浏览全部资源
扫码关注微信
潍坊学院 化学化工与环境工程学院, 山东 潍坊 261061
Published:05 May 2023,
Received:12 October 2022,
Revised:24 October 2022,
移动端阅览
王晶,逯纪涛,吴亚红等.零维有机⁃无机杂化荧光粉[N(CH3)4]2GeF6∶Mn4+的双模温度传感应用[J].发光学报,2023,44(05):904-911.
WANG Jing,LU Jitao,WU Yahong,et al.Luminescence of Zero-dimensional Organic-inorganic Hybrid Phosphor [N(CH3)4]2GeF6∶Mn4+ for Dual-mode Temperature Sensing[J].Chinese Journal of Luminescence,2023,44(05):904-911.
王晶,逯纪涛,吴亚红等.零维有机⁃无机杂化荧光粉[N(CH3)4]2GeF6∶Mn4+的双模温度传感应用[J].发光学报,2023,44(05):904-911. DOI: 10.37188/CJL.20220363.
WANG Jing,LU Jitao,WU Yahong,et al.Luminescence of Zero-dimensional Organic-inorganic Hybrid Phosphor [N(CH3)4]2GeF6∶Mn4+ for Dual-mode Temperature Sensing[J].Chinese Journal of Luminescence,2023,44(05):904-911. DOI: 10.37188/CJL.20220363.
新型低维有机⁃无机杂化荧光粉具有独特的光学性质和广泛的光电应用前景。本文报道了一种采用湿化学法合成的Mn
4+
掺杂的有机⁃无机杂化[N(CH
3
)
4
]
2
GeF
6
荧光粉材料,并采用X射线粉末衍射(XRD)、热重差热分析(TG⁃DTA)、红外光谱(FTIR)、漫反射光谱(DRS)、激发(PL)与发射(PLE)光谱以及荧光寿命等手段对材料的晶体结构、热稳定性和发光性能进行了系统研究。研究结果表明,室温下,该荧光粉可产生高颜色纯度的窄红色发射峰,其峰值位于630 nm。在13~292 K的温度范围内,Mn
4+
离子的Stokes和anti⁃Stokes边带发光强度表现出不同的温度响应。通过应用anti⁃Stokes和Stokes边带的发射强度比进行温度传感,获得的最大绝对灵敏度和相对灵敏度分别为0.002 1 K
-1
和2.11%·K
-1
。同时,Mn
4+
离子的荧光寿命值也可以用于温度传感,最大相对灵敏度为0.44%·K
-1
,表明该荧光粉可以用于双模温度传感研究。
Novel low-dimensional organic-inorganic hybrid phosphors have unique optical properties and wide optoelectronic applications. Zero-dimensional organic-inorganic hybrid phosphor [N(CH
3
)
4
]
2
GeF
6
∶Mn
4+
was synthesized by a wet chemical method. By using XRD, TG-DTA, FTIR, DRS, PL, PLE, and lifetime decay, the crystal structure, thermal stability, and optical properties were systemically investigated. The result shows that narrow red emission with high color purity can be observed even at room temperature, and the emission peak locates at 630 nm. In the temperature range of 13-292 K, anti-Stokes and Stokes sidebands of Mn
4+
ions show different temperature responses. The emission intensity ratio of anti-Stokes
vs
. Stokes sidebands can be used for temperature sensing, with a maximum absolute sensitivity of 0.002 1 K
-1
and relative sensitivity of 2.11%·K
-1
. Moreover, the lifetime of Mn
4+
ions can also be used for temperature sensing with a maximum relative sensitivity of 0.44%·K
-1
, demonstrating its potential application in dual-mode optical thermometry.
零维发光材料Mn4+温度传感
zero-dimensional luminescent materialMn4+temperature sensing
ADACHI S. Review-Mn4+-activated red and deep red-emitting phosphors [J]. ECS J. Solid State Sci. Technol., 2019, 9(1): 016001. doi: 10.1149/2.0022001jsshttp://dx.doi.org/10.1149/2.0022001jss
CAO R P, LV X Y, RAN Y Q, et al. Rare-earth-free Li5La3Ta2O12∶Mn4+ deep-red-emitting phosphor: synthesis and photoluminescence properties [J]. J. Am. Ceram. Soc., 2019, 102(10): 5910-5918. doi: 10.1111/jace.16447http://dx.doi.org/10.1111/jace.16447
XUE J P, NOH H M, CHOI B C, et al. Dual-functional of non-contact thermometry and field emission displays via efficient Bi3+ → Eu3+ energy transfer in emitting-color tunable GdNbO4 phosphors [J]. Chem. Eng. J., 2020, 382: 122861-1-11. doi: 10.1016/j.cej.2019.122861http://dx.doi.org/10.1016/j.cej.2019.122861
ZHOU Y Y, SONG E H, DENG T T, et al. Surface passivation toward highly stable Mn4+-activated red-emitting fluoride phosphors and enhanced photostability for white LEDs [J]. Adv. Mater. Interfaces, 2019, 6(9): 1802006-1-15. doi: 10.1002/admi.201802006http://dx.doi.org/10.1002/admi.201802006
QIN L, BI S L, CAI P Q, et al. Preparation, characterization and luminescent properties of red-emitting phosphor: LiLa2NbO6 doped with Mn4+ ions [J]. J. Alloys Compd., 2018, 755: 61-66. doi: 10.1016/j.jallcom.2018.04.295http://dx.doi.org/10.1016/j.jallcom.2018.04.295
MING H, LIU L L, HE S G, et al. An ultra-high yield of spherical K2NaScF6∶Mn4+ red phosphor and its application in ultra-wide color gamut liquid crystal displays [J]. J. Mater. Chem. C, 2019, 7(24): 7237-7248. doi: 10.1039/c9tc02295chttp://dx.doi.org/10.1039/c9tc02295c
ZHOU Y Y, SONG E H, DENG T T, et al. Waterproof narrow-band fluoride red phosphor K2TiF6∶Mn4+ via facile superhydrophobic surface modification [J]. ACS Appl. Mater. Interfaces, 2018, 10(1): 880-889. doi: 10.1021/acsami.7b15503http://dx.doi.org/10.1021/acsami.7b15503
CAI P Q, WANG X F, SEO H J, et al. Bluish-white-light-emitting diodes based on two-dimensional lead halide perovskite (C6H5C2H4NH3)2PbCl2Br2 [J]. Appl. Phys. Lett., 2018, 112(15): 153901-1-5. doi: 10.1063/1.5023797http://dx.doi.org/10.1063/1.5023797
SONG E H, WANG J Q, SHI J H, et al. Highly efficient and thermally stable K3AlF6∶Mn4+ as a red phosphor for ultra-high-performance warm white light-emitting diodes [J]. ACS Appl. Mater. Interfaces, 2017, 9(10): 8805-8812. doi: 10.1021/acsami.7b00749http://dx.doi.org/10.1021/acsami.7b00749
WU W L, FANG M H, ZHOU W L, et al. High color rendering index of Rb2GeF6∶Mn4+ for light-emitting diodes [J]. Chem. Mater., 2017, 29(3): 935-939.
MING H, ZHAO Y F, ZHOU Y Y, et al. Shining Mn4+ in 0D organometallic fluoride hosts towards highly efficient photoluminescence [J]. Adv. Opt. Mater., 2022, 10(7): 2102141-1-10. doi: 10.1002/adom.202102141http://dx.doi.org/10.1002/adom.202102141
XUE J P, YU Z K, NOH H M, et al. Designing multi-mode optical thermometers via the thermochromic LaNbO4∶Bi3+/Ln3+ (Ln = Eu, Tb, Dy, Sm) phosphors [J]. Chem. Eng. J., 2021, 415: 128977-1-14. doi: 10.1016/j.cej.2021.128977http://dx.doi.org/10.1016/j.cej.2021.128977
XUE J, LI F, LIU F, et al. Designing ultra-highly efficient Mn2+-activated Zn2GeO4 green-emitting persistent phosphors toward versatile applications [J]. Mater. Today Chem., 2022, 23: 100693. doi: 10.1016/j.mtchem.2021.100693http://dx.doi.org/10.1016/j.mtchem.2021.100693
XUE J P, NOH H M, PARK S H, et al. NUV light induced visible emission in Er3+-activated NaSrLa(MoO4)O3 phosphors for green LEDs and thermometer [J]. J. Am. Ceram. Soc., 2020, 103(2): 1174-1186. doi: 10.1111/jace.16797http://dx.doi.org/10.1111/jace.16797
WANG X F, LIU Q, BU Y Y, et al. Optical temperature sensing of rare-earth ion doped phosphors [J]. RSC Adv., 2015, 5(105): 86219-86236. doi: 10.1039/c5ra16986khttp://dx.doi.org/10.1039/c5ra16986k
BAUR F, BÖHNISCH D, JÜSTEL T. Luminescence of Mn4+ in a hexafluorogermanate with the complex organic cation guanidinium [C(NH2)3]2GeF6∶Mn4+ [J]. ECS J. Solid State Sci. Technol., 2020, 9(4): 046003-1-6. doi: 10.1149/2162-8777/ab8788http://dx.doi.org/10.1149/2162-8777/ab8788
CAI P Q, WANG S, XU T M, et al. Mn4+ doped zero-dimensional organic-inorganic hybrid material with narrow-red emission [J]. J. Lumin., 2020, 228: 117661-1-7. doi: 10.1016/j.jlumin.2020.117661http://dx.doi.org/10.1016/j.jlumin.2020.117661
KIM E A, LEE D W, OK K M. Centrosymmetric [N(CH3)4]2TiF6 vs. noncentrosymmetric polar [C(NH2)3]2TiF6:a hydrogen-bonding effect on the out-of-center distortion of TiF6 octahedra [J]. J. Solid State Chem., 2012, 195: 149-154. doi: 10.1016/j.jssc.2011.11.027http://dx.doi.org/10.1016/j.jssc.2011.11.027
YOUNG C W, KOEHLER J S, MCKINNEY D S. Infrared absorption spectra of tetramethyl compounds [J]. J. Am. Chem. Soc., 1947, 69(6): 1410-1415. doi: 10.1021/ja01198a050http://dx.doi.org/10.1021/ja01198a050
VOIT E I, DAVIDOVICH R L, UDOVENKO A A, et al. The structure and vibrational spectra of gallium(Ⅲ) fluoride dimeric complex with tetramethylammonium cation [J]. Opt. Spectrosc., 2019, 127(6): 984-990. doi: 10.1134/s0030400x19120300http://dx.doi.org/10.1134/s0030400x19120300
JIN Y, FANG M H, GRINBERG M, et al. Narrow red emission band fluoride phosphor KNaSiF6∶Mn4+ for warm white light-emitting diodes [J]. ACS Appl. Mater. Interfaces, 2016, 8(18): 11194-11203. doi: 10.1021/acsami.6b01905http://dx.doi.org/10.1021/acsami.6b01905
姬海鹏. Mn4+离子光谱学基础 [J]. 发光学报, 2022, 43(8): 1175-1187. doi: 10.37188/cjl.20220102http://dx.doi.org/10.37188/cjl.20220102
JI H P. Basic knowledge for understanding spectroscopic property of Mn4+ ion [J]. Chin. J. Lumin., 2022, 43(8): 1175-1187. (in Chinese). doi: 10.37188/cjl.20220102http://dx.doi.org/10.37188/cjl.20220102
OK K M. Toward the rational design of novel noncentrosymmetric materials: factors influencing the framework structures [J]. Acc. Chem. Res., 2016, 49(12): 2774-2785. doi: 10.1021/acs.accounts.6b00452http://dx.doi.org/10.1021/acs.accounts.6b00452
ZHONG J S, CHEN D Q, CHEN X, et al. Efficient rare-earth free red-emitting Ca2YSbO6∶Mn4+, M(M = Li+, Na+, K+, Mg2+) phosphors for white light-emitting diodes [J]. Dalton Trans., 2018, 47(18): 6528-6537. doi: 10.1039/c8dt00992ahttp://dx.doi.org/10.1039/c8dt00992a
WANG X F, WANG Y, MARQUES-HUESO J, et al. Improving optical temperature sensing performance of Er3+ doped Y2O3 microtubes via Co-doping and controlling excitation power [J]. Sci. Rep., 2017, 7(1): 758-1-13. doi: 10.1038/s41598-017-00838-whttp://dx.doi.org/10.1038/s41598-017-00838-w
FAN H, LU Z Z, MENG Y B, et al. Optical temperature sensor with superior sensitivity based on Ca2LaSbO6∶Mn4+, Eu3+ phosphor [J]. Opt. Laser Technol., 2022, 14: 107804-1-5. doi: 10.1016/j.optlastec.2021.107804http://dx.doi.org/10.1016/j.optlastec.2021.107804
FANG Y Y, ZHANG Y P, ZHANG Y P, et al. Achieving high thermal sensitivity from ratiometric CaGdAlO4∶Mn4+, Tb3+ thermometers [J]. Dalton Trans., 2021, 50(38): 13447-13458. doi: 10.1039/d1dt02185khttp://dx.doi.org/10.1039/d1dt02185k
SENDEN T, VAN DIJK-MOES R J A, MEIJERINK A. Quenching of the red Mn4+ luminescence in Mn4+-doped fluoride LED phosphors [J]. Light: Sci. Appl., 2018, 7: 8-1-13. doi: 10.1038/s41377-018-0013-1http://dx.doi.org/10.1038/s41377-018-0013-1
CAO R P, ZHANG W J, CHEN T, et al. Perovskite tungstate Ba2La2ZnW2O12∶Mn4+ phosphor: synthesis, energy transfer and tunable emission [J]. Mater. Res. Bull., 2021, 137: 111200-1-7. doi: 10.1016/j.materresbull.2020.111200http://dx.doi.org/10.1016/j.materresbull.2020.111200
CAI P Q, QIN L, CHEN C L, et al. Optical thermometry based on vibration sidebands in Y2MgTiO6∶Mn4+ double perovskite [J]. Inorg. Chem., 2018, 57(6): 3073-3081. doi: 10.1021/acs.inorgchem.7b02938http://dx.doi.org/10.1021/acs.inorgchem.7b02938
YANG Z B, WANG Z J, ZHENG M J, et al. Excitation selective thermal characteristics of Mg28Ge7.55-xGaxO32F15.04∶Mn4+ and application in single/dual-mode optical thermometry [J]. Mater. Today Commun., 2021, 28: 102660. doi: 10.1016/j.mtcomm.2021.102660http://dx.doi.org/10.1016/j.mtcomm.2021.102660
CAI P Q, WANG X F, SEO H J. Excitation power dependent optical temperature behaviors in Mn4+ doped oxyfluoride Na2WO2F4 [J]. Phys. Chem. Chem. Phys., 2018, 20(3): 2028-2035. doi: 10.1039/c7cp07123jhttp://dx.doi.org/10.1039/c7cp07123j
王晶(1992-),女,山东潍坊人,博士,讲师,2020年于韩国釜庆大学获得博士学位,主要从事稀土与过渡金属离子发光材料的研究。. doi: 10.1039/c7cp07123jhttp://dx.doi.org/10.1039/c7cp07123j
E⁃mail: jingwang9212@126.com. doi: 10.1039/c7cp07123jhttp://dx.doi.org/10.1039/c7cp07123j
宋明君(1981-),男,山东济宁人,博士,教授,2009年于中国科学院福建物质结构研究所获得博士学位,主要从事激光晶体与稀土发光材料的 研究。. doi: 10.1039/c7cp07123jhttp://dx.doi.org/10.1039/c7cp07123j
E⁃mail: smj521209@126.com. doi: 10.1039/c7cp07123jhttp://dx.doi.org/10.1039/c7cp07123j
0
Views
88
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution