浏览全部资源
扫码关注微信
1.河北工业大学 材料科学与工程学院, 天津 300401
2.吉林大学电子科学与工程学院 集成光电子学国家重点联合实验室, 吉林 长春 130012
Published:05 April 2023,
Received:18 October 2022,
Revised:01 November 2022,
扫 描 看 全 文
朱云飞,赵雪帆,王成麟等.赝卤素阴离子工程在钙钛矿太阳能电池中的应用研究进展[J].发光学报,2023,44(04):579-597.
ZHU Yunfei,ZHAO Xuefan,WANG Chenglin,et al.Research Progress on Application of Pseudo-halide Anion Engineering in Perovskite Solar Cells[J].Chinese Journal of Luminescence,2023,44(04):579-597.
朱云飞,赵雪帆,王成麟等.赝卤素阴离子工程在钙钛矿太阳能电池中的应用研究进展[J].发光学报,2023,44(04):579-597. DOI: 10.37188/CJL.20220365.
ZHU Yunfei,ZHAO Xuefan,WANG Chenglin,et al.Research Progress on Application of Pseudo-halide Anion Engineering in Perovskite Solar Cells[J].Chinese Journal of Luminescence,2023,44(04):579-597. DOI: 10.37188/CJL.20220365.
金属卤化物钙钛矿太阳能电池已经能够实现25.7%的认证光电转化效率,接近于晶硅太阳能电池26.7%的最高认证效率。众所周知,
ABX
3
钙钛矿材料的晶体结构组分工程在实现高效和稳定的器件方面发挥着关键作用,尤其是近几年受到研究人员广泛关注的
X
位卤素阴离子组分工程。最近,研究人员在引入赝卤素阴离子作为钙钛矿晶体的掺杂组分、前驱体添加剂、薄膜后处理材料、电荷传输材料、界面钝化剂以及改性剂等方面开展了多项研究工作,结果证明赝卤素离子修饰是提高器件效率和稳定性的重要策略。本综述详细对比和总结了目前可用于钙钛矿太阳能电池的多种类型的赝卤素离子,并对其影响钙钛矿晶体薄膜形貌、光电特性、载流子迁移特性和器件光伏特性及稳定性等方面的深入机理和作用本质进行了深入总结。同时,本文还对目前尚未被探索开发的赝卤素离子进行了展望和分析,以期在未来研究中能有效促进钙钛矿太阳能电池光伏特性的提升。
Metal halide perovskite solar cells have been able to achieve certified photovoltaic conversion efficiencies of 25.7%, approaching the maximum certified efficiency of 26.7% for crystalline silicon solar cells. It is well known that the component engineering of the crystal structure of
ABX
3
perovskite materials plays a key role in achieving efficient and stable devices, especially the component engineering of the
X
-site halide anion, which has received much attention from researchers in recent years. Recently, researchers have carried out several studies on the introduction of pseudo-halide anions as doping components, precursor additives, thin film post-treatment materials, charge transport materials, interfacial passivation, and modifiers for perovskite crystals, and the results demonstrate that pseudo-halide ion modification is an important strategy to improve device efficiency and stability. This review provides a detailed comparison and summary of the various types of pseudo-halide ions currently available for use in perovskite solar cells and provides an in-depth summary of the mechanisms and nature of their effects on perovskite crystal film morphology, photovoltaic properties, carrier migration properties, and device photovoltaic characteristics and stability. At the same time, this paper also provides an outlook and analysis of the currently unexplored pseudo-halide ions to effectively contribute to the enhancement of the photovoltaic properties of perovskite solar cells in future research.
赝卤素离子组分工程钙钛矿太阳能电池缺陷钝化
pseudo-halide ionscomponent engineeringperovskite solar cellsdefect passivation
MIN H, LEE D Y, KIM J, et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes [J]. Nature, 2021, 598(7881): 444-450. doi: 10.1038/s41586-021-03964-8http://dx.doi.org/10.1038/s41586-021-03964-8
JEON N J, NOH J H, YANG W S, et al. Compositional engineering of perovskite materials for high-performance solar cells [J]. Nature, 2015, 517(7535): 476-480. doi: 10.1038/nature14133http://dx.doi.org/10.1038/nature14133
CHEN J Z, RONG Y G, MEI A Y, et al. Hole-conductor-free fully printable mesoscopic solar cell with mixed-anion perovskite CH3NH3PbI(3-x)(BF4)x [J]. Adv. Energy Mater., 2016, 6(5): 1502009-1-6. doi: 10.1002/aenm.201502009http://dx.doi.org/10.1002/aenm.201502009
BAI L, YAO F, WANG R, et al. Ion migration suppression mechanism via 4-sulfobenzoic acid monopotassium salt for 22.7% stable perovskite solar cells [J]. Sci. China Mater., 2022, 65(12): 3368-3381. doi: 10.1007/s40843-022-2060-9http://dx.doi.org/10.1007/s40843-022-2060-9
GU J W, LI F M, WANG Z H, et al. Morphology tuning and its role in optimization of perovskite films fabricated from a novel nonhalide lead source [J]. Adv. Sci., 2020, 7(23): 2002296-1-9. doi: 10.1002/advs.202002296http://dx.doi.org/10.1002/advs.202002296
ZHANG W, SALIBA M, MOORE D T, et al. Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells [J]. Nat. Commun., 2015, 6: 6142. doi: 10.1038/ncomms7142http://dx.doi.org/10.1038/ncomms7142
LI M J, LI H Y, ZHUANG Q X, et al. Stabilizing perovskite precursor by synergy of functional groups for NiOx-based inverted solar cells with 23.5% efficiency [J]. Angew. Chem. Int. Ed., 2022, 61(35): e202206914-1-12. doi: 10.1002/anie.202206914http://dx.doi.org/10.1002/anie.202206914
BAI S, DA P M, LI C, et al. Planar perovskite solar cells with long-term stability using ionic liquid additives [J]. Nature, 2019, 571(7764): 245-250. doi: 10.1038/s41586-019-1357-2http://dx.doi.org/10.1038/s41586-019-1357-2
GAO D Y, LI M J, YANG L Q, et al. 3-ammonium propionic acid: a cation tailoring crystal structure of hybrid perovskite for improving photovoltaic performance [J]. ACS Appl. Energy Mater., 2021, 4(12): 14662-14670. doi: 10.1021/acsaem.1c03296http://dx.doi.org/10.1021/acsaem.1c03296
LI M J, GAO D Y, ZHANG B X, et al. Multifunctional reductive molecular modulator toward efficient and stable perovskite solar cells [J]. Solar RRL, 2021, 5(10): 2100320-1-10. doi: 10.1002/solr.202100320http://dx.doi.org/10.1002/solr.202100320
YANG L Q, MA X H, SHANG X N, et al. Zwitterionic ionic liquid confer defect tolerance, high conductivity, and hydrophobicity toward efficient perovskite solar cells exceeding 22% efficiency [J]. Solar RRL, 2021, 5(9): 2100352-1-10. doi: 10.1002/solr.202100352http://dx.doi.org/10.1002/solr.202100352
ZHU L H, ZHANG X, LI M J, et al. Trap state passivation by rational ligand molecule engineering toward efficient and stable perovskite solar cells exceeding 23% efficiency [J]. Adv. Energy Mater., 2021, 11(20): 2100529-1-10. doi: 10.1002/aenm.202100529http://dx.doi.org/10.1002/aenm.202100529
CHEN J Z, SEO J Y, PARK N G. Simultaneous improvement of photovoltaic performance and stability by in situ formation of 2D perovskite at (FAPbI3)0.88(CsPbBr3)0.12/CuSCN interface [J]. Adv. Energy Mater., 2018, 8(12): 1702714-1-15. doi: 10.1002/aenm.201702714http://dx.doi.org/10.1002/aenm.201702714
ARORA N, DAR M I, HINDERHOFER A, et al. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20% [J]. Science, 2017, 358(6364): 768-771. doi: 10.1126/science.aam5655http://dx.doi.org/10.1126/science.aam5655
SEO J Y, KIM H S, AKIN S, et al. Novel p-dopant toward highly efficient and stable perovskite solar cells [J]. Energy Environ. Sci., 2018, 11(10): 2985-2992. doi: 10.1039/c8ee01500ghttp://dx.doi.org/10.1039/c8ee01500g
SALIBA M, MATSUI T, SEO J Y, et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency [J]. Energy Environ. Sci., 2016, 9(6): 1989-1997. doi: 10.1039/c5ee03874jhttp://dx.doi.org/10.1039/c5ee03874j
GAO D Y, YANG L Q, MA X H, et al. Passivating buried interface with multifunctional novel ionic liquid containing simultaneously fluorinated anion and cation yielding stable perovskite solar cells over 23% efficiency [J]. J. Energy Chem., 2022, 69: 659-666. doi: 10.1016/j.jechem.2022.02.016http://dx.doi.org/10.1016/j.jechem.2022.02.016
YANG S, CHEN S S, MOSCONI E, et al. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts [J]. Science, 2019, 365(6452): 473-478. doi: 10.1126/science.aax3294http://dx.doi.org/10.1126/science.aax3294
CHEN J Z, KIM S G, REN X D, et al. Effect of bidentate and tridentate additives on the photovoltaic performance and stability of perovskite solar cells [J]. J. Mater. Chem. A, 2019, 7(9): 4977-4987. doi: 10.1039/c8ta11977ehttp://dx.doi.org/10.1039/c8ta11977e
LI M J, ZHU L H, ZHANG X, et al. Highly efficient and stable perovskite solar cells based on E-beam evaporated SnO2 and rational interface defects passivation [J]. Nano Select, 2022, 3(5): 956-964. doi: 10.1002/nano.202100244http://dx.doi.org/10.1002/nano.202100244
MA X H, YANG L Q, SHANG X N, et al. Grain boundary defect passivation by in situ formed wide-bandgap lead sulfate for efficient and stable perovskite solar cells [J]. Chem. Eng. J., 2021, 426: 130685-1-8. doi: 10.1016/j.cej.2021.130685http://dx.doi.org/10.1016/j.cej.2021.130685
MENG F B, SHANG X N, GAO D Y, et al. Functionalizing phenethylammonium by methoxy to achieve low-dimensional interface defects passivation for efficient and stable perovskite solar cells [J]. Nanotechnology, 2022, 33(6): 065201-1-10. doi: 10.1088/1361-6528/ac33d5http://dx.doi.org/10.1088/1361-6528/ac33d5
WANG H R, ZHANG X Y, WU Q Q, et al. Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices [J]. Nat. Commun., 2019, 10(1): 665-1-10. doi: 10.1038/s41467-019-08425-5http://dx.doi.org/10.1038/s41467-019-08425-5
ZHANG X Q, WU G, FU W F, et al. Orientation regulation of phenylethylammonium cation based 2D perovskite solar cell with efficiency higher than 11% [J]. Adva. Energy Mater., 2018, 8(14): 1702498-1-9. doi: 10.1002/aenm.201702498http://dx.doi.org/10.1002/aenm.201702498
SEO J Y, MATSUI T, LUO J S, et al. Ionic liquid control crystal growth to enhance planar perovskite solar cells efficiency [J]. Adv. Energy Mater., 2016, 6(20): 1600767. doi: 10.1002/aenm.201600767http://dx.doi.org/10.1002/aenm.201600767
WU Y L, WAN L, FU S, et al. Liquid metal acetate assisted preparation of high-efficiency and stable inverted perovskite solar cells [J]. J. Mater. Chem. A, 2019, 7(23): 14136-14144. doi: 10.1039/c9ta04192chttp://dx.doi.org/10.1039/c9ta04192c
BANG S M, SHIN S S, JEON N J, et al. Defect-tolerant sodium-based dopant in charge transport layers for highly efficient and stable perovskite solar cells [J]. ACS Energy Lett., 2020, 5(4): 1198-1205. doi: 10.1021/acsenergylett.0c00514http://dx.doi.org/10.1021/acsenergylett.0c00514
CHEN J Z, KIM S G, PARK N G. FA0.88Cs0.12PbI3-x(PF6)x interlayer formed by ion exchange reaction between perovskite and hole transporting layer for improving photovoltaic performance and stability [J]. Adv. Mater., 2018, 30(40): 1801948-1-11. doi: 10.1002/adma.201801948http://dx.doi.org/10.1002/adma.201801948
ZHANG T Y, XIE L Q, CHEN L, et al. In situ fabrication of highly luminescent bifunctional amino acid crosslinked 2D/3D NH3C4H9COO(CH3NH3PbBr3)n perovskite films [J]. Adv. Funct. Mater., 2017, 27(1): 1603568-1-8. doi: 10.1002/adfm.201603568http://dx.doi.org/10.1002/adfm.201603568
SAPAROV B, MITZI D B. Organic-inorganic perovskites: structural versatility for functional materials design [J]. Chem. Rev., 2016, 116(7): 4558-4596. doi: 10.1021/acs.chemrev.5b00715http://dx.doi.org/10.1021/acs.chemrev.5b00715
YAN X L, HU S, ZHANG Y, et al. Methylammonium acetate as an additive to improve performance and eliminate J⁃V hysteresis in 2D homologous organic-inorganic perovskite solar cells [J]. Solar Energy Mater., 2019, 191: 283-289. doi: 10.1016/j.solmat.2018.11.030http://dx.doi.org/10.1016/j.solmat.2018.11.030
JEONG J, KIM M, SEO J, et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells [J]. Nature, 2021, 592(7854): 381-385. doi: 10.1038/s41586-021-03406-5http://dx.doi.org/10.1038/s41586-021-03406-5
XU B, HUANG J, ÅGREN H, et al. AgTFSI as p-type dopant for efficient and stable solid-state dye-sensitized and perovskite solar cells [J]. ChemSusChem, 2014, 7(12): 3252-3256. doi: 10.1002/cssc.201402678http://dx.doi.org/10.1002/cssc.201402678
ZHU X J, DU M Y, FENG J S, et al. High-efficiency perovskite solar cells with imidazolium-based ionic liquid for surface passivation and charge transport [J]. Angew. Chem. Int. Ed., 2021, 60(8): 4238-4244. doi: 10.1002/anie.202010987http://dx.doi.org/10.1002/anie.202010987
WU Q L, ZHOU W R, LIU Q, et al. Solution-processable ionic liquid as an independent or modifying electron transport layer for high-efficiency perovskite solar cells [J]. ACS Appl. Mater. Interfaces, 2016, 8(50): 34464-34473. doi: 10.1021/acsami.6b12683http://dx.doi.org/10.1021/acsami.6b12683
王成麟, 张左林, 朱云飞, 等. 钙钛矿太阳能电池中缺陷及其钝化策略研究进展 [J]. 物理学报, 2022, 71(16): 166801-1-17. doi: 10.7498/aps.71.20220359http://dx.doi.org/10.7498/aps.71.20220359
WANG C L, ZHANG Z L, ZHU Y F, et al. Progress of defect and defect passivation in perovskite solar cells [J]. Acta Phys. Sinica, 2022, 71(16): 166801-1-17. (in Chinese). doi: 10.7498/aps.71.20220359http://dx.doi.org/10.7498/aps.71.20220359
赵雪帆, 朱云飞, 孟凡斌, 等. 非铅钙钛矿光伏材料与器件研究进展 [J]. 发光学报, 2022, 43(6): 817-832. doi: 10.37188/CJL.20220050http://dx.doi.org/10.37188/CJL.20220050
ZHAO X F, ZHU Y F, MENG F B, et al. Progress of lead-free perovskite photovoltaic materials and devices [J]. Chin. J. Lumin., 2022, 43(6): 817-832. (in Chinese). doi: 10.37188/CJL.20220050http://dx.doi.org/10.37188/CJL.20220050
SCHWARZ K, MERTZ W. Chromium(Ⅲ) and the glucose tolerance factor [J]. Arch. Biochem., 1959, 85: 292-295. doi: 10.1016/0003-9861(59)90479-5http://dx.doi.org/10.1016/0003-9861(59)90479-5
LUO D Y, SU R, ZHANG W, et al. Minimizing non-radiative recombination losses in perovskite solar cells [J]. Nat. Rev. Mater., 2020, 5(1): 44-60. doi: 10.1038/s41578-019-0151-yhttp://dx.doi.org/10.1038/s41578-019-0151-y
JIN H D, DEBROYE E, KESHAVARZ M, et al. It's a trap! On the nature of localised states and charge trapping in lead halide perovskites [J]. Mater. Horiz., 2020, 7(2): 397-410. doi: 10.1039/c9mh00500ehttp://dx.doi.org/10.1039/c9mh00500e
ZHOU Y, POLI I, MEGGIOLARO D, et al. Defect activity in metal halide perovskites with wide and narrow bandgap [J]. Nat. Rev. Mater., 2021, 6(11): 986-1002. doi: 10.1038/s41578-021-00331-xhttp://dx.doi.org/10.1038/s41578-021-00331-x
JIANG Q, ZHAO Y, ZHANG X W, et al. Surface passivation of perovskite film for efficient solar cells [J]. Nat. Photonics, 2019, 13(7): 460-466. doi: 10.1038/s41566-019-0398-2http://dx.doi.org/10.1038/s41566-019-0398-2
CHEN B, RUDD P N, YANG S, et al. Imperfections and their passivation in halide perovskite solar cells [J]. Chem. Soc. Rev., 2019, 48(14): 3842-3867. doi: 10.1039/c8cs00853ahttp://dx.doi.org/10.1039/c8cs00853a
KEEBLE D J, WIKTOR J, PATHAK S K, et al. Identification of lead vacancy defects in lead halide perovskites [J]. Nat. Commun., 2021, 12(1): 5566-1-7. doi: 10.1038/s41467-021-25937-1http://dx.doi.org/10.1038/s41467-021-25937-1
AMBROSIO F, MEGGIOLARO D, MOSCONI E, et al. Charge localization and trapping at surfaces in lead-iodide perovskites: the role of polarons and defects [J]. J. Mater. Chem. A, 2020, 8(14): 6882-6892. doi: 10.1039/d0ta00798fhttp://dx.doi.org/10.1039/d0ta00798f
LIN Y H, SAKAI N, DA P M, et al. A piperidinium salt stabilizes efficient metal-halide perovskite solar cells [J]. Science, 2020, 369(6499): 96-102. doi: 10.1126/science.aba1628http://dx.doi.org/10.1126/science.aba1628
HENDON C H, YANG R X, BURTON L A, et al. Assessment of polyanion (BF4- and PF6-) substitutions in hybrid halide perovskites [J]. J. Mater. Chem. A, 2015, 3(17): 9067-9070. doi: 10.1039/c4ta05284fhttp://dx.doi.org/10.1039/c4ta05284f
HALDER A, CHULLIYIL R, SUBBIAH A S, et al. Pseudohalide (SCN-)-doped MAPbI3 perovskites: a few surprises [J]. J. Phys. Chem. Lett., 2015, 6(17): 3483-3489. doi: 10.1021/acs.jpclett.5b01327http://dx.doi.org/10.1021/acs.jpclett.5b01327
MOORE D T, SAI H, TAN K W, et al. Crystallization kinetics of organic-inorganic trihalide perovskites and the role of the lead anion in crystal growth [J]. J. Am. Chem. Soc., 2015, 137(6): 2350-2358. doi: 10.1021/ja512117ehttp://dx.doi.org/10.1021/ja512117e
ZHAO Q, LI G R, SONG J, et al. Improving the photovoltaic performance of perovskite solar cells with acetate [J]. Sci Rep, 2016, 6: 38670-1-10. doi: 10.1038/srep38670http://dx.doi.org/10.1038/srep38670
XIAO M D, HUANG F Z, HUANG W C, et al. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells [J]. Angew. Chem. Int. Ed., 2014, 53(37): 9898-9903. doi: 10.1002/anie.201405334http://dx.doi.org/10.1002/anie.201405334
LIANG C, GU H, XIA Y D, et al. Two-dimensional Ruddlesden-Popper layered perovskite solar cells based on phase-pure thin films [J]. Nat. Energy, 2021, 6(1): 38-45. doi: 10.1038/s41560-020-00721-5http://dx.doi.org/10.1038/s41560-020-00721-5
KONG W G, WANG G L, ZHENG J M, et al. Fabricating high-efficient blade-coated perovskite solar cells under ambient condition using lead acetate trihydrate [J]. Solar RRL, 2018, 2(3): 1700214. doi: 10.1002/solr.201700214http://dx.doi.org/10.1002/solr.201700214
XING Z, LIN S Y, MENG X C, et al. A highly tolerant printing for scalable and flexible perovskite solar cells [J]. Adv. Funct. Mater., 2021, 31(50): 2107726-1-8. doi: 10.1002/adfm.202107726http://dx.doi.org/10.1002/adfm.202107726
DING W G, LIU H L, ZHANG S, et al. Transformation of quasi-2D perovskite into 3D perovskite using formamidine acetate additive for efficient blue light-emitting diodes [J]. Adv. Funct. Mater., 2022, 32(8): 2105164-1-10. doi: 10.1002/adfm.202105164http://dx.doi.org/10.1002/adfm.202105164
WANG Y Y, YANG M, TANG Y N, et al. First-principles studies on electronic and optical properties of formate-doped organic-inorganic perovskites MAPbI3 [J]. Solar Energy Mater. Solar Cells, 2022, 246: 111941. doi: 10.1016/j.solmat.2022.111941http://dx.doi.org/10.1016/j.solmat.2022.111941
HUI W, CHAO L F, LU H, et al. Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity [J]. Science, 2021, 371(6536): 1359-1364. doi: 10.1126/science.abf7652http://dx.doi.org/10.1126/science.abf7652
ZHOU Z W, AITKEN R A, CARDINAUD C, et al. Synthesis, microwave spectra, X-ray structure, and high-level theoretical calculations for formamidinium formate [J]. J. Chem. Phys., 2019, 150(9): 094305-1-10. doi: 10.1063/1.5081683http://dx.doi.org/10.1063/1.5081683
TRESS W, MARINOVA N, INGANÄS O, et al. Predicting the open-circuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra: the role of radiative and non-radiative recombination [J]. Adv. Energy Mater., 2015, 5(3): 1400812-1-6. doi: 10.1002/aenm.201400812http://dx.doi.org/10.1002/aenm.201400812
THAKUR S, KWON S N, MANN D S, et al. Effects of heterofunctional alkali-metal formate doping on perovskite solar cell performance [J]. J. Materiom., 2022, 8(6): 1165-1171. doi: 10.1016/j.jmat.2022.06.002http://dx.doi.org/10.1016/j.jmat.2022.06.002
NAYAK P K, MOORE D T, WENGER B, et al. Mechanism for rapid growth of organic-inorganic halide perovskite crystals [J]. Nat. Commun., 2016, 7: 13303-1-8. doi: 10.1038/ncomms13303http://dx.doi.org/10.1038/ncomms13303
NOEL N K, CONGIU M, RAMADAN A J, et al. Unveiling the influence of pH on the crystallization of hybrid perovskites, delivering low voltage loss photovoltaics [J]. Joule, 2017, 1(2): 328-343. doi: 10.1016/j.joule.2017.09.009http://dx.doi.org/10.1016/j.joule.2017.09.009
LOU Y B, NIU Y D, YANG D W, et al. Rod-shaped thiocyanate-induced abnormal band gap broadening in SCN- doped CsPbBr3 perovskite nanocrystals [J]. Nano Res., 2018, 11(5): 2715-2723. doi: 10.1007/s12274-017-1901-zhttp://dx.doi.org/10.1007/s12274-017-1901-z
KIM M K, JEON T, PARK H I, et al. Effective control of crystal grain size in CH3NH3PbI3 perovskite solar cells with a pseudohalide Pb(SCN)2 additive [J]. CrystEngComm, 2016, 18(32): 6090-6095. doi: 10.1039/c6ce00842ahttp://dx.doi.org/10.1039/c6ce00842a
JIANG Q L, REBOLLAR D, GONG J, et al. Pseudohalide-induced moisture tolerance in perovskite CH3NH3Pb(SCN)2I thin films [J]. Angew. Chem. Int. Ed., 2015, 54(26): 7617-7620. doi: 10.1002/anie.201503038http://dx.doi.org/10.1002/anie.201503038
KE W J, XIAO C X, WANG C L, et al. Employing lead thiocyanate additive to reduce the hysteresis and boost the fill factor of planar perovskite solar cells [J]. Adv. Mater., 2016, 28(26): 5214-5221. doi: 10.1002/adma.201600594http://dx.doi.org/10.1002/adma.201600594
LI Y Z, ZHANG Z B, ZHOU Y, et al. Enhanced performance and stability of ambient-processed CH3NH3PbI3-x(SCN)x planar perovskite solar cells by introducing ammonium salts [J]. Appl. Surf. Sci., 2020, 513: 145790-1-7. doi: 10.1016/j.apsusc.2020.145790http://dx.doi.org/10.1016/j.apsusc.2020.145790
SUN Y, PENG J J, CHEN Y N, et al. Triple-cation mixed-halide perovskites: towards efficient, annealing-free and air-stable solar cells enabled by Pb(SCN)2 additive [J]. Sci. Rep., 2017, 7: 46193-1-7. doi: 10.1038/srep46193http://dx.doi.org/10.1038/srep46193
TANG G, YANG C, STROPPA A, et al. Revealing the role of thiocyanate anion in layered hybrid halide perovskite (CH3NH3)2Pb(SCN)2I2 [J]. J. Chem. Phys., 2017, 146(22): 224702-1-10. doi: 10.1063/1.4984615http://dx.doi.org/10.1063/1.4984615
LABRAM J G, VENKATESAN N R, TAKACS C J, et al. Charge transport in a two-dimensional hybrid metal halide thiocyanate compound [J]. J. Mater. Chem. C, 2017, 5(24): 5930-5938. doi: 10.1039/c7tc01161jhttp://dx.doi.org/10.1039/c7tc01161j
KIM D, JUNG H J, PARK I J, et al. Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites [J]. Science, 2020, 368(6487): 155-160. doi: 10.1126/science.aba3433http://dx.doi.org/10.1126/science.aba3433
CHANDRA DEB NATH N, YOO K, LEE J J. Halogen-free guanidinium-based perovskite solar cell with enhanced stability [J]. RSC Adv., 2018, 8(31): 17365-17372. doi: 10.1039/c8ra00639chttp://dx.doi.org/10.1039/c8ra00639c
KIM H, LEE Y H, LYU T, et al. Boosting the performance and stability of quasi-two-dimensional tin-based perovskite solar cells using the formamidinium thiocyanate additive [J]. J. Mater. Chem. A, 2018, 6(37): 18173-18182. doi: 10.1039/c8ta05916khttp://dx.doi.org/10.1039/c8ta05916k
QIU F Z, SUN J Y, LIU H, et al. Cesium trifluoroacetate induced synergistic effects of grain growth and defect passivation on high-performance perovskite solar cells [J]. Chem. Eng. J., 2022, 446: 136936-1-8. doi: 10.1016/j.cej.2022.136936http://dx.doi.org/10.1016/j.cej.2022.136936
FANG Z B, CHEN W J, SHI Y L, et al. Dual passivation of perovskite defects for light-emitting diodes with external quantum efficiency exceeding 20% [J]. Adv. Funct. Mater., 2020, 30(12): 1909754-19. doi: 10.1002/adfm.201909754http://dx.doi.org/10.1002/adfm.201909754
LIU D, SHAO Z P, GUI J Z, et al. A polar-hydrophobic ionic liquid induces grain growth and stabilization in halide perovskites [J]. Chem. Commun., 2019, 55(74): 11059-11062. doi: 10.1039/c9cc05490ahttp://dx.doi.org/10.1039/c9cc05490a
WEI N, CHEN Y T, WANG X T, et al. Multi-level passivation of MAPbI3 perovskite for efficient and stable photovoltaics [J]. Adv. Funct. Mater., 2022, 32(16): 2108944. doi: 10.1002/adfm.202108944http://dx.doi.org/10.1002/adfm.202108944
NAGANE S, BANSODE U, GAME O, et al. CH3NH3PbI(3-x)(BF4)x: molecular ion substituted hybrid perovskite [J]. Chem. Commun., 2014, 50(68): 9741-9744. doi: 10.1039/c4cc04537hhttp://dx.doi.org/10.1039/c4cc04537h
CHUNG I, LEE B, HE J Q, et al. All-solid-state dye-sensitized solar cells with high efficiency [J]. Nature, 2012, 485(7399): 486-489. doi: 10.1038/nature11067http://dx.doi.org/10.1038/nature11067
SHENG Y S, MEI A Y, LIU S, et al. Mixed (5-AVA)xMA1-xPbI3-y(BF4)y perovskites enhance the photovoltaic performance of hole-conductor-free printable mesoscopic solar cells [J]. J. Mater. Chem. A, 2018, 6(5): 2360-2364. doi: 10.1039/c7ta09604fhttp://dx.doi.org/10.1039/c7ta09604f
ZHANG J, WU S F, LIU T T, et al. Boosting photovoltaic performance for lead halide perovskites solar cells with BF4- anion substitutions [J]. Adv. Funct. Mater., 2019, 29(47): 1808833-1-8. doi: 10.1002/adfm.201808833http://dx.doi.org/10.1002/adfm.201808833
YAO Q S, FANG H, DENG K M, et al. Superhalogens as building blocks of two-dimensional organic-inorganic hybrid perovskites for optoelectronics applications [J]. Nanoscale, 2016, 8(41): 17836-17842. doi: 10.1039/c6nr05573ghttp://dx.doi.org/10.1039/c6nr05573g
XIANG J X, WANG K, XIANG B, et al. Sn2+-stabilization in MASnI3 perovskites by superhalide incorporation [J]. J. Chem. Phys., 2018, 148(12): 124111-1-6. doi: 10.1063/1.5023737http://dx.doi.org/10.1063/1.5023737
XU S D, LIU G Z, ZHENG H Y, et al. Boosting photovoltaic performance and stability of super-halogen-substituted perovskite solar cells by simultaneous methylammonium immobilization and vacancy compensation [J]. ACS Appl. Mater. Interfaces, 2020, 12(7): 8249-8259. doi: 10.1021/acsami.9b21074http://dx.doi.org/10.1021/acsami.9b21074
BOONMONGKOLRAS P, NAQVI S D H, KIM D, et al. Universal passivation strategy for the hole transport layer/perovskite interface via an alkali treatment for high-efficiency perovskite solar cells [J]. Solar RRL, 2021, 5(5): 2000793-1-8. doi: 10.1002/solr.202000793http://dx.doi.org/10.1002/solr.202000793
DONG H, WU Z X, XI J, et al. Pseudohalide-induced recrystallization engineering for CH3NH3PbI3 film and its application in highly efficient inverted planar heterojunction perovskite solar cells [J]. Adv. Funct. Mater., 2018, 28(2): 1704836. doi: 10.1002/adfm.201704836http://dx.doi.org/10.1002/adfm.201704836
YU D N, WEI Q, LI H S, et al. Quasi-2D bilayer surface passivation for high efficiency narrow bandgap perovskite solar cells [J]. Angew. Chem. Int. Ed., 2022, 61(20): e202202346. doi: 10.1002/anie.202202346http://dx.doi.org/10.1002/anie.202202346
HUANG B, XIA X F, WANG X F, et al. Surface treatment enabled by functional guanidinium tetrafluoroborate achieving high-performance inverted perovskite solar cells [J]. Solar Energy Mater. Solar Cells, 2022, 240: 111682-1-10. doi: 10.1016/j.solmat.2022.111682http://dx.doi.org/10.1016/j.solmat.2022.111682
LEE J H, NKETIA-YAWSON B, LEE J J, et al. Ionic liquid-mediated reconstruction of perovskite surface for highly efficient photovoltaics [J]. Chem. Eng. J., 2022, 446: 137351. doi: 10.1016/j.cej.2022.137351http://dx.doi.org/10.1016/j.cej.2022.137351
HE D M, ZHOU T W, LIU B B, et al. Interfacial defect passivation by novel phosphonium salts yields 22% efficiency perovskite solar cells: experimental and theoretical evidence [J]. EcoMat, 2022, 4(1): e12158-1-14. doi: 10.1002/eom2.12158http://dx.doi.org/10.1002/eom2.12158
PARK N G, GRÄTZEL M, MIYASAKA T, et al. Towards stable and commercially available perovskite solar cells [J]. Nature Energy, 2016, 1(11): 16152. doi: 10.1038/nenergy.2016.152http://dx.doi.org/10.1038/nenergy.2016.152
ZHOU H, CHEN Q, LI G, et al. Interface engineering of highly efficient perovskite solar cells [J]. Science, 2014, 345(6196): 542-546. doi: 10.1126/science.1254050http://dx.doi.org/10.1126/science.1254050
CIRO J, MESA S, MONTOYA J F, et al. Simultaneous top and bottom perovskite interface engineering by fullerene surface modification of titanium dioxide as electron transport layer [J]. ACS Appl. Mater. Interfaces, 2017, 9(35): 29654-29659. doi: 10.1021/acsami.7b06343http://dx.doi.org/10.1021/acsami.7b06343
CHEN J Z, ZHAO X, KIM S G, et al. Multifunctional chemical linker imidazoleacetic acid hydrochloride for 21% efficient and stable planar perovskite solar cells [J]. Adv. Mater., 2019, 31(39): 1902902-1-10. doi: 10.1002/adma.201902902http://dx.doi.org/10.1002/adma.201902902
ZHENG Z H, LI F M, GONG J, et al. Pre-buried additive for cross-layer modification in flexible perovskite solar cells with efficiency exceeding 22% [J]. Adv. Mater., 2022, 34(21): 2109879-1-11. doi: 10.1002/adma.202109879http://dx.doi.org/10.1002/adma.202109879
YANG D, ZHOU X, YANG R X, et al. Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells [J]. Energy Environ. Sci., 2016, 9(10): 3071-3078. doi: 10.1039/c6ee02139ehttp://dx.doi.org/10.1039/c6ee02139e
LIU D T, ZHENG H L, WANG Y F, et al. Vacancies substitution induced interfacial dipole formation and defect passivation for highly stable perovskite solar cells [J]. Chem. Eng. J., 2020, 396: 125010-1-9. doi: 10.1016/j.cej.2020.125010http://dx.doi.org/10.1016/j.cej.2020.125010
TU B, SHAO Y F, CHEN W, et al. Novel molecular doping mechanism for n-doping of SnO2 via triphenylphosphine oxide and its effect on perovskite solar cells [J]. Adv. Mater., 2019, 31(15): 1805944-1-9. doi: 10.1002/adma.201805944http://dx.doi.org/10.1002/adma.201805944
DAS S, JAYARAMAN V. SnO2: a comprehensive review on structures and gas sensors [J]. Prog. Mater. Sci., 2014, 66: 112-255. doi: 10.1016/j.pmatsci.2014.10.001http://dx.doi.org/10.1016/j.pmatsci.2014.10.001
XIA J X, LUO J S, YANG H, et al. Ionic selective contact controls the charge accumulation for efficient and intrinsic stable planar homo-junction perovskite solar cells [J]. Nano Energy, 2019, 66: 104098-1-13. doi: 10.1016/j.nanoen.2019.104098http://dx.doi.org/10.1016/j.nanoen.2019.104098
CHU W J, YANG J, JIANG Q H, et al. Enhancement of photovoltaic performance of flexible perovskite solar cells by means of ionic liquid interface modification in a low temperature all solution process [J]. Appl. Surf. Sci., 2018, 440: 1116-1122. doi: 10.1016/j.apsusc.2018.01.310http://dx.doi.org/10.1016/j.apsusc.2018.01.310
BI H, LIU B B, HE D M, et al. Interfacial defect passivation and stress release by multifunctional KPF6 modification for planar perovskite solar cells with enhanced efficiency and stability [J]. Chem. Eng. J., 2021, 418: 129375-1-10. doi: 10.1016/j.cej.2021.129375http://dx.doi.org/10.1016/j.cej.2021.129375
KLIPFEL N, KANDA H, SUTANTO A A, et al. Mechanistic insights into the role of the bis(trifluoromethanesulfonyl)imide ion in coevaporated p-i-n perovskite solar cells [J]. ACS Appl. Mater. Interfaces, 2021, 13(44): 52450-52460. doi: 10.1021/acsami.1c10117http://dx.doi.org/10.1021/acsami.1c10117
XIONG S B, DAI Y, YANG J M, et al. Surface charge-transfer doping for highly efficient perovskite solar cells [J]. Nano Energy, 2021, 79: 105505-1-8. doi: 10.1016/j.nanoen.2020.105505http://dx.doi.org/10.1016/j.nanoen.2020.105505
ITO S, TANAKA S, VAHLMAN H, et al. Carbon-double-bond-free printed solar cells from TiO2/CH3NH3PbI3/CuSCN/Au: structural control and photoaging effects [J]. ChemPhysChem, 2014, 15(6): 1194-1200. doi: 10.1002/cphc.201301047http://dx.doi.org/10.1002/cphc.201301047
MANE S B, SUTANTO A A, CHENG C F, et al. Oxasmaragdyrins as new and efficient hole-transporting materials for high-performance perovskite solar cells [J]. ACS Appl. Mater. Interfaces, 2017, 9(37): 31950-31958. doi: 10.1021/acsami.7b09803http://dx.doi.org/10.1021/acsami.7b09803
WU W, HAN W B, DENG Y Y, et al. Low-cost and easily prepared interface layer towards efficient and negligible hysteresis perovskite solar cells [J]. J. Colloid Interface Sci., 2022, 617: 745-751. doi: 10.1016/j.jcis.2022.03.059http://dx.doi.org/10.1016/j.jcis.2022.03.059
0
Views
288
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution