浏览全部资源
扫码关注微信
中国科学院 长春应用化学研究所, 稀土资源利用国家重点实验室, 吉林 长春 130022
Published:05 March 2023,
Received:02 November 2022,
Revised:22 November 2022,
移动端阅览
黄大誉,连洪洲,林君.包含Mn2+离子的钙钛矿材料:合成、发光性质与应用[J].发光学报,2023,44(03):413-436.
HUANG Dayu,LIAN Hongzhou,LIN Jun.Perovskites Containing Mn2+: Synthesis, Luminescent Properties and Applications[J].Chinese Journal of Luminescence,2023,44(03):413-436.
黄大誉,连洪洲,林君.包含Mn2+离子的钙钛矿材料:合成、发光性质与应用[J].发光学报,2023,44(03):413-436. DOI: 10.37188/CJL.20220380.
HUANG Dayu,LIAN Hongzhou,LIN Jun.Perovskites Containing Mn2+: Synthesis, Luminescent Properties and Applications[J].Chinese Journal of Luminescence,2023,44(03):413-436. DOI: 10.37188/CJL.20220380.
锰离子是发光材料家族中最重要的激活剂离子之一。锰离子无论是作为掺杂离子还是作为基质材料,都可以提高卤化物钙钛矿的发光性能。但是合成的驱动力不同,发光稳定性也不同;由于结合能和形成能的改变,热稳定性和环境稳定性也随之改变。锰离子的发光机理相对清晰明了。基质的激子发射和瞬态光导致晶格缺陷引起的自陷态发射也可能参与锰离子的发光机制。在这篇综述中,我们将分析不同类型结构的锰掺杂卤化物钙钛矿和锰基卤化物钙钛矿的发光机理,重点是锰离子的掺杂驱动力和掺杂策略。
Mn
2+
is one of the most important activator ions in the family of luminescent materials. Whether as doped ions or raw materials of the host, it can improve the luminescence performance of halide perovskite. However, the driving force of the synthesis has changed, as well as the luminescence stability. This is because the binding energy and formation energy have changed, along with the thermal stability and environmental stability. The luminescence mechanism of Mn
2+
ions is relatively distinct. Exciton emission of the host and self-trapped emission (STE) caused by transient photo-induced defects may also participate in the luminescence mechanism. In this review, we will summarize the luminescence of different types of structures of Mn
2+
doped halide perovskites or Mn
2+
based halide perovskites, focusing on the doping driving force and doping strategy of Mn
2+
ions.
锰离子卤化物钙钛矿掺杂驱动力掺杂策略
Mn2+ ionshalide perovskitedoping driving forcedoping strategy
SMITH M D, CONNOR B A, KARUNADASA H I. Tuning the luminescence of layered halide perovskites [J]. Chem. Rev., 2019, 119(5): 3104-3139. doi: 10.1021/acs.chemrev.8b00477http://dx.doi.org/10.1021/acs.chemrev.8b00477
WEI Y, CHENG Z Y, LIN J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs [J]. Chem. Soc. Rev., 2019, 48(1): 310-350. doi: 10.1039/c8cs00740chttp://dx.doi.org/10.1039/c8cs00740c
PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut [J]. Nano Lett., 2015, 15(6): 3692-3696. doi: 10.1021/nl5048779http://dx.doi.org/10.1021/nl5048779
KOVALENKO M V, PROTESESCU L, BODNARCHUK M I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals [J]. Science, 2017, 358(6364): 745-750. doi: 10.1126/science.aam7093http://dx.doi.org/10.1126/science.aam7093
SHI M, LI R G, LI C. Halide perovskites for light emission and artificial photosynthesis: opportunities, challenges, and perspectives [J]. EcoMat, 2021, 3(1): e12074-1-26. doi: 10.1002/eom2.12074http://dx.doi.org/10.1002/eom2.12074
SHAW B K, HUGHES A R, DUCAMP M, et al. Melting of hybrid organic-inorganic perovskites [J]. Nat. Chem., 2021, 13(8): 778-785. doi: 10.1038/s41557-021-00681-7http://dx.doi.org/10.1038/s41557-021-00681-7
WANG Y N, HE J, CHEN H, et al. Trastable, highly luminescent organic-inorganic perovskite-polymer composite films [J]. Adv. Mater., 2016, 28(48): 10710-10717. doi: 10.1002/adma.201603964http://dx.doi.org/10.1002/adma.201603964
SUN J Y, RABOUW F T, YANG X F, et al. Facile two-step synthesis of all-inorganic perovskite CsPbX3 (X = Cl, Br, and I) zeolite-Y composite phosphors for potential backlight display application [J]. Adv. Funct. Mater., 2017, 27(45): 1704371-1-8. doi: 10.1002/adfm.201704371http://dx.doi.org/10.1002/adfm.201704371
WEI Y, LI K, CHENG Z Y, et al. Epitaxial growth of CsPbX3 (X = Cl, Br, I) perovskite quantum dots via surface chemical conversion of Cs2GeF6 double perovskites: a novel strategy for the formation of leadless hybrid perovskite phosphors with enhanced stability [J]. Adv. Mater., 2019, 31(16): 1807592-1-9. doi: 10.1002/adma.201807592http://dx.doi.org/10.1002/adma.201807592
LUO J Q, ZHANG W W, YANG H B, et al. Halide perovskite composites for photocatalysis: a mini review [J]. EcoMat, 2021, 3(1): e12079-1-16. doi: 10.1002/eom2.12079http://dx.doi.org/10.1002/eom2.12079
LUO B B, NAGHADEH S B, ZHANG J Z. Lead halide perovskite nanocrystals: stability, surface passivation, and structural control [J]. ChemNanoMat, 2017, 3(7): 456-465. doi: 10.1002/cnma.201700056http://dx.doi.org/10.1002/cnma.201700056
YANG C B, ZHUANG B, LIN J D, et al. Ultrastable glass-protected all-inorganic perovskite quantum dots with finely tunable green emissions for approaching Rec. 2020 backlit display [J]. Chem. Eng. J., 2020, 398: 125616-1-7. doi: 10.1016/j.cej.2020.125616http://dx.doi.org/10.1016/j.cej.2020.125616
AKKERMAN Q A, D’INNOCENZO V, ACCORNERO S, et al. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions [J]. J. Am. Chem. Soc., 2015, 137(32): 10276-10281. doi: 10.1021/jacs.5b05602http://dx.doi.org/10.1021/jacs.5b05602
ZHANG Y H, YIN J, PARIDA M R, et al. Direct-indirect nature of the bandgap in lead-free perovskite nanocrystals [J]. J. Phys. Chem. Lett., 2017, 8(14): 3173-3177. doi: 10.1021/acs.jpclett.7b01381http://dx.doi.org/10.1021/acs.jpclett.7b01381
ERWIN S C, ZU L J, HAFTEL M I, et al. Doping semiconductor nanocrystals [J]. Nature, 2005, 436(7047): 91-94. doi: 10.1038/nature03832http://dx.doi.org/10.1038/nature03832
GURIA A K, DUTTA S K, ADHIKARI S D, et al. Doping Mn2+ in lead halide perovskite nanocrystals: successes and challenges [J]. ACS Energy Lett., 2017, 2(5): 1014-1021. doi: 10.1021/acsenergylett.7b00177http://dx.doi.org/10.1021/acsenergylett.7b00177
SU B B, ZHOU G J, HUANG J L, et al. Mn2+-doped metal halide perovskites: structure, photoluminescence, and application [J]. Laser Photonics Rev., 2021, 15(1): 2000334-1-29. doi: 10.1002/lpor.202000334http://dx.doi.org/10.1002/lpor.202000334
LIU W Y, LIN Q L, LI H B, et al. Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content [J]. J. Am. Chem. Soc., 2016, 138(45): 14954-14961. doi: 10.1021/jacs.6b08085http://dx.doi.org/10.1021/jacs.6b08085
NORRIS D J, YAO N, CHARNOCK F T, et al. High-quality manganese-doped ZnSe nanocrystals [J]. Nano Lett., 2001, 1(1): 3-7. doi: 10.1021/nl005503hhttp://dx.doi.org/10.1021/nl005503h
BEAULAC R, ARCHER P I, LIU X Y, et al. Spin-polarizable excitonic luminescence in colloidal Mn2+-doped cdse quantum dots [J]. Nano Lett., 2008, 8(4): 1197-1201. doi: 10.1021/nl080195phttp://dx.doi.org/10.1021/nl080195p
PAROBEK D, ROMAN B J, DONG Y T, et al. Exciton-to-dopant energy transfer in Mn-doped cesium lead halide perovskite nanocrystals [J]. Nano Lett., 2016, 16(12): 7376-7380. doi: 10.1021/acs.nanolett.6b02772http://dx.doi.org/10.1021/acs.nanolett.6b02772
BHARGAVA R N, GALLAGHER D, HONG X, et al. Optical properties of manganese-doped nanocrystals of ZnS [J]. Phys. Rev. Lett., 1994, 72(3): 416-419. doi: 10.1103/physrevlett.72.416http://dx.doi.org/10.1103/physrevlett.72.416
VLASKIN V A, BARROWS C J, ERICKSON C S, et al. Nanocrystal diffusion doping [J]. J. Am. Chem. Soc., 2013, 135(38): 14380-14389. doi: 10.1021/ja4072207http://dx.doi.org/10.1021/ja4072207
STOWELL C A, WIACEK R J, SAUNDERS A E, et al. Synthesis and characterization of dilute magnetic semiconductor manganese-doped indium arsenide nanocrystals [J]. Nano Lett., 2003, 3(10): 1441-1447. doi: 10.1021/nl034419+http://dx.doi.org/10.1021/nl034419+
MAGANA D, PERERA S C, HARTER A G, et al. Switching-on superparamagnetism in Mn/CdSe quantum dots [J]. J. Am. Chem. Soc., 2006, 128(9): 2931-2939. doi: 10.1021/ja055785thttp://dx.doi.org/10.1021/ja055785t
LIU H W, WU Z N, SHAO J R, et al. CsPbxMn1–xCl3 perovskite quantum dots with high Mn substitution ratio [J]. ACS Nano, 2017, 11(2): 2239-2247. doi: 10.1021/acsnano.6b08747http://dx.doi.org/10.1021/acsnano.6b08747
ZOU S H, LIU Y S, LI J H, et al. Stabilizing cesium lead halide perovskite lattice through Mn(Ⅱ) substitution for air-stable light-emitting diodes [J]. J. Am. Chem. Soc., 2017, 139(33): 11443-11450. doi: 10.1021/jacs.7b04000http://dx.doi.org/10.1021/jacs.7b04000
PRADEEP K R, VISWANATHA R. Mechanism of Mn emission: energy transfer vs charge transfer dynamics in Mn-doped quantum dots [J]. APL Mater., 2020, 8(2): 020901-1-11. doi: 10.1063/1.5140888http://dx.doi.org/10.1063/1.5140888
PINCHETTI V, ANAND A, AKKERMAN Q A, et al. Trap-mediated two-step sensitization of manganese dopants in perovskite nanocrystals [J]. ACS Energy Lett., 2019, 4(1): 85-93. doi: 10.1021/acsenergylett.8b02052http://dx.doi.org/10.1021/acsenergylett.8b02052
HUANG G G, WANG C L, XU S H, et al. Postsynthetic doping of MnCl2 molecules into preformed CsPbBr3 perovskite nanocrystals via a halide exchange-driven cation exchange [J]. Adv. Mater., 2017, 29(29): 1700095-1-5. doi: 10.1002/adma.201700095http://dx.doi.org/10.1002/adma.201700095
WU H, XU S H, SHAO H B, et al. Single component Mn-doped perovskite-related CsPb2ClxBr5-x nanoplatelets with a record white light quantum yield of 49%: a new single layer color conversion material for light-emitting diodes [J]. Nanoscale, 2017, 9(43): 16858-16863. doi: 10.1039/c7nr06538hhttp://dx.doi.org/10.1039/c7nr06538h
ZHU J R, YANG X L, ZHU Y H, et al. Room-temperature synthesis of Mn-doped cesium lead halide quantum dots with high Mn substitution ratio [J]. J. Phys. Chem. Lett., 2017, 8(17): 4167-4171. doi: 10.1021/acs.jpclett.7b01820http://dx.doi.org/10.1021/acs.jpclett.7b01820
ARUNKUMAR P, GIL K H, WON S, et al. Colloidal organolead halide perovskite with a high Mn solubility limit: a step toward Pb-free luminescent quantum dots [J]. J. Phys. Chem. Lett., 2017, 8(17): 4161-4166. doi: 10.1021/acs.jpclett.7b01440http://dx.doi.org/10.1021/acs.jpclett.7b01440
ADHIKARI SDAS, DUTTA S K, DUTTA A, et al. Chemically tailoring the dopant emission in manganese-doped CsPbCl3 perovskite nanocrystals [J]. Angew. Chem., 2017, 129(30): 8872-8876. doi: 10.1002/ange.201703863http://dx.doi.org/10.1002/ange.201703863
XU K Y, LIN C C, XIE X B, et al. Efficient and stable luminescence from Mn2+ in core and core-isocrystalline shell CsPbCl3 perovskite nanocrystals [J]. Chem. Mater., 2017, 29(10): 4265-4272. doi: 10.1021/acs.chemmater.7b00345http://dx.doi.org/10.1021/acs.chemmater.7b00345
LIN C C, XU K Y, WANG D, et al. Luminescent manganese-doped CsPbCl3 perovskite quantum dots [J]. Sci. Rep., 2017, 7: 45906-1-10. doi: 10.1038/srep45906http://dx.doi.org/10.1038/srep45906
GAO D, QIAO B, XU Z, et al. Postsynthetic, reversible cation exchange between Pb2+ and Mn2+ in cesium lead chloride perovskite nanocrystals [J]. J. Phys. Chem. C, 2017, 121(37): 20387-20395. doi: 10.1021/acs.jpcc.7b06929http://dx.doi.org/10.1021/acs.jpcc.7b06929
LOCARDI F, CIRIGNANO M, BARANOV D, et al. Colloidal synthesis of double perovskite Cs2AgInCl6 and Mn-doped Cs2AgInCl6 nanocrystals [J]. J. Am. Chem. Soc., 2018, 140(40): 12989-12995. doi: 10.1021/jacs.8b07983http://dx.doi.org/10.1021/jacs.8b07983
ZHOU J, RONG X M, ZHANG P, et al. Manipulation of Bi3+/In3+ transmutation and Mn2+-doping effect on the structure and optical properties of double perovskite Cs2NaBi1-xInxCl6 [J]. Adv. Opt. Mater., 2019, 7(8): 1801435-1-9. doi: 10.1002/adom.201801435http://dx.doi.org/10.1002/adom.201801435
MAJHER J D, GRAY M B, STROM T A, et al. Cs2NaBiCl6∶Mn2+—a new orange-red halide double perovskite phosphor [J]. Chem. Mater., 2019, 31(5): 1738-1744.
NANDHA K N, NAG A. Synthesis and luminescence of Mn-doped Cs2AgInCl6 double perovskites [J]. Chem. Commun., 2018, 54(41): 5205-5208.
CHEN N, CAI T, LI W H, et al. Yb- and Mn-doped lead-free double perovskite Cs2AgBiX6(X = Cl–, Br–) nanocrystals [J]. ACS Appl. Mater. Interfaces, 2019, 11(18): 16855-16863. doi: 10.1021/acsami.9b02367http://dx.doi.org/10.1021/acsami.9b02367
HOLZAPFEL N P, MAJHER J D, STROM T A, et al. Cs4Cd1–xMnxBi2Cl12—a vacancy-ordered halide perovskite phosphor with high-efficiency orange-red emission [J]. Chem. Mater., 2020, 32(8): 3510-3516. doi: 10.1021/acs.chemmater.0c00454http://dx.doi.org/10.1021/acs.chemmater.0c00454
YANG H J, SHI W W, CAI T, et al. Synthesis of lead-free Cs4(Cd1-xMnx)Bi2Cl12 (0≤ x ≤1) layered double perovskite nanocrystals with controlled Mn⁃Mn coupling interaction [J]. Nanoscale, 2020, 12(45): 23191-23199. doi: 10.1039/d0nr06771ghttp://dx.doi.org/10.1039/d0nr06771g
VARGAS B, REYES-CASTILLO D T, COUTINO-GONZALEZ E, et al. Enhanced luminescence and mechanistic studies on layered double-perovskite phosphors: Cs4Cd1-xMnxBi2Cl12 [J]. Chem. Mater., 2020, 32(21): 9307-9315. doi: 10.26434/chemrxiv.12735584http://dx.doi.org/10.26434/chemrxiv.12735584
WEI J H, LIAO J F, WANG X D, et al. All-inorganic lead-free heterometallic Cs4MnBi2Cl12 perovskite single crystal with highly efficient orange emission [J]. Matter, 2020, 3(3): 892-903. doi: 10.1016/j.matt.2020.05.018http://dx.doi.org/10.1016/j.matt.2020.05.018
XU W, LI F M, LIN F Y, et al. Synthesis of CsPbCl3-Mn nanocrystals via cation exchange [J]. Adv. Opt. Mater., 2017, 5(21): 1700520. doi: 10.1002/adom.201700520http://dx.doi.org/10.1002/adom.201700520
CHEN D Q, FANG G L, CHEN X. Silica-coated Mn-doped CsPb(Cl/Br)3 inorganic perovskite quantum dots: exciton-to-Mn energy transfer and blue-excitable solid-state lighting [J]. ACS Appl. Mater. Interfaces, 2017, 9(46): 40477-40487. doi: 10.1021/acsami.7b14471http://dx.doi.org/10.1021/acsami.7b14471
DE A, MONDAL N, SAMANTA A. Luminescence tuning and exciton dynamics of Mn-doped CsPbCl3 nanocrystals [J]. Nanoscale, 2017, 9(43): 16722-16727. doi: 10.1039/c7nr06745chttp://dx.doi.org/10.1039/c7nr06745c
HU Q S, LI Z, TAN Z F, et al. Rare earth ion-doped CsPbBr3 nanocrystals [J]. Adv. Opt. Mater., 2018, 6(2): 1700864-1-5. doi: 10.1002/adom.201700864http://dx.doi.org/10.1002/adom.201700864
YUAN X, JI S H, DE SIENA M C, et al. Photoluminescence temperature dependence, dynamics, and quantum efficiencies in Mn2+-doped CsPbCl3 perovskite nanocrystals with varied dopant concentration [J]. Chem. Mater., 2017, 29(18): 8003-8011. doi: 10.1021/acs.chemmater.7b03311http://dx.doi.org/10.1021/acs.chemmater.7b03311
VAN DER STAM W, GEUCHIES J J, ALTANTZIS T, et al. Highly emissive divalent-ion-doped colloidal CsPb1–xMxBr3 perovskite nanocrystals through cation exchange [J]. J. Am. Chem. Soc., 2017, 139(11): 4087-4097. doi: 10.1021/jacs.6b13079http://dx.doi.org/10.1021/jacs.6b13079
MIR W J, JAGADEESWARARAO M, DAS S, et al. Colloidal Mn-doped cesium lead halide perovskite nanoplatelets [J]. ACS Energy Lett., 2017, 2(3): 537-543. doi: 10.1021/acsenergylett.6b00741http://dx.doi.org/10.1021/acsenergylett.6b00741
BEGUM R, PARIDA M R, ABDELHADY A L, et al. Engineering interfacial charge transfer in CsPbBr3 perovskite nanocrystals by heterovalent doping [J]. J. Am. Chem. Soc., 2017, 139(2): 731-737. doi: 10.1021/jacs.6b09575http://dx.doi.org/10.1021/jacs.6b09575
LI F, XIA Z G, PAN C F, et al. High Br– content CsPb(ClyBr1–y)3 perovskite nanocrystals with strong Mn2+ emission through diverse cation/anion exchange engineering [J]. ACS Appl. Mater. Interfaces, 2018, 10(14): 11739-11746. doi: 10.1021/acsami.7b18750http://dx.doi.org/10.1021/acsami.7b18750
LI F, XIA Z G, GONG Y, et al. Optical properties of Mn2+ doped cesium lead halide perovskite nanocrystals via a cation⁃anion co-substitution exchange reaction [J]. J. Mater. Chem. C, 2017, 5(36): 9281-9287. doi: 10.1039/c7tc03575fhttp://dx.doi.org/10.1039/c7tc03575f
LIU H W, WU Z N, GAO H, et al. One-step preparation of cesium lead halide CsPbX3(X = Cl, Br, and I) perovskite nanocrystals by microwave irradiation [J]. ACS Appl. Mater. Interfaces, 2017, 9(49): 42919-42927. doi: 10.1021/acsami.7b14677http://dx.doi.org/10.1021/acsami.7b14677
FANG G L, CHEN D Q, ZHOU S, et al. Reverse synthesis of CsPbxMn1-x(Cl/Br)3 perovskite quantum dots from CsMnCl3 precursors through cation exchange [J]. J. Mater. Chem. C, 2018, 6(22): 5908-5915. doi: 10.1039/c8tc01426dhttp://dx.doi.org/10.1039/c8tc01426d
ADHIKARI SDAS, DUTTA A, DUTTA S K, et al. Layered perovskites L2(Pb1-xMnx)Cl4 to Mn-doped CsPbCl3 perovskite platelets [J]. ACS Energy Lett., 2018, 3(6): 1247-1253.
PRADHAN N, ADHIKARI SDAS, NAG A, et al. Luminescence, plasmonic, and magnetic properties of doped semiconductor nanocrystals [J]. Angew. Chem. Int. Ed., 2017, 56(25): 7038-7054. doi: 10.1002/anie.201611526http://dx.doi.org/10.1002/anie.201611526
AKKERMAN Q A, RAINÒ G, KOVALENKO M V, et al. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals [J]. Nat. Mater., 2018, 17(5): 394-405. doi: 10.1038/s41563-018-0018-4http://dx.doi.org/10.1038/s41563-018-0018-4
SWARNKAR A, RAVI V K, NAG A. Beyond colloidal cesium lead halide perovskite nanocrystals: analogous metal halides and doping [J]. ACS Energy Lett., 2017, 2(5): 1089-1098. doi: 10.1021/acsenergylett.7b00191http://dx.doi.org/10.1021/acsenergylett.7b00191
USMAN M H P, BAKTHAVATSALAM R, KUNDU J. Colloidal Mn2+ doped 2D (n = 1) lead bromide perovskites: efficient energy transfer and role of anion in doping mechanism [J]. ChemistrySelect, 2018, 3(23): 6585-6595. doi: 10.1002/slct.201801248http://dx.doi.org/10.1002/slct.201801248
BISWAS A, BAKTHAVATSALAM R, KUNDU J. Efficient exciton to dopant energy transfer in Mn2+-doped (C4H9NH3)2PbBr4 two-dimensional (2D) layered perovskites [J]. Chem. Mater., 2017, 29(18): 7816-7825. doi: 10.1021/acs.chemmater.7b02429http://dx.doi.org/10.1021/acs.chemmater.7b02429
LI X L, GUO Y, LUO B B. Improved stability and photoluminescence yield of Mn2+-doped CH3NH3PbCl3 perovskite nanocrystals [J]. Crystals, 2018, 8(1): 4-1-10. doi: 10.3390/cryst8010004http://dx.doi.org/10.3390/cryst8010004
SHEIKH T, NAG A. Mn doping in centimeter-sized layered 2D butylammonium lead bromide (BA2PbBr4) single crystals and their optical properties [J]. J. Phys. Chem. C, 2019, 123(14): 9420-9427. doi: 10.1021/acs.jpcc.9b01550http://dx.doi.org/10.1021/acs.jpcc.9b01550
BAKTHAVATSALAM R, BISWAS A, CHAKALI M, et al. Temperature-dependent photoluminescence and energy-transfer dynamics in Mn2+-doped (C4H9NH3)2PbBr4 two-dimensional (2D) layered perovskite [J]. J. Phys. Chem. C, 2019, 123(8): 4739-4748. doi: 10.1021/acs.jpcc.9b00207http://dx.doi.org/10.1021/acs.jpcc.9b00207
SU B B, MOLOKEEV M S, XIA Z G. Unveiling Mn2+ dopant states in two-dimensional halide perovskite toward highly efficient photoluminescence [J]. J. Phys. Chem. Lett., 2020, 11(7): 2510-2517. doi: 10.1021/acs.jpclett.0c00593http://dx.doi.org/10.1021/acs.jpclett.0c00593
JIA W Y, STRAUSS E, YEN W M. Quenching of the 4T1-6A1 transition of CsMnCl3∶2H2O by OH stretching vibration [J]. J. Lumin., 1990, 45(1-6): 451-453. doi: 10.1016/0022-2313(90)90220-6http://dx.doi.org/10.1016/0022-2313(90)90220-6
ALMUTLAQ J, MIR W J, GUTIÉRREZ-ARZALUZ L, et al. CsMnBr3: lead-free nanocrystals with high photoluminescence quantum yield and picosecond radiative lifetime [J]. ACS Mater. Lett., 2021, 3(3): 290-297. doi: 10.1021/acsmaterialslett.0c00603http://dx.doi.org/10.1021/acsmaterialslett.0c00603
XIAO H, DANG P P, YUN X H, et al. Corrigendum: solvatochromic photoluminescent effects in all-inorganic manganese(Ⅱ)-based perovskites by highly selective solvent-induced crystal-to-crystal phase transformations [J]. Angew. Chem. Int. Ed., 2021, 60(48): 25183-25183. doi: 10.1002/anie.202113975http://dx.doi.org/10.1002/anie.202113975
XIAO H, DANG P P, YUN X H, et al. Solvatochromic photoluminescent effects in all-inorganic manganese(Ⅱ)-based perovskites by highly selective solvent-induced crystal-to-crystal phase transformations [J]. Angew. Chem., 2021, 133(7): 3743-3751. doi: 10.1002/ange.202012383http://dx.doi.org/10.1002/ange.202012383
ZHOU G J, DING J L, JIANG X X, et al. Coordination units of Mn2+ modulation toward tunable emission in zero-dimensional bromides for white light-emitting diodes [J]. J. Mater. Chem. C, 2022, 10(6): 2095-2102. doi: 10.1039/d1tc05680hhttp://dx.doi.org/10.1039/d1tc05680h
MORAD V, CHERNIUKH I, PÖTTSCHACHER L, et al. Manganese(Ⅱ)) in tetrahedral halide environment: factors governing bright green luminescence [J]. Chem. Mater., 2019, 31(24): 10161-10169. doi: 10.1021/acs.chemmater.9b03782http://dx.doi.org/10.1021/acs.chemmater.9b03782
XU T T, LI W, ZHOU Z Y, et al. 0D organic manganese(Ⅱ) bromide hybrids as stable and efficient X-ray scintillator [J]. Phys. Status Solidi (RRL)⁃Rapid Res. Lett., 2022, 16(8): 2200175-1-6. doi: 10.1002/pssr.202200175http://dx.doi.org/10.1002/pssr.202200175
BEAULAC R, ARCHER P I, VAN RIJSSEL J, et al. Exciton storage by Mn2+ in colloidal Mn2+-doped CdSe quantum dots [J]. Nano Lett., 2008, 8(9): 2949-2953. doi: 10.1021/nl801847ehttp://dx.doi.org/10.1021/nl801847e
DUTTA S K, DUTTA A, ADHIKARI SDAS, et al. Doping Mn2+ in single-crystalline layered perovskite microcrystals [J]. ACS Energy Lett., 2019, 4(1): 343-351. doi: 10.1021/acsenergylett.8b02349http://dx.doi.org/10.1021/acsenergylett.8b02349
BA Q K, JANA A, WANG L H, et al. Dual emission of water-stable 2D organic-inorganic halide perovskites with Mn(Ⅱ) dopant [J]. Adv. Funct. Mater., 2019, 29(43): 1904768-1-10. doi: 10.1002/adfm.201904768http://dx.doi.org/10.1002/adfm.201904768
CAO F, YU D J, XU X B, et al. Water-assisted synthesis of blue chip excitable 2D halide perovskite with green-red dual emissions for white LEDs [J]. Small Methods, 2019, 3(11): 1900365. doi: 10.1002/smtd.201900365http://dx.doi.org/10.1002/smtd.201900365
ZHOU G J, JIANG X X, MOLOKEEV M, et al. Optically modulated ultra-broad-band warm white emission in Mn2+-doped (C6H18N2O2)PbBr4 hybrid metal halide phosphor [J]. Chem. Mater., 2019, 31(15): 5788-5795. doi: 10.1021/acs.chemmater.9b01864http://dx.doi.org/10.1021/acs.chemmater.9b01864
YANG X L, PU C D, QIN H Y, et al. Temperature- and Mn2+ concentration-dependent emission properties of Mn2+-doped ZnSe nanocrystals [J]. J. Am. Chem. Soc., 2019, 141(6): 2288-2298. doi: 10.1021/jacs.8b08480http://dx.doi.org/10.1021/jacs.8b08480
ZHOU G J, JIA X F, GUO S Q, et al. Role of halogen atoms on high-efficiency Mn2+ emission in two-dimensional hybrid perovskites [J]. J. Phys. Chem. Lett., 2019, 10(16): 4706-4712. doi: 10.1021/acs.jpclett.9b01996http://dx.doi.org/10.1021/acs.jpclett.9b01996
LUO B B, GUO Y, LI X L, et al. Efficient trap-mediated Mn2+ dopant emission in two dimensional single-layered perovskite (CH3CH2NH3)2PbBr4 [J]. J. Phys. Chem. C, 2019, 123(23): 14239-14245.
ZHOU G J, LIU Z Y, HUANG J L, et al. Unraveling the near-unity narrow-band green emission in zero-dimensional Mn2+-based metal halides: a case study of (C10H16N)2Zn1-xMnxBr4 solid solutions [J]. J. Phys. Chem. Lett., 2020, 11(15): 5956-5962. doi: 10.1021/acs.jpclett.0c01933http://dx.doi.org/10.1021/acs.jpclett.0c01933
DANG J L, YANG Z, GUO W, et al. In situ fabrication of Mn-doped 2D perovskite-polymer phosphor films with green-red dual emissions for yellow lighting [J]. Adv. Mater. Interfaces, 2021, 8(14): 2100560. doi: 10.1002/admi.202100560http://dx.doi.org/10.1002/admi.202100560
HAN J H, VISWANATH N S M, PARK Y M, et al. Zero-thermal-quenching layered metal halide perovskite [J]. Chem. Mater., 2022, 34(12): 5690-5697. doi: 10.1021/acs.chemmater.2c01052http://dx.doi.org/10.1021/acs.chemmater.2c01052
JIANG C L, ZHONG N, LUO C H, et al. (Diisopropylammonium)2MnBr4: a multifunctional ferroelectric with efficient green-emission and excellent gas sensing properties [J]. Chem. Commun., 2017, 53(44): 5954-5957. doi: 10.1039/c7cc01107ehttp://dx.doi.org/10.1039/c7cc01107e
XU L J, SUN C Z, XIAO H, et al. Green-light-emitting diodes based on tetrabromide manganese(Ⅱ) complex through solution process [J]. Adv. Mater., 2017, 29(10): 1605739-1-5. doi: 10.1002/adma.201605739http://dx.doi.org/10.1002/adma.201605739
XU L, GAO J X, CHEN X G, et al. A temperature-triggered triplex bistable switch in a hybrid multifunctional material: [(CH2)4N(CH2)4]2[MnBr4] [J]. Dalton Trans., 2018, 47(47): 16995-17003. doi: 10.1039/c8dt03456ghttp://dx.doi.org/10.1039/c8dt03456g
SU B B, MOLOKEEV M S, XIA Z G. Mn2+-based narrow-band green-emitting Cs3MnBr5 phosphor and the performance optimization by Zn2+ alloying [J]. J. Mater. Chem. C, 2019, 7(36): 11220-11226. doi: 10.1039/c9tc04127chttp://dx.doi.org/10.1039/c9tc04127c
LI M Z, ZHOU J, MOLOKEEV M S, et al. Lead-free hybrid metal halides with a green-emissive [MnBr4] unit as a selective turn-on fluorescent sensor for acetone [J]. Inorg. Chem., 2019, 58(19): 13464-13470. doi: 10.1021/acs.inorgchem.9b02374http://dx.doi.org/10.1021/acs.inorgchem.9b02374
MAO L L, GUO P J, WANG S X, et al. Design principles for enhancing photoluminescence quantum yield in hybrid manganese bromides [J]. J. Am. Chem. Soc., 2020, 142(21): 13582-13589. doi: 10.1021/jacs.0c06039http://dx.doi.org/10.1021/jacs.0c06039
0
Views
502
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution