浏览全部资源
扫码关注微信
1.哈尔滨工程大学 物理与光电工程学院, 黑龙江 哈尔滨 150001
2.滨州学院 航空工程学院, 山东 滨州 256603
3.哈尔滨师范大学 光电带隙材料教育部重点实验室, 黑龙江 哈尔滨 150025
Published:05 April 2023,
Received:25 October 2022,
Revised:11 November 2022,
移动端阅览
尹学爱,吕树臣.Sr0.3Ca0.7MoO4∶Tb3+, Eu3+荧光粉的颜色可调发光和温度传感特性[J].发光学报,2023,44(04):607-614.
YIN Xueai,LYU Shuchen.Color-tunable Luminescence and Temperature Sensing Behavior of Sr0.3Ca0.7MoO4∶Tb3+, Eu3+ Phosphor[J].Chinese Journal of Luminescence,2023,44(04):607-614.
尹学爱,吕树臣.Sr0.3Ca0.7MoO4∶Tb3+, Eu3+荧光粉的颜色可调发光和温度传感特性[J].发光学报,2023,44(04):607-614. DOI: 10.37188/CJL.20220376.
YIN Xueai,LYU Shuchen.Color-tunable Luminescence and Temperature Sensing Behavior of Sr0.3Ca0.7MoO4∶Tb3+, Eu3+ Phosphor[J].Chinese Journal of Luminescence,2023,44(04):607-614. DOI: 10.37188/CJL.20220376.
采用共沉淀法合成了一系列颜色可调的单掺和共掺Sr
0.3
Ca
0.7
(MoO
4
)
2
∶Tb
3+
,Eu
3+
荧光粉。用X射线衍射和扫描电镜对荧光粉的晶体结构和形貌进行了表征。结果表明,Tb
3+
和Eu
3+
的少量掺入无杂峰产生,对样品的晶体结构几乎没有影响。研究了样品的发光特性和温度传感特性。在样品的发光特性中,证实了Sr
0.3
Ca
0.7
⁃(MoO
4
)
2
荧光粉中Tb
3+
向Eu
3+
的能量传递。同时,通过温度依赖性发射光谱,证明所制备的Sr
0.3
Ca
0.7
(MoO
4
)
2
∶Tb
3+
,Eu
3+
荧光粉具有较好的热稳定性。计算了样品的绝对灵敏度和相对灵敏度,Sr
0.3
Ca
0.625
(MoO
4
)
2
∶0.05Tb
3+
,0.025Eu
3+
样品的相对灵敏度在514 K时最大值为0.861%·K
-1
。此外,在紫外光激发下,通过调节Eu
3+
的掺杂浓度,Sr
0.3
Ca
0.7
(MoO
4
)
2
∶Tb
3+
,Eu
3+
荧光粉的发光颜色可调谐。
A series of Tb
3+
/Eu
3+
single-doped, co-doped Ca
0.3
Sr
0.7
(MoO
4
)
2
phosphors with a tunable color were synthesized by the conventional co-precipitation method. The crystal structure and morphology of phosphors were characterized by X-ray diffraction and field emission scanning electron microscopy. The results showed that a small amount of Tb
3+
and Eu
3+
doped into the sample has no effect on the crystal structure of the sample, and there are no impurity peaks. We researched the luminescence properties and temperature sensing properties. The energy transfer from Tb
3+
to Eu
3+
in Sr
0.3
Ca
0.7
(MoO
4
)
2
∶Tb
3+
,Eu
3+
phosphors was confirmed in the luminescence characteristics of the samples. The temperature-dependent emission spectra suggested that the as-prepared samples possessed good thermal stability. The absolute sensitivity and relative sensitivity of samples were calculated, and the maximum relativity sensitivity of Sr
0.3
Ca
0.625
(MoO
4
)
2
∶0.05Tb
3+
,0.025 Eu
3+
sample was 0.861%·K
-1
at 514 K. In addition, under near-ultraviolet light by adjusting the doping concentration of Eu
3+
, the Sr
0.3
Ca
0.7
(MoO
4
)
2
∶Tb
3+
,Eu
3+
phosphors realized tunability of emission color.
荧光特性能量传递荧光粉光学温度传感
photoluminescence propertiesenergy transferphosphorsoptical temperature sensing
付素月, 朱烨程, 马颖珊, 等. 近紫外基白光LEDs用KYBaSi2O7∶Bi3+蓝色荧光粉发光特性 [J]. 发光学报, 2022, 43(7): 1078-1085. doi: 10.37188/CJL.20220109http://dx.doi.org/10.37188/CJL.20220109
FU S Y, ZHU Y C, MA Y S, et al. Luminescence properties of blue emitting phosphor KYBaSi2O7∶Bi3+ for near-UV based white LEDs [J]. Chin. J. Lumin., 2022, 43(7): 1078-1085. (in Chinese). doi: 10.37188/CJL.20220109http://dx.doi.org/10.37188/CJL.20220109
任博纶, 姚晓婷, 许晓凯, 等. 稀土上转换发光材料/量子点复合材料的研究进展 [J]. 中国稀土学报, 2021, 39(6): 827-839.
REN B L, YAO X T, XU X K, et al. Recent progress of rare earth upconversion luminescent materials/quantum dots composite materials [J]. J. Chin. Soc. Rare Earth, 2021, 39(6): 827-839. (in Chinese)
TIAN Y Y, TIAN Y, HUANG P, et al. Effect of Yb3+ concentration on upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ co-doped YNbO4 nanoparticles prepared via molten salt route [J]. Chem. Eng. J., 2016, 297: 26-34. doi: 10.1016/j.cej.2016.03.149http://dx.doi.org/10.1016/j.cej.2016.03.149
MING X, MENG Q Y, LYU S C, et al. Crystallite morphology-dependent optical temperature-sensing properties of Eu3+-doped NaGd(WO4)2 phosphor [J]. Chemistry, 2017, 2(35): 11860-11867.
简荣华, 庞涛. Yb3+/Er3+共掺Gd2Mo3O12的强绿色上转换发光及温度传感特性 [J]. 中国稀土学报, 2018, 36(5): 533-540. doi: 10.11785/S1000-4343.20180502http://dx.doi.org/10.11785/S1000-4343.20180502
JIAN R H, PANG T. Strong green upconversion luminescence and temperature sensing properties of Yb3+/Er3+ co-doped Gd2Mo3O12 phosphors [J]. J. Chin. Soc. Rare Earth, 2018, 36(5): 533-540. (in Chinese). doi: 10.11785/S1000-4343.20180502http://dx.doi.org/10.11785/S1000-4343.20180502
GAO Y, CHENG Y, HU T, et al. Broadening the valid temperature range of optical thermometry through dual-mode design [J]. J. Mater. Chem. C, 2018, 6(41): 11178-11183. doi: 10.1039/c8tc03851ahttp://dx.doi.org/10.1039/c8tc03851a
周慧丽, 吴锋, 张志宏, 等. Lu2O3∶Er3+/Yb3+荧光材料的上转换发光及其温度传感特性 [J]. 发光学报, 2022, 43(2): 192-200. doi: 10.37188/cjl.20210363http://dx.doi.org/10.37188/cjl.20210363
ZHOU H L, WU F, ZHANG Z H, et al. Upconversion luminescence and temperature sensing characteristics of Lu2O3∶Er3+/Yb3+ phosphor [J]. Chin. J. Lumin., 2022, 43(2): 192-200. (in Chinese). doi: 10.37188/cjl.20210363http://dx.doi.org/10.37188/cjl.20210363
DU P, WU Y F, YU J S. Synthesis and luminescence properties of Eu3+-activated BiF3 nanoparticles for optical thermometry and fluorescence imaging in rice root [J]. RSC Adv., 2018, 8(12): 6419-6424. doi: 10.1039/C8RA00107Chttp://dx.doi.org/10.1039/C8RA00107C
ZHANG J, JIN C. Electronic structure, upconversion luminescence and optical temperature sensing behavior of Yb3+-Er3+/Ho3+ doped NaLaMgWO6 [J]. J. Alloys Compd., 2019, 783: 84-94. doi: 10.1016/j.jallcom.2018.12.281http://dx.doi.org/10.1016/j.jallcom.2018.12.281
JIN Y, LÜ W, ZHANG J H, et al. Luminescence properties of Tb3+, Eu3+, Tm3+ co-doped Na5La(MoO4)4 for white light-emitting diode [J]. J. Nanosci. Nanotechnol., 2014, 14(5): 3683-3686. doi: 10.1166/jnn.2014.7969http://dx.doi.org/10.1166/jnn.2014.7969
DU P, YU J S. Synthesis and luminescent properties of red-emitting Eu3+-activated Ca0.5Sr0.5MoO4 phosphors [J]. J. Mater. Sci., 2016, 51(11): 5427-5435. doi: 10.1007/s10853-016-9846-2http://dx.doi.org/10.1007/s10853-016-9846-2
LI D Y, SUN W F, SHAO L X, et al. Tailoring solar energy spectrum for efficient organic/inorganic hybrid solar cells by up-conversion luminescence nanophosphors [J]. Electrochim. Acta, 2015, 182: 416-423. doi: 10.1016/j.electacta.2015.09.023http://dx.doi.org/10.1016/j.electacta.2015.09.023
JIN X, LI H Y, LI D Y, et al. Role of ytterbium-erbium co-doped gadolinium molybdate (Gd2(MoO4)3∶Yb/Er) nanophosphors in solar cells [J]. Opt. Express, 2016, 24(18): A1276-A1287. doi: 10.1364/oe.24.0a1276http://dx.doi.org/10.1364/oe.24.0a1276
HUA Y B, YU J S. Broadband near-ultraviolet excited La2Mo2O9∶Eu3+ red-emitting phosphors with high color purity for solid-state lighting [J]. J. Alloys Compd., 2019, 783: 969-976. doi: 10.1016/j.jallcom.2018.12.279http://dx.doi.org/10.1016/j.jallcom.2018.12.279
LI S D, MENG Q Y, LÜ S C, et al. Optical properties of Sm3+ and Tb3+ co-doped CaMoO4 phosphor for temperature sensing [J]. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2019, 214: 537-543. doi: 10.1016/j.saa.2019.02.049http://dx.doi.org/10.1016/j.saa.2019.02.049
CHEN D Q, WANG Z Y, ZHOU Y, et al. Tb3+/Eu3+∶YF3 nanophase embedded glass ceramics: structural characterization, tunable luminescence and temperature sensing behavior [J]. J. Alloys Compd., 2015, 646: 339-344. doi: 10.1016/j.jallcom.2015.06.030http://dx.doi.org/10.1016/j.jallcom.2015.06.030
VIJAYAKUMAR R, GUO H, HUANG X Y. Energy transfer and color-tunable luminescence properties of Dy3+ and Eu3+ co-doped Na3Sc2(PO4)3 phosphors for near-UV LED-based warm white LEDs [J]. Dyes Pigm., 2018, 156: 8-16. doi: 10.1016/j.dyepig.2018.03.053http://dx.doi.org/10.1016/j.dyepig.2018.03.053
HAN Z X, LÜ S C, MENG Q Y, et al. Enhanced red emission and thermal stability of Ca(MoO4)0.8(WO4)0.2∶xDy3+, yEu3+ phosphors by charge compensation [J]. J. Lumin., 2022, 241: 118504. doi: 10.1016/j.jlumin.2021.118504http://dx.doi.org/10.1016/j.jlumin.2021.118504
YIN X A, LÜ S C. Improved Eu3+ red-emitting by charge compensation in Sr0.3Ca0.7(MoO4)2∶xDy3+,yEu3+ phosphors [J]. J. Lumin., 2022, 250: 119091. doi: 10.1016/j.jlumin.2022.119091http://dx.doi.org/10.1016/j.jlumin.2022.119091
LI X Y, PENG Y Z, WEI X T, et al. Energy transfer behaviors and tunable luminescence in Tb3+/Eu3+ codoped oxyfluoride glass ceramics containing cubic/hexagonal NaYF4 nanocrystals [J]. J. Lumin., 2019, 210: 182-188. doi: 10.1016/j.jlumin.2019.01.061http://dx.doi.org/10.1016/j.jlumin.2019.01.061
ZHENG Z G, ZHANG J F, LIU X Y, et al. Luminescence and self-referenced optical temperature sensing performance in Ca2YZr2Al3O12∶Bi3+,Eu3+ phosphors [J]. Ceram. Int., 2020, 46(5): 6154-6159. doi: 10.1016/j.ceramint.2019.11.081http://dx.doi.org/10.1016/j.ceramint.2019.11.081
GAO Y, HUANG F, LIN H, et al. A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states [J]. Adv. Funct. Mater., 2016, 26(18): 3139-3145. doi: 10.1002/adfm.201505332http://dx.doi.org/10.1002/adfm.201505332
TIAN Y, CHEN B J, HUA R N, et al. Self-assembled 3D flower-shaped NaY(WO4)2∶Eu3+ microarchitectures: microwave-assisted hydrothermal synthesis, growth mechanism and luminescent properties [J]. CrystEngComm, 2012, 14(5): 1760-1769. doi: 10.1039/c1ce06232hhttp://dx.doi.org/10.1039/c1ce06232h
HUANG F, CHEN D Q. Synthesis of Mn2+∶Zn2SiO4-Eu3+∶Gd2O3 nanocomposites for highly sensitive optical thermometry through the synergistic luminescence from lanthanide-transition metal ions [J]. J. Mater. Chem. C, 2017, 5(21): 5176-5182. doi: 10.1039/c7tc01500chttp://dx.doi.org/10.1039/c7tc01500c
CHANG Y C, LIANG C H, YAN S A, et al. Synthesis and photoluminescence characteristics of high color purity and brightness Li3Ba2Gd3(MoO4)8∶Eu3+ red phosphors [J]. J. Phys. Chem. C, 2010, 114(8): 3645-3652. doi: 10.1021/jp9084124http://dx.doi.org/10.1021/jp9084124
TANG L L, MENG Q Y, SUN W J, et al. Preparation and temperature sensing behavior of NaY(MoO4)2∶Pr3+,Tb3+ phosphors [J]. J. Lumin., 2021, 230: 117728-1-10. doi: 10.1016/j.jlumin.2020.117728http://dx.doi.org/10.1016/j.jlumin.2020.117728
0
Views
252
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution