浏览全部资源
扫码关注微信
1.吉林大学 电子科学与工程学院, 吉林 长春 130021
2.深圳信息职业技术学院 微电子学院, 广东 深圳 518172
Published:05 May 2023,
Received:30 November 2022,
Revised:21 December 2022,
扫 描 看 全 文
胡刚舰,陈琦,魏薇等.基于材料调控的直接转换型铅卤钙钛矿X射线探测器研究进展[J].发光学报,2023,44(05):771-785.
HU Gangjian,CHEN Qi,WEI Wei,et al.Research Progress of Direct Perovskite X-ray Detector Based on Material Regulation[J].Chinese Journal of Luminescence,2023,44(05):771-785.
胡刚舰,陈琦,魏薇等.基于材料调控的直接转换型铅卤钙钛矿X射线探测器研究进展[J].发光学报,2023,44(05):771-785. DOI: 10.37188/CJL.20220399.
HU Gangjian,CHEN Qi,WEI Wei,et al.Research Progress of Direct Perovskite X-ray Detector Based on Material Regulation[J].Chinese Journal of Luminescence,2023,44(05):771-785. DOI: 10.37188/CJL.20220399.
X射线探测在诸如医学成像、特定晶体结构测定、射电天文学等领域有着非常重要的作用。而传统的用于X射线探测领域的材料如硅、锑化镉等存在制备工艺复杂、成本高、X射线探测灵敏度低等缺点,严重制约了X射线探测领域的发展。近年来,铅卤钙钛矿材料作为备受关注的热点材料,因其具备较大的原子序数、高吸收系数等优点,在X射线探测领域表现出非常优异的性能。而钙钛矿材料体系是一个大家族,不同组分的钙钛矿材料各有其优缺点,即使是同一组分的钙钛矿,根据其结晶性等参数的不同,性能表现也各不相同。本文从钙钛矿材料调控的角度出发,综述了近些年来直接转换型钙钛矿X射线探测器取得的成就,并对未来钙钛矿X射线探测领域的发展趋势做出了展望。
X-ray detection plays an essential role in areas such as medical imaging, determination of specific crystal structures, and radio astronomy. However, traditional materials used in the field of X-ray detection, such as silicon and cadmium antimonide, suffer from complex fabrication processes, excessive cost and low sensitivity to X-rays, which severely limit the development of the field. As a hot topic in recent years, lead halide perovskites have shown excellent performance in the field of X-ray detection due to their large atomic numbers and elevated absorption coefficients. While the perovskite material system is a huge family, different components of perovskite materials have their advantages and disadvantages, and even the same component of perovskite material can have different properties depending on different parameters such as crystallization. In this paper, we review recent achievements in direct-conversion perovskite X-ray detectors from the perspective of perovskite material regulation and provide an outlook on future developments in perovskite X-ray detection.
铅卤钙钛矿材料调控直接转换型X射线探测
perovskitematerial regulationdirect typeX ray detection
ZHOU S A, BRAHME A. Development of phase-contrast X-ray imaging techniques and potential medical applications [J]. Phys. Medica, 2008, 24(3): 129-148. doi: 10.1016/j.ejmp.2008.05.006http://dx.doi.org/10.1016/j.ejmp.2008.05.006
DU Z, HU Y G, BUTTAR N A, et al. X-ray computed tomography for quality inspection of agricultural products: a review [J]. Food Sci. Nutr., 2019, 7(10): 3146-3160. doi: 10.1002/fsn3.1179http://dx.doi.org/10.1002/fsn3.1179
孙锡娟, 夏梦玲, 许银生, 等. 钙钛矿直接型X射线探测成像研究进展 [J]. 发光学报, 2022, 43(7): 1014-1026. doi: 10.37188/cjl.20220119http://dx.doi.org/10.37188/cjl.20220119
SUN X J, XIA M L, XU Y S, et al. Research progress of perovskite direct X-ray imaging [J]. Chin. J. Lumin., 2022, 43(7): 1014-1026. (in Chinese). doi: 10.37188/cjl.20220119http://dx.doi.org/10.37188/cjl.20220119
GUERRA M, MANSO M, LONGELIN S, et al. Performance of three different Si X-ray detectors for portable XRF spectrometers in cultural heritage applications [J]. J. Instrum., 2012, 7(10): C10004-1-9. doi: 10.1088/1748-0221/7/10/c10004http://dx.doi.org/10.1088/1748-0221/7/10/c10004
KASAP S O. X-ray sensitivity of photoconductors: application to stabilized a-Se [J] J. Phys. D: Appl. Phys., 2000, 33(21): 2853-2865. doi: 10.1088/0022-3727/33/21/326http://dx.doi.org/10.1088/0022-3727/33/21/326
IVANOV Y M, KANEVSKY V M, DVORYANKIN V F, et al. The possibilities of using semi-insulating CdTe crystals as detecting material for X-ray imaging radiography [J]. Phys. Status Solidi C, 2003, 0(3): 840-844. doi: 10.1002/pssc.200306258http://dx.doi.org/10.1002/pssc.200306258
SZELES C. CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications [J]. Phys. Status Solidi B, 2004, 241(3): 783-790. doi: 10.1002/pssb.200304296http://dx.doi.org/10.1002/pssb.200304296
EISEN Y, SHOR A. CdTe and CdZnTe materials for room-temperature X-ray and gamma ray detectors [J]. J. Cryst. Growth, 1998, 184-185: 1302-1312. doi: 10.1016/s0022-0248(97)00808-7http://dx.doi.org/10.1016/s0022-0248(97)00808-7
OWENS A, PEACOCK A. Compound semiconductor radiation detectors [J]. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip., 2004, 531(1-2): 18-37. doi: 10.1016/j.nima.2004.05.071http://dx.doi.org/10.1016/j.nima.2004.05.071
SU Y R, MA W B, YANG Y M. Perovskite semiconductors for direct X-ray detection and imaging [J]. J. Semicond., 2020, 41(5): 051204-1-10. doi: 10.1088/1674-4926/41/5/051204http://dx.doi.org/10.1088/1674-4926/41/5/051204
DVORYANKIN V F, DVORYANKINA G G, KUDRYASHOV A A, et al. X-ray sensitivity of Cd0.9Zn0.1Te detectors [J]. Tech. Phys., 2010, 55(2): 306-308. doi: 10.1134/s1063784210020246http://dx.doi.org/10.1134/s1063784210020246
GHOSH J, SELLIN P J, GIRI P K. Recent advances in lead-free double perovskites for X-ray and photodetection [J]. Nanotechnology, 2022, 33(31): 312001-1-24. doi: 10.1088/1361-6528/ac6884http://dx.doi.org/10.1088/1361-6528/ac6884
BRENNER T M, EGGER D A, KRONIK L, et al. Hybrid organic-inorganic perovskites: low-cost semiconductors with intriguing charge transport properties [J]. Nat. Rev. Mater., 2016, 1(1): 15007-1-16. doi: 10.1038/natrevmats.2015.7http://dx.doi.org/10.1038/natrevmats.2015.7
JENA A K, KULKARNI A, MIYASAKA T. Halide perovskite photovoltaics: background, status, and future prospects [J]. Chem. Rev., 2019, 119(5): 3036-3103. doi: 10.1021/acs.chemrev.8b00539http://dx.doi.org/10.1021/acs.chemrev.8b00539
SAIDAMINOV M I, MOHAMMED O F, BAKR O M. Low-dimensional-networked metal halide perovskites: the next big thing [J]. ACS Energy Lett., 2017, 2(4): 889-896. doi: 10.1021/acsenergylett.6b00705http://dx.doi.org/10.1021/acsenergylett.6b00705
QUAN L N, RAND B P, FRIEND R H, et al. Perovskites for next-generation optical sources [J]. Chem. Rev., 2019, 119(12): 7444-7477. doi: 10.1021/acs.chemrev.9b00107http://dx.doi.org/10.1021/acs.chemrev.9b00107
ZHOU Y, CHEN J, BAKR O M, et al. Metal-doped lead halide perovskites: synthesis, properties, and optoelectronic applications [J]. Chem. Mater., 2018, 30(19): 6589-6613. doi: 10.1021/acs.chemmater.8b02989http://dx.doi.org/10.1021/acs.chemmater.8b02989
HE Y H, HADAR I, KANATZIDIS M G. Detecting ionizing radiation using halide perovskite semiconductors processed through solution and alternative methods [J]. Nat. Photonics, 2022, 16(1): 14-26. doi: 10.1038/s41566-021-00909-5http://dx.doi.org/10.1038/s41566-021-00909-5
WU H D, GE Y S, NIU G D, et al. Metal halide perovskites for X-ray detection and imaging [J]. Matter, 2021, 4(1): 144-163. doi: 10.1016/j.matt.2020.11.015http://dx.doi.org/10.1016/j.matt.2020.11.015
YAKUNIN S, SYTNYK M, KRIEGNER D, et al. Detection of X-ray photons by solution-processed lead halide perovskites [J]. Nat. Photonics, 2015, 9(7): 444-449. doi: 10.1038/nphoton.2015.82http://dx.doi.org/10.1038/nphoton.2015.82
SCHIEBER M, HERMON H, ZUCK A, et al. Thick films of X-ray polycrystalline mercuric iodide detectors [J]. J. Cryst. Growth, 2001, 225(2-4): 118-123. doi: 10.1016/s0022-0248(01)00832-6http://dx.doi.org/10.1016/s0022-0248(01)00832-6
KIM Y C, KIM K H, SON D Y, et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging [J]. Nature, 2017, 550(7674): 87-91. doi: 10.1038/nature24032http://dx.doi.org/10.1038/nature24032
WEI H T, FANG Y J, MULLIGAN P, et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals [J]. Nat. Photonics, 2016, 10(5): 333-339. doi: 10.1038/nphoton.2016.41http://dx.doi.org/10.1038/nphoton.2016.41
SHI D, ADINOLFI V, COMIN R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals [J]. Science, 2015, 347(6221): 519-522. doi: 10.1126/science.aaa2725http://dx.doi.org/10.1126/science.aaa2725
CLAIRAND I, BORDY J M, CARINOU E, et al. Use of active personal dosemeters in interventional radiology and cardiology: tests in laboratory conditions and recommendations-ORAMED project [J]. Radiat. Meas., 2011, 46(11): 1252-1257. doi: 10.1016/j.radmeas.2011.07.008http://dx.doi.org/10.1016/j.radmeas.2011.07.008
SHEARER D R, BOPAIAH M. Dose rate limitations of integrating survey meters for diagnostic X-ray survevs [J]. Health Phys., 2000, 79(S1): S20-S21. doi: 10.1097/00004032-200008001-00007http://dx.doi.org/10.1097/00004032-200008001-00007
WEI W, ZHANG Y, XU Q, et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging [J]. Nat. Photonics, 2017, 11(5): 315-321. doi: 10.1038/nphoton.2017.43http://dx.doi.org/10.1038/nphoton.2017.43
CONINGS B, DRIJKONINGEN J, GAUQUELIN N, et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite [J]. Adv. Energy Mater., 2015, 5(15): 1500477-1-8. doi: 10.1002/aenm.201500477http://dx.doi.org/10.1002/aenm.201500477
VAN BREEMEN A J J M, OLLEARO R, SHANMUGAM S, et al. A thin and flexible scanner for fingerprints and documents based on metal halide perovskites [J]. Nat. Electron., 2021, 4(11): 818-826. doi: 10.1038/s41928-021-00662-1http://dx.doi.org/10.1038/s41928-021-00662-1
HAN Q F, BAE S H, SUN P Y, et al. Single crystal formamidinium lead iodide(FAPbI3): insight into the structural, optical, and electrical properties [J]. Adv. Mater., 2016, 28(11): 2253-2258. doi: 10.1002/adma.201505002http://dx.doi.org/10.1002/adma.201505002
YAO M N, JIANG J Z, XIN D Y, et al. High-temperature stable FAPbBr3 single crystals for sensitive X-ray and visible light detection toward space [J]. Nano Lett., 2021, 21(9): 3947-3955. doi: 10.1021/acs.nanolett.1c00700http://dx.doi.org/10.1021/acs.nanolett.1c00700
YANG T B, LI F, ZHENG R K. Recent progress on cesium lead halide perovskites for photodetection applications [J]. ACS Appl. Electron. Mater., 2019, 1(8): 1348-1366. doi: 10.1021/acsaelm.9b00346http://dx.doi.org/10.1021/acsaelm.9b00346
ZHENG X J, ZHAO W, WANG P, et al. Ultrasensitive and stable X-ray detection using zero-dimensional lead-free perovskites [J]. J. Energy Chem., 2020, 49: 299-306. doi: 10.1016/j.jechem.2020.02.049http://dx.doi.org/10.1016/j.jechem.2020.02.049
STOUMPOS C C, MALLIAKAS C D, PETERS J A, et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection [J]. Cryst. Growth Des., 2013, 13(7): 2722-2727. doi: 10.1021/cg400645thttp://dx.doi.org/10.1021/cg400645t
PAN W C, YANG B, NIU G D, et al. Hot-pressed CsPbBr3 quasi-monocrystalline film for sensitive direct X-ray detection [J]. Adv. Mater., 2019, 31(44): 1904405-1-8. doi: 10.1002/adma.201904405http://dx.doi.org/10.1002/adma.201904405
HE Y H, HADAR I, DE SIENA M C, et al. Sensitivity and detection limit of spectroscopic-grade perovskite CsPbBr3 crystal for hard X-ray detection [J]. Adv. Funct. Mater., 2022, 32(24): 2112925-1-9. doi: 10.1002/adfm.202112925http://dx.doi.org/10.1002/adfm.202112925
NAZARENKO O, YAKUNIN S, MORAD V, et al. Single crystals of caesium formamidinium lead halide perovskites: solution growth and gamma dosimetry [J]. NPG Asia Mater., 2017, 9(4): e373-1-8. doi: 10.1038/am.2017.45http://dx.doi.org/10.1038/am.2017.45
WANG H M, WU H D, XIAN Y M, et al. Controllable CsxFA1-xPbI3 single-crystal morphology via rationally regulating the diffusion and collision of micelles toward high-performance photon detectors [J]. ACS Appl. Mater. Interfaces, 2019, 11(14): 13812-13821. doi: 10.1021/acsami.9b02840http://dx.doi.org/10.1021/acsami.9b02840
MCMEEKIN D P, WANG Z P, REHMAN W, et al. Crystallization kinetics and morphology control of formamidinium⁃ cesium mixed-cation lead mixed-halide perovskite via tunability of the colloidal precursor solution [J]. Adv. Mater., 2017, 29(29): 1607039-1-8. doi: 10.1002/adma.201607039http://dx.doi.org/10.1002/adma.201607039
SAIDAMINOV M I, WILLIAMS K, WEI M Y, et al. Multi-cation perovskites prevent carrier reflection from grain surfaces [J]. Nat. Mater., 2020, 19(4): 412-418. doi: 10.1038/s41563-019-0602-2http://dx.doi.org/10.1038/s41563-019-0602-2
LIU Y C, ZHANG Y X, ZHU X J, et al. Triple-cation and mixed-halide perovskite single crystal for high-performance X-ray imaging [J]. Adv. Mater., 2021, 33(8): 2006010-1-10. doi: 10.1002/adma.202006010http://dx.doi.org/10.1002/adma.202006010
SWARNKAR A, MIR W J, NAG A. Can B-site doping or alloying improve thermal- and phase-stability of all-inorganic CsPbX3 (X= Cl, Br, I) perovskites? [J]. ACS Energy Lett., 2018, 3(2): 286-289. doi: 10.1021/acsenergylett.7b01197http://dx.doi.org/10.1021/acsenergylett.7b01197
YANG Z Y, WEI M Y, VOZNYY O, et al. Anchored ligands facilitate efficient B-site doping in metal halide perovskites [J]. J. Am. Chem. Soc., 2019, 141(20): 8296-8305. doi: 10.1021/jacs.9b02565http://dx.doi.org/10.1021/jacs.9b02565
NAVAS J, SÁNCHEZ-CORONILLA A, GALLARDO J J, et al. New insights into organic-inorganic hybrid perovskite CH3NH3PbI3 nanoparticles. An experimental and theoretical study of doping in Pb2+ sites with Sn2+, Sr2+, Cd2+ and Ca2+ [J]. Nanoscale, 2015, 7(14): 6216-6229. doi: 10.1039/c5nr00041fhttp://dx.doi.org/10.1039/c5nr00041f
JIANG J Z, XIONG M, FAN K, et al. Synergistic strain engineering of perovskite single crystals for highly stable and sensitive X-ray detectors with low-bias imaging and monitoring [J]. Nat. Photonics, 2022, 16(8): 575-581. doi: 10.1038/s41566-022-01024-9http://dx.doi.org/10.1038/s41566-022-01024-9
SHRESTHA S, FISCHER R, MATT G J, et al. High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers [J]. Nat. Photonics, 2017, 11(7): 436-440. doi: 10.1038/nphoton.2017.94http://dx.doi.org/10.1038/nphoton.2017.94
HU M X, JIA S S, LIU Y C, et al. Large and dense organic-inorganic hybrid perovskite CH3NH3PbI3 wafer fabricated by one-step reactive direct wafer production with high X-ray sensitivity [J]. ACS Appl. Mater. Interfaces, 2020, 12(14): 16592-16600. doi: 10.1021/acsami.9b23158http://dx.doi.org/10.1021/acsami.9b23158
SONG Y L, LI L Q, BI W H, et al. Atomistic surface passivation of CH3NH3PbI3 perovskite single crystals for highly sensitive coplanar-structure X-ray detectors [J]. Research, 2020, 2020: 5958243-1-10. doi: 10.34133/2020/5958243http://dx.doi.org/10.34133/2020/5958243
WEI H T, DESANTIS D, WEI W, et al. Dopant compensation in alloyed CH3NH3PbBr3-xClx perovskite single crystals for gamma-ray spectroscopy [J]. Nat. Mater., 2017, 16(8): 826-833. doi: 10.1038/nmat4927http://dx.doi.org/10.1038/nmat4927
LIU J Y, SHABBIR B, WANG C J, et al. Flexible, printable soft-X-ray detectors based on all-inorganic perovskite quantum dots [J]. Adv. Mater., 2019, 31(30): 1901644-1-8. doi: 10.1002/adma.201970214http://dx.doi.org/10.1002/adma.201970214
HUANG Y M, QIAO L, JIANG Y Z, et al. A-site cation engineering for highly efficient MAPbI3 single-crystal X-ray detector [J]. Angew. Chem. Int. Ed., 2019, 58(49): 17834-17842. doi: 10.1002/anie.201911281http://dx.doi.org/10.1002/anie.201911281
YANG B, PAN W C, WU H D, et al. Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging [J]. Nat. Commun., 2019, 10(1): 1989-1-10. doi: 10.1038/s41467-019-09968-3http://dx.doi.org/10.1038/s41467-019-09968-3
LIU Y C, XU Z, YANG Z, et al. Inch-size 0D-structured lead-free perovskite single crystals for highly sensitive stable X-ray imaging [J]. Matter, 2020, 3(1): 180-196. doi: 10.1016/j.matt.2020.04.017http://dx.doi.org/10.1016/j.matt.2020.04.017
TIE S J, ZHAO W, XIN D Y, et al. Robust fabrication of hybrid lead-free perovskite pellets for stable X-ray detectors with low detection limit [J]. Adv. Mater., 2020, 32(31): 2001981-1-7. doi: 10.1002/adma.202001981http://dx.doi.org/10.1002/adma.202001981
FANG Y J, DONG Q F, SHAO Y C, et al. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination [J]. Nat. Photonics, 2015, 9(10): 679-686. doi: 10.1038/nphoton.2015.156http://dx.doi.org/10.1038/nphoton.2015.156
SARMAH S P, BURLAKOV V M, YENGEL E, et al. Double charged surface layers in lead halide perovskite crystals [J]. Nano Lett., 2017, 17(3): 2021-2027. doi: 10.1021/acs.nanolett.7b00031http://dx.doi.org/10.1021/acs.nanolett.7b00031
0
Views
339
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution