W D, et al. Development of InP quantum dot-based light-emitting diodes [J]. ACS Energy Lett., 2020, 5(4): 1095-1106. doi: 10.1021/acsenergylett.9b02824http://dx.doi.org/10.1021/acsenergylett.9b02824
BATTAGLIA D, PENG X G. Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent [J]. Nano Lett., 2002, 2(9): 1027-1030. doi: 10.1021/nl025687vhttp://dx.doi.org/10.1021/nl025687v
LI L, REISS P. One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection [J]. J. Am. Chem. Soc., 2008, 130(35): 11588-11589. doi: 10.1021/ja803687ehttp://dx.doi.org/10.1021/ja803687e
LIM J, BAE W K, LEE D, et al. InP@ZnSeS, core@composition gradient shell quantum dots with enhanced stability [J]. Chem. Mater., 2011, 23(20): 4459-4463. doi: 10.1021/cm201550whttp://dx.doi.org/10.1021/cm201550w
GARCÍA-RODRÍGUEZ R, HENDRICKS M P, COSSAIRT B M, et al. Conversion reactions of cadmium chalcogenide nanocrystal precursors [J]. Chem. Mater., 2013, 25(8): 1233-1249. doi: 10.1021/cm3035642http://dx.doi.org/10.1021/cm3035642
RAMASAMY P, KO K J, KANG J W, et al. Two-step “seed-mediated” synthetic approach to colloidal indium phosphide quantum dots with high-purity photo- and electroluminescence [J]. Chem. Mater., 2018, 30(11): 3643-3647. doi: 10.1021/acs.chemmater.8b02049http://dx.doi.org/10.1021/acs.chemmater.8b02049
BEBERWYCK B J, ALIVISATOS A P. Ion exchange synthesis of Ⅲ-Ⅴ nanocrystals [J]. J. Am. Chem. Soc., 2012, 134(49): 19977-19980. doi: 10.1021/ja309416chttp://dx.doi.org/10.1021/ja309416c
KOH S, KIM W D, BAE W K, et al. Controlling ion-exchange balance and morphology in cation exchange from Cu3-xP nanoplatelets into InP crystals [J]. Chem. Mater., 2019, 31(6): 1990-2001. doi: 10.1021/acs.chemmater.8b04859http://dx.doi.org/10.1021/acs.chemmater.8b04859
GUZELIAN A A, KATARI J E B, KADAVANICH A V, et al. Synthesis of size-selected, surface-passivated InP nanocrystals [J]. J. Phys. Chem., 1996, 100(17): 7212-7219. doi: 10.1021/jp953719fhttp://dx.doi.org/10.1021/jp953719f
LIU P, LOU Y J, DING S H, et al. Green InP/ZnSeS/ZnS core multi-shelled quantum dots synthesized with aminophosphine for effective display applications [J]. Adv. Funct. Mater., 2021, 31(11): 2008453-1-7. doi: 10.1002/adfm.202008453http://dx.doi.org/10.1002/adfm.202008453
CHAO W C, CHIANG T H, LIU Y C, et al. High efficiency green InP quantum dot light-emitting diodes by balancing electron and hole mobility [J]. Commun. Mater., 2021, 2(1): 96-1-10. doi: 10.1038/s43246-021-00203-5http://dx.doi.org/10.1038/s43246-021-00203-5
HAN M G, LEE Y, KWON H I, et al. InP-based quantum dot light-emitting diode with a blended emissive layer [J]. ACS Energy Lett., 2021, 6(4): 1577-1585.
WANG H C, ZHANG H, CHEN H Y, et al. Cadmium-free InP/ZnSeS/ZnS heterostructure-based quantum dot light-emitting diodes with a ZnMgO electron transport layer and a brightness of over 10 000 cd/m2 [J]. Small, 2017, 13(13): 1603962-1-7. doi: 10.1002/smll.201603962http://dx.doi.org/10.1002/smll.201603962
MOON H, LEE W, KIM J, et al. Composition-tailored ZnMgO nanoparticles for electron transport layers of highly efficient and bright InP-based quantum dot light emitting diodes [J]. Chem. Commun., 2019, 55(88): 13299-13302. doi: 10.1039/c9cc06882ahttp://dx.doi.org/10.1039/c9cc06882a
YEOM J E, SHIN D H, LAMPANDE R, et al. Good charge balanced inverted red InP/ZnSe/ZnS-quantum dot light-emitting diode with new high mobility and deep HOMO level hole transport layer [J]. ACS Energy Lett., 2020, 5(12): 3868-3875. doi: 10.1021/acsenergylett.0c02193http://dx.doi.org/10.1021/acsenergylett.0c02193
LEE S H, SONG S W, YOON S Y, et al. Heterostructural tailoring of blue ZnSeTe quantum dots toward high-color purity and high-efficiency electroluminescence [J]. Chem. Eng. J., 2022, 429: 132464. doi: 10.1016/j.cej.2021.132464http://dx.doi.org/10.1016/j.cej.2021.132464
DE ROO J, IBÁÑEZ M, GEIREGAT P, et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals [J]. ACS Nano, 2016, 10(2): 2071-2081. doi: 10.1021/acsnano.5b06295http://dx.doi.org/10.1021/acsnano.5b06295
WEI Y, CHENG Z Y, LIN J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs [J]. Chem. Soc. Rev., 2019, 48(1): 310-350. doi: 10.1039/c8cs00740chttp://dx.doi.org/10.1039/c8cs00740c
CAI Y T, WANG H R, LI Y, et al. Trimethylsilyl iodine-mediated synthesis of highly bright red-emitting CsPbI3 perovskite quantum dots with significantly improved stability [J]. Chem. Mater., 2019, 31(3): 881-889. doi: 10.1021/acs.chemmater.8b04049http://dx.doi.org/10.1021/acs.chemmater.8b04049
BOWMAN A R, ANAYA M, GREENHAM N C, et al. Quantifying photon recycling in solar cells and light-emitting diodes: absorption and emission are always key [J]. Phys. Rev. Lett., 2020, 125(6): 067401-1-6. doi: 10.1103/physrevlett.125.067401http://dx.doi.org/10.1103/physrevlett.125.067401
KHAN Q, SUBRAMANIAN A, YU G N, et al. Structure optimization of perovskite quantum dot light-emitting diodes [J]. Nanoscale, 2019, 11(11): 5021-5029. doi: 10.1039/c8nr09864fhttp://dx.doi.org/10.1039/c8nr09864f
HAI J, LI H, ZHAO Y, et al. Designing of blue, green, and red CsPbX3 perovskite-codoped flexible films with water resistant property and elimination of anion-exchange for tunable white light emission [J]. Chem. Commun., 2017, 53(39): 5400-5403. doi: 10.1039/c7cc01152khttp://dx.doi.org/10.1039/c7cc01152k
SUN C, ZHANG Y, RUAN C, et al. Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots [J]. Adv. Mater., 2016, 28(45): 10088-10094. doi: 10.1002/adma.201603081http://dx.doi.org/10.1002/adma.201603081
YONG Z J, GUO S Q, MA J P, et al. Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield [J]. J. Am. Chem. Soc., 2018, 140(31): 9942-9951. doi: 10.1021/jacs.8b04763http://dx.doi.org/10.1021/jacs.8b04763
LI Z J, HOFMAN E, LI J, et al. Photoelectrochemically active and environmentally stable CsPbBr3/TiO2 core/shell nanocrystals [J]. Adv. Funct. Mater., 2018, 28(1): 1704288-1-7. doi: 10.1002/adfm.201704288http://dx.doi.org/10.1002/adfm.201704288
SUN S Q, JIA P, HUANG Q Z, et al. Spectrally stable and efficient pure-blue light-emitting diodes based on CsPb(Br/Cl)3 nanocrystals with surface passivation by organic sulfonate [J]. Mater. Today Phys., 2022, 28: 100899. doi: 10.1016/j.mtphys.2022.100899http://dx.doi.org/10.1016/j.mtphys.2022.100899
JIANG Y Z, SUN C J, XU J, et al. Synthesis-on-substrate of quantum dot solids [J]. Nature, 2022, 612(7941): 679-684. doi: 10.1038/s41586-022-05486-3http://dx.doi.org/10.1038/s41586-022-05486-3
LI M, ZHANG X, MATRAS-POSTOLEK K, et al. An anion-driven Sn2+ exchange reaction in CsPbBr3 nanocrystals towards tunable and high photoluminescence [J]. J. Mater. Chem. C, 2018, 6(20): 5506-5513. doi: 10.1039/c8tc00990bhttp://dx.doi.org/10.1039/c8tc00990b
BEGUM R, PARIDA M R, ABDELHADY A L, et al. Engineering interfacial charge transfer in CsPbBr3 perovskite nanocrystals by heterovalent doping [J]. J. Am. Chem. Soc., 2017, 139(2): 731-737. doi: 10.1021/jacs.6b09575http://dx.doi.org/10.1021/jacs.6b09575
PAN G C, BAI X, XU W, et al. Bright blue light emission of Ni2+ ion-doped CsPbClxBr3-x perovskite quantum dots enabling efficient light-emitting devices [J]. ACS Appl. Mater. Interfaces, 2020, 12(12): 14195-14202. doi: 10.1021/acsami.0c01074http://dx.doi.org/10.1021/acsami.0c01074
CHIBA T, HAYASHI Y, EBE H, et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices [J]. Nat. Photonics, 2018, 12(11): 681-687. doi: 10.1038/s41566-018-0260-yhttp://dx.doi.org/10.1038/s41566-018-0260-y
DONG Y T, WANG Y K, YUAN F L, et al. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots [J]. Nat. Nanotechnol., 2020, 15(8): 668-674. doi: 10.1038/s41565-020-0714-5http://dx.doi.org/10.1038/s41565-020-0714-5
CHOI M K, YANG J, KANG K, et al. Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing [J]. Nat. Commun., 2015, 6: 7149-1-8. doi: 10.1038/ncomms8149http://dx.doi.org/10.1038/ncomms8149
LIU Y, LI F S, QIU L C, et al. Fluorescent microarrays of in situ crystallized perovskite nanocomposites fabricated for patterned applications by using inkjet printing [J]. ACS Nano, 2019, 13(2): 2042-2049.
KIM L, ANIKEEVA P O, COE-SULLIVAN S A, et al. Contact printing of quantum dot light-emitting devices [J]. Nano Lett., 2008, 8(12): 4513-4517. doi: 10.1021/nl8025218http://dx.doi.org/10.1021/nl8025218
HAN H V, LIN H Y, LIN C C, et al. Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology [J]. Opt. Express, 2015, 23(25): 32504-32515. doi: 10.1364/oe.23.032504http://dx.doi.org/10.1364/oe.23.032504
JIANG C B, ZHONG Z M, LIU B Q, et al. Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices [J]. ACS Appl. Mater. Interfaces, 2016, 8(39): 26162-26168. doi: 10.1021/acsami.6b08679http://dx.doi.org/10.1021/acsami.6b08679
SHI S C, BAI W H, XUAN T T, et al. In situ inkjet printing patterned lead halide perovskite quantum dot color conversion films by using cheap and eco-friendly aqueous inks [J]. Small Methods, 2021, 5(3): 2000889-1-8. doi: 10.1002/smtd.202000889http://dx.doi.org/10.1002/smtd.202000889
ZHU M H, DUAN Y Q, LIU N, et al. Electrohydrodynamically printed high-resolution full-color hybrid perovskites [J]. Adv. Funct. Mater., 2019, 29(35): 1903294-1-7. doi: 10.1002/adfm.201903294http://dx.doi.org/10.1002/adfm.201903294
KIM B H, ONSES M S, LIM J B, et al. High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes [J]. Nano Lett., 2015, 15(2): 969-973. doi: 10.1021/nl503779ehttp://dx.doi.org/10.1021/nl503779e
DEEGAN R D, BAKAJIN O, DUPONT T F, et al. Capillary flow as the cause of ring stains from dried liquid drops [J]. Nature, 1997, 389(6653): 827-829. doi: 10.1038/39827http://dx.doi.org/10.1038/39827
HAVERINEN H M, MYLLYLÄ R A, JABBOUR G E. Inkjet printing of light emitting quantum dots [J]. Appl. Phys. Lett., 2009, 94(7): 073108-1-3. doi: 10.1063/1.3085771http://dx.doi.org/10.1063/1.3085771
LIU Y, LI F S, XU Z W, et al. Efficient all-solution processed quantum dot light emitting diodes based on inkjet printing technique [J]. ACS Appl. Mater. Interfaces, 2017, 9(30): 25506-25512. doi: 10.1021/acsami.7b05381http://dx.doi.org/10.1021/acsami.7b05381
XIONG X Y, WEI C T, XIE L M, et al. Realizing 17.0% external quantum efficiency in red quantum dot light-emitting diodes by pursuing the ideal inkjet-printed film and interface [J]. Org. Electron., 2019, 73: 247-254. doi: 10.1016/j.orgel.2019.06.016http://dx.doi.org/10.1016/j.orgel.2019.06.016
YANG P H, ZHANG L, KANG D J, et al. High-resolution inkjet printing of quantum dot light-emitting microdiode arrays [J]. Adv. Opt. Mater., 2020, 8(1): 1901429-1-7. doi: 10.1002/adom.201901429http://dx.doi.org/10.1002/adom.201901429
JIANG C B, MU L, ZOU J H, et al. Full-color quantum dots active matrix display fabricated by ink-jet printing [J]. Sci. China Chem., 2017, 60(10): 1349-1355. doi: 10.1007/s11426-017-9087-yhttp://dx.doi.org/10.1007/s11426-017-9087-y
GAO A J, YAN J, WANG Z J, et al. Printable CsPbBr3 perovskite quantum dot ink for coffee ring-free fluorescent microarrays using inkjet printing [J]. Nanoscale, 2020, 12(4): 2569-2577. doi: 10.1039/c9nr09651ehttp://dx.doi.org/10.1039/c9nr09651e
HU H, LARSON R G. Marangoni effect reverses coffee-ring depositions [J]. J. Phys. Chem. B, 2006, 110(14): 7090-7094. doi: 10.1021/jp0609232http://dx.doi.org/10.1021/jp0609232
YANG J, CHOI M K, YANG U J, et al. Toward full-color electroluminescent quantum dot displays [J]. Nano Lett., 2021, 21(1): 26-33. doi: 10.1021/acs.nanolett.0c03939http://dx.doi.org/10.1021/acs.nanolett.0c03939
RIZZO A, MAZZEO M, PALUMBO M, et al. Hybrid light-emitting diodes from microcontact-printing double-transfer of colloidal semiconductor CdSe/ZnS quantum dots onto organic layers [J]. Adv. Mater., 2008, 20(10): 1886-1891. doi: 10.1002/adma.200701480http://dx.doi.org/10.1002/adma.200701480
KIM T H, CHO K S, LEE E K, et al. Full-colour quantum dot displays fabricated by transfer printing [J]. Nat. Photonics, 2011, 5(3): 176-182. doi: 10.1038/nphoton.2011.12http://dx.doi.org/10.1038/nphoton.2011.12
NAM T W, KIM M, WANG Y M, et al. Thermodynamic-driven polychromatic quantum dot patterning for light-emitting diodes beyond eye-limiting resolution [J]. Nat. Commun., 2020, 11(1): 3040-1-11. doi: 10.1038/s41467-020-16865-7http://dx.doi.org/10.1038/s41467-020-16865-7
MENG T T, ZHENG Y T, ZHAO D L, et al. Ultrahigh-resolution quantum-dot light-emitting diodes [J]. Nat. Photonics, 2022, 16(4): 297-303. doi: 10.1038/s41566-022-00960-whttp://dx.doi.org/10.1038/s41566-022-00960-w
PARK J S, KYHM J, KIM H H, et al. Alternative patterning process for realization of large-area, full-color, active quantum dot display [J]. Nano Lett., 2016, 16(11): 6946-6953. doi: 10.1021/acs.nanolett.6b03007http://dx.doi.org/10.1021/acs.nanolett.6b03007
JI T J, JIN S, ZHANG H, et al. Full color quantum dot light-emitting diodes patterned by photolithography technology [J]. J. Soc. Inf. Disp., 2018, 26(3): 121-127. doi: 10.1002/jsid.640http://dx.doi.org/10.1002/jsid.640
UM K, KIM H J, JO J H, et al. Enhancing efficiency of quantum dot/photoresist nanocomposite using wrinkled silica-quantum dot hybrid particles [J]. Chem. Eng. J., 2019, 369: 109-115. doi: 10.1016/j.cej.2019.03.039http://dx.doi.org/10.1016/j.cej.2019.03.039
WANG Y Y, PAN J A, WU H Q, et al. Direct wavelength-selective optical and electron-beam lithography of functional inorganic nanomaterials [J]. ACS Nano, 2019, 13(12): 13917-13931. doi: 10.1021/acsnano.9b05491http://dx.doi.org/10.1021/acsnano.9b05491
WANG Y Y, FEDIN I, ZHANG H, et al. Direct optical lithography of functional inorganic nanomaterials [J]. Science, 2017, 357(6349): 385-388. doi: 10.1126/science.aan2958http://dx.doi.org/10.1126/science.aan2958
CHO H, PAN J A, WU H Q, et al. Direct optical patterning of quantum dot light-emitting diodes via in situ ligand exchange [J]. Adv. Mater., 2020, 32(46): 2003805-1-8. doi: 10.1002/adma.202003805http://dx.doi.org/10.1002/adma.202003805
YANG J, HAHM D, KIM K, et al. High-resolution patterning of colloidal quantum dots via non-destructive, light-driven ligand crosslinking [J]. Nat. Commun., 2020, 11(1): 2874-1-9. doi: 10.1038/s41467-020-16652-4http://dx.doi.org/10.1038/s41467-020-16652-4
KO J, CHANG J H, JEONG B G, et al. Direct photolithographic patterning of colloidal quantum dots enabled by UV-crosslinkable and hole-transporting polymer ligands [J]. ACS Appl. Mater. Interfaces, 2020, 12(37): 42153-42160. doi: 10.1021/acsami.0c11988http://dx.doi.org/10.1021/acsami.0c11988
ZHAO J Y, CHEN L X, LI D Z, et al. Large-area patterning of full-color quantum dot arrays beyond 1 000 pixels per inch by selective electrophoretic deposition [J]. Nat. Commun., 2021, 12(1): 4603-1-8. doi: 10.1038/s41467-021-24931-xhttp://dx.doi.org/10.1038/s41467-021-24931-x
KONG Y L, TAMARGO I A, KIM H, et al. 3D printed quantum dot light-emitting diodes [J]. Nano Lett., 2014, 14(12): 7017-7023. doi: 10.1021/nl5033292http://dx.doi.org/10.1021/nl5033292
MALAK S T, JUNG J, YOON Y J, et al. Large-area multicolor emissive patterns of quantum dot⁃polymer films via targeted recovery of emission signature [J]. Adv. Opt. Mater., 2016, 4(4): 608-619. doi: 10.1002/adom.201500670http://dx.doi.org/10.1002/adom.201500670
JUNG S, PARK J, BANG J, et al. Light-induced fluorescence modulation of quantum dot-crystal violet conjugates: stochastic off⁃on⁃off cycles for multicolor patterning and super-resolution [J]. J. Am. Chem. Soc., 2017, 139(22): 7603-7615. doi: 10.1021/jacs.7b02530http://dx.doi.org/10.1021/jacs.7b02530
DEVATHA G, RAO A, ROY S, et al. Förster resonance energy transfer regulated multicolor photopatterning from single quantum dot nanohybrid films [J]. ACS Energy Lett., 2019, 4(7): 1710-1716. doi: 10.1021/acsenergylett.9b00832http://dx.doi.org/10.1021/acsenergylett.9b00832
DEVATHA G, ROY P, RAO A, et al. Multicolor luminescent patterning via photoregulation of electron and energy transfer processes in quantum dots [J]. J. Phys. Chem. Lett., 2020, 11(10): 4099-4106. doi: 10.1021/acs.jpclett.0c01121http://dx.doi.org/10.1021/acs.jpclett.0c01121
BABAYAN Y, BARTON J E, GREYSON E C, et al. Templated and hierarchical assembly of CdSe/ZnS quantum dots [J]. Adv. Mater., 2004, 16(15): 1341-1345. doi: 10.1002/adma.200400764http://dx.doi.org/10.1002/adma.200400764
JAFFAR S, NAM K T, KHADEMHOSSEINI A, et al. Layer-by-layer surface modification and patterned electrostatic deposition of quantum dots [J]. Nano Lett., 2004, 4(8): 1421-1425. doi: 10.1021/nl0493287http://dx.doi.org/10.1021/nl0493287
CHEN X D, ROGACH A L, TALAPIN D V, et al. Hierarchical luminescence patterning based on multiscaled self-assembly [J]. J. Am. Chem. Soc., 2006, 128(30): 9592-9593. doi: 10.1021/ja062863jhttp://dx.doi.org/10.1021/ja062863j
0
Views
384
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution