浏览全部资源
扫码关注微信
中国计量大学 光学与电子科技学院, 浙江 杭州 310008
Published:05 April 2023,
Received:11 October 2022,
Revised:30 November 2022,
移动端阅览
李轩,郑浩臣,吕文理等.基于镁电子注入层的倒置磷光有机发光二极管[J].发光学报,2023,44(04):657-663.
LI Xuan,ZHENG Haochen,LYU Wenli,et al.Inverted Phosphorescent Organic Light-emitting Diodes Utilizing Mg as Electron-injection Layer[J].Chinese Journal of Luminescence,2023,44(04):657-663.
李轩,郑浩臣,吕文理等.基于镁电子注入层的倒置磷光有机发光二极管[J].发光学报,2023,44(04):657-663. DOI: 10.37188/CJL.20220362.
LI Xuan,ZHENG Haochen,LYU Wenli,et al.Inverted Phosphorescent Organic Light-emitting Diodes Utilizing Mg as Electron-injection Layer[J].Chinese Journal of Luminescence,2023,44(04):657-663. DOI: 10.37188/CJL.20220362.
倒置有机发光二极管(Inverted organic light⁃emitting diodes,IOLEDs)因其结构容易与n型薄膜晶体管技术集成而得到了广泛研究。在IOLEDs研究中,为了使电子能从底阴极有效注入电子传输层,对各式各样的电子注入层结构进行了研究。本文制备并研究了采用超薄金属Mg作为电子注入层的高效率绿色磷光IOLEDs。研究发现超薄金属Mg薄膜具有优良的透光性;基于2 nm厚Mg电子注入层的IOLEDs具有最优的发光性能,其启亮电压、最大电流效率和外量子效率分别为3.06 V、46.5 cd/A和13.3%。
Inverted organic light-emitting diodes (IOLEDs) consist of a bottom cathode followed by the formation of an electron injection layer (EIL), an electron transport layer (ETL), a light emission layer (EML), a hole transport layer (HTL) and an anode, which have been widely investigated to match the existing n-type thin film transistor technology. In IOLEDs research, various EIL structures were studied to improve the efficiency of electron injection from the bottom cathode to ETL. In this paper, we report on high efficiency green phosphorescent IOLEDs utilizing ultra-thin Mg as EIL. The ultra-thin Mg films deposited on quartz substrates exhibited excellent light transmittance. IOLEDs based on the 2 nm Mg as EIL demonstrated the optimal device performance, with the maximum current efficiency, the maximum external quantum efficiency and turn-on voltage of 46.5 cd/A, 13.3% and 3.06 V, respectively.
有机发光二极管倒置超薄镁电子注入层
organic light-emitting diodesinvertedultra-thin Mgelectron injection layer
CHU T Y, CHEN S Y, CHEN J F, et al. Ultrathin electron injection layer on indium⁃tin oxide bottom cathode for highly efficient inverted organic light-emitting diodes [J]. Jpn. J. Appl. Phys., 2006, 45(6R): 4948-4950. doi: 10.1143/jjap.45.4948http://dx.doi.org/10.1143/jjap.45.4948
FORTUNATO E, BARQUINHA P, MARTINS R. Oxide semiconductor thin-film transistors: a review of recent advances [J]. Adv. Mater., 2012, 24(22): 2945-2986. doi: 10.1002/adma.201103228http://dx.doi.org/10.1002/adma.201103228
NOMURA K, KAMIYA T, HOSONO H. Ambipolar oxide thin-film transistor [J]. Adv. Mater., 2011, 23(30): 3431-3434. doi: 10.1002/adma.201101410http://dx.doi.org/10.1002/adma.201101410
REINEKE S, LINDNER F, SCHWARTZ G, et al. White organic light-emitting diodes with fluorescent tube efficiency [J]. Nature, 2009, 459(7244): 234-238. doi: 10.1038/nature08003http://dx.doi.org/10.1038/nature08003
吕方, 顾建男, 卞梦颖, 等. 有机发光二极管(OLED)顶发射器件的透明电极 [J]. 科学通报, 2018, 63(12): 1111-1122. doi: 10.1360/n972018-00139http://dx.doi.org/10.1360/n972018-00139
LÜ F, GU J N, BIAN M Y, et al. Transparent electrode for top emission organic light-emitting diode [J]. Chin. Sci. Bull., 2018, 63(12): 1111-1122. (in Chinese). doi: 10.1360/n972018-00139http://dx.doi.org/10.1360/n972018-00139
CHU T Y, CHEN J F, CHEN S Y, et al. Highly efficient and stable inverted bottom-emission organic light emitting devices [J]. Appl. Phys. Lett., 2006, 89(5): 053503-1-3. doi: 10.1063/1.2268923http://dx.doi.org/10.1063/1.2268923
姜慧慧, 肖静, 殷照洋, 等. 倒置有机发光二极管中电子注入的研究及发展 [J]. 科学通报, 2021, 66(17): 2105-2116. doi: 10.1360/tb-2020-1157http://dx.doi.org/10.1360/tb-2020-1157
JIANG H H, XIAO J, YIN Z Y, et al. Progress and outlook on electron injection in inverted organic light-emitting diodes [J]. Chin. Sci. Bull., 2021, 66(17): 2105-2116. (in Chinese). doi: 10.1360/tb-2020-1157http://dx.doi.org/10.1360/tb-2020-1157
张睿, 李传南, 李涛, 等. 一种采用Li3N掺杂电子注入层的底发射倒置结构OLED的制备 [J]. 光子学报, 2011, 40(2): 199-203. doi: 10.3788/gzxb20114002.0199http://dx.doi.org/10.3788/gzxb20114002.0199
ZHANG R, LI C N, LI T, et al. Fabrication of inverted bottom organic light-emitting device with Li3N n-type doping electron injecting layer [J]. Acta Phtonica Sinica, 2011, 40(2): 199-203. (in Chinese). doi: 10.3788/gzxb20114002.0199http://dx.doi.org/10.3788/gzxb20114002.0199
张浩, 王立, 容佳玲, 等. 碳酸铯修饰Al作为反射阴极的倒置顶发射OLED器件 [J]. 发光学报, 2012, 33(6): 611-615. doi: 10.3788/fgxb20123306.0611http://dx.doi.org/10.3788/fgxb20123306.0611
ZHANG H, WANG L, RONG J L, et al. Efficient inverted top-emitting organic light-emitting devices with cesium carbonate modified Al cathode [J]. Chin. J. Lumin., 2012, 33(6): 611-615. (in Chinese). doi: 10.3788/fgxb20123306.0611http://dx.doi.org/10.3788/fgxb20123306.0611
TANG X, DING L, SUN Y Q, et al. Inverted and large flexible organic light-emitting diodes with low operating voltage [J]. J. Mater. Chem. C, 2015, 3(48): 12399-12402. doi: 10.1039/c5tc03108ghttp://dx.doi.org/10.1039/c5tc03108g
TAKADA M, FURUTA S, KOBAYASHI T, et al. Inverted organic light-emitting diodes with an electrochemically deposited zinc oxide electron injection layer [J]. J. Appl. Phys., 2016, 120(18): 185501-1-6. doi: 10.1063/1.4967526http://dx.doi.org/10.1063/1.4967526
GUO K P, SI C F, HAN C, et al. High-performance flexible inverted organic light-emitting diodes by exploiting MoS2 nanopillar arrays as electron-injecting and light-coupling layers [J]. Nanoscale, 2017, 9(38): 14602-14611. doi: 10.1039/c7nr03920dhttp://dx.doi.org/10.1039/c7nr03920d
FUKAGAWA H, SASAKI T, TSUZUKI T, et al. Long-lived flexible displays employing efficient and stable inverted organic light-emitting diodes [J]. Adv. Mater., 2018, 30(28): 1706768-1-7. doi: 10.1002/adma.201706768http://dx.doi.org/10.1002/adma.201706768
CHEN Y H, CHU S Q, LI R Q, et al. Highly efficient inverted organic light-emitting devices adopting solution-processed double electron-injection layers [J]. Org. Electron., 2019, 66: 1-6. doi: 10.1016/j.orgel.2018.12.008http://dx.doi.org/10.1016/j.orgel.2018.12.008
WANG J, ZHANG M K, ZHANG Y Q, et al. Efficient inverted organic light-emitting devices using a charge-generation unit as electron-injection layers [J]. Org. Electron., 2021, 96: 106202-1-6. doi: 10.1016/j.orgel.2021.106202http://dx.doi.org/10.1016/j.orgel.2021.106202
LOU X, WANG X X, LIU C H, et al. Small-sized Al nanoparticles as electron injection hotspots in inverted organic light-emitting diodes [J]. Org. Electron., 2016, 28: 88-93. doi: 10.1016/j.orgel.2015.10.012http://dx.doi.org/10.1016/j.orgel.2015.10.012
MICHAELSON H B. The work function of the elements and its periodicity [J]. J. Appl. Phys., 1977, 48(11): 4729-4733. doi: 10.1063/1.323539http://dx.doi.org/10.1063/1.323539
DOBBERTIN T, KROEGER M, HEITHECKER D, et al. Inverted top-emitting organic light-emitting diodes using sputter-deposited anodes [J]. Appl. Phys. Lett., 2003, 82(2): 284-286. doi: 10.1063/1.1535743http://dx.doi.org/10.1063/1.1535743
CHU T Y, CHEN J F, CHEN S Y, et al. Comparative study of single and multiemissive layers in inverted white organic light-emitting devices [J]. Appl. Phys. Lett., 2006, 89(11): 113502-1-3. doi: 10.1063/1.2348089http://dx.doi.org/10.1063/1.2348089
WANG X L, SHI C S, GUO Q X, et al. Highly efficient inverted organic light-emitting diodes using composite organic heterojunctions as electrode-independent injectors [J]. J. Mater. Chem. C, 2016, 4(37): 8731-8737. doi: 10.1039/c6tc02842jhttp://dx.doi.org/10.1039/c6tc02842j
BULOVIĆ V, KHALFIN V B, GU G, et al. Weak microcavity effects in organic light-emitting devices [J]. Phys. Rev. B, 1998, 58(7): 3730-3740. doi: 10.1103/physrevb.58.3730http://dx.doi.org/10.1103/physrevb.58.3730
CHO H, JOO C W, CHOI S, et al. Highly conductive and transparent thin metal layer for reducing microcavity effect in top-emitting white organic light-emitting diode [J]. Org. Electron., 2022, 106: 106537-1-7. doi: 10.1016/j.orgel.2022.106537http://dx.doi.org/10.1016/j.orgel.2022.106537
LEE J H, LEE S, KIM J B, et al. A high performance transparent inverted organic light emitting diode with 1, 4, 5, 8, 9, 11-hexaazatriphenylenehexacarbonitrile as an organic buffer layer [J]. J. Mater. Chem., 2012, 22(30): 15262-15266. doi: 10.1039/c2jm32438ehttp://dx.doi.org/10.1039/c2jm32438e
CHANG C H, HSU M K, WU S W, et al. Using lithium carbonate-based electron injection structures in high-performance inverted organic light-emitting diodes [J]. Phys. Chem. Chem. Phys., 2015, 17(19): 13123-13128. doi: 10.1039/c5cp01692dhttp://dx.doi.org/10.1039/c5cp01692d
MEYER J, WINKLER T, HAMWI S, et al. Transparent inverted organic light-emitting diodes with a tungsten oxide buffer layer [J]. Adv. Mater., 2008, 20(20): 3839-3843. doi: 10.1002/adma.200800949http://dx.doi.org/10.1002/adma.200800949
LEE J H, WANG P S, PARK H D, et al. A high performance inverted organic light emitting diode using an electron transporting material with low energy barrier for electron injection [J]. Org. Electron., 2011, 12(11): 1763-1767. doi: 10.1016/j.orgel.2011.07.015http://dx.doi.org/10.1016/j.orgel.2011.07.015
YEH T H, LEE C C, SHIH C J, et al. Vacuum-deposited MoO3/Ag/WO3 multilayered electrode for highly efficient transparent and inverted organic light-emitting diodes [J]. Org. Electron., 2018, 59: 266-271. doi: 10.1016/j.orgel.2018.05.014http://dx.doi.org/10.1016/j.orgel.2018.05.014
ZHOU T, LING Z T, TANG Z Y, et al. Efficient solution-processed inverted organic light-emitting diodes by using polyethyleneimine as interface layer [J]. Phys. Status Solidi (A), 2018, 215(14): 1800138-1-6. doi: 10.1002/pssa.201800138http://dx.doi.org/10.1002/pssa.201800138
0
Views
271
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution