浏览全部资源
扫码关注微信
大连工业大学 信息科学与工程学院, 辽宁 大连 116034
Published:05 February 2023,
Received:26 September 2022,
Revised:08 October 2022,
移动端阅览
赵昕,刘哲,林海等.基于上转换发光的Y7O6F9∶Er,Yb/PAN复合纤维温度传感特性[J].发光学报,2023,44(02):279-288.
ZHAO Xin,LIU Zhe,LIN Hai,et al.Temperature Sensing Characteristics of Y7O6F9∶Er,Yb/PAN Composite Fibers Based on Up-conversion Luminescence[J].Chinese Journal of Luminescence,2023,44(02):279-288.
赵昕,刘哲,林海等.基于上转换发光的Y7O6F9∶Er,Yb/PAN复合纤维温度传感特性[J].发光学报,2023,44(02):279-288. DOI: 10.37188/CJL.20220350.
ZHAO Xin,LIU Zhe,LIN Hai,et al.Temperature Sensing Characteristics of Y7O6F9∶Er,Yb/PAN Composite Fibers Based on Up-conversion Luminescence[J].Chinese Journal of Luminescence,2023,44(02):279-288. DOI: 10.37188/CJL.20220350.
通过水热法配合高温煅烧合成了斜方晶系Y
7
O
6
F
9
∶Er,Yb晶体,该晶体可实现高效上转换发光且具有良好的高分子亲和性。利用高压静电纺丝技术将Y
7
O
6
F
9
∶Er,Yb晶体颗粒与高分子化合物聚丙烯腈(PAN)复合,制备出了兼备温度传感特性、柔韧性和灵活性的Y
7
O
6
F
9
∶Er,Yb/PAN纤维。977 nm激光激发下,晶体颗粒和复合纤维在303~433 K温度范围内均展示出高效的上转换发光和良好的温度传感特性,且复合纤维在测温范围内表现出优于晶体颗粒的温度灵敏度和分辨率。在303 K温度下有最大绝对灵敏度值1.143%·K
‒1
,在433 K温度下有最小的分辨率0.15 K。因此,具有柔韧性的复合纤维既有良好温度传感特性又可任意调节形态,适应复杂多样的应用环境,是可应用于实现智能穿戴领域温度传感性能的有效候选材料。
Y
7
O
6
F
9
∶Er,Yb orthorhombic crystals were synthesized by hydrothermal method and high-temperature calcination, which achieves efficient up-conversion luminescence and has satisfactory polymer affinity. Y
7
O
6
F
9
∶Er, Yb/PAN composite fibers with high temperature sensing properties, and commendable flexibility were prepared by high voltage electrospinning technology. Under the excitation of 977 nm laser, the composite fibers show efficient up-conversion luminescence and better temperature sensing performance than crystals in the temperature range of 303 K to 433 K. Within the temperature range of measurement, the maximum value of
S
A
and
S
R
of Y
7
O
6
F
9
∶Er,Yb crystals is 0.720%·K
‒1
and 1.142%·K
‒1
, and the minimum temperature resolution was 0.37 K. The maximum value of
S
A
and
S
R
of Y
7
O
6
F
9
∶Er,Yb/PAN composite fibers is 0.811%·K
‒1
and 1.143%·K
‒1
, and the minimum temperature resolution was 0.15 K. The sensitivities and temperature resolution of composite fibers with flexibility are higher than those of crystals. Therefore, the flexible Y
7
O
6
F
9
∶Er,Yb/PAN composite fibers not only have admirable temperature sensing characteristics but also can adapt to complex and diverse application environments, which is a viable candidate material for realizing temperature sensing performance in the field of intelligent wearable.
Y7O6F9∶Er,Yb/PAN复合纤维高压静电纺丝上转换发光温度传感
Y7O6F9∶Er,Yb/PAN composite fibershigh voltage electrospinningup-conversion luminescencetemperature sensing
相国涛, 杨梦琳, 刘臻, 等. NaScF4∶Yb3+/Er3+纳米颗粒荧光温敏特性 [J]. 发光学报, 2022, 43(5): 684-690. doi: 10.37188/cjl.20220064http://dx.doi.org/10.37188/cjl.20220064
XIANG G T, YANG M L, LIU Z, et al. Temperature sensing properties in NaScF4∶Yb3+/Er3+ nanoparticles [J]. Chin. J. Lumin., 2022, 43(5): 684-690. (in Chinese). doi: 10.37188/cjl.20220064http://dx.doi.org/10.37188/cjl.20220064
周慧丽, 吴锋, 张志宏, 等. Lu2O3∶Er3+/Yb3+荧光材料的上转换发光及其温度传感特性 [J]. 发光学报, 2022, 43(2): 192-200. doi: 10.37188/cjl.20210363http://dx.doi.org/10.37188/cjl.20210363
ZHOU H L, WU F, ZHANG Z H, et al. Upconversion luminescence and temperature sensing characteristics of Lu2O3∶Er3+/Yb3+ phosphor [J]. Chin. J. Lumin., 2022, 43(2): 192-200. (in Chinese). doi: 10.37188/cjl.20210363http://dx.doi.org/10.37188/cjl.20210363
WU Z Q, LI L P, LV X H, et al. Persistent luminescence ratiometric thermometry [J]. Chem. Eng. J., 2022, 438: 135573. doi: 10.1016/j.cej.2022.135573http://dx.doi.org/10.1016/j.cej.2022.135573
PU L Y, WANG Y, ZHAO J Y, et al. Multi‑mode ratiometric thermometry using thermo‑intensified NIR emission [J]. Chem. Eng. J., 2022, 449: 137890. doi: 10.1016/j.cej.2022.137890http://dx.doi.org/10.1016/j.cej.2022.137890
SU F, YANG Y L, OU Y Y, et al. Site occupancies, electron‐vibration interaction and energy transfer of CaMgSi2O6∶Eu2+,Mn2+ phosphors for potential temperature‐sensing and anti‐counterfeiting applications [J]. Chem. Eur. J., 2022, 28(30): e202200381-1-9. doi: 10.1002/chem.202200381http://dx.doi.org/10.1002/chem.202200381
HAO W, HAO Z D, ZHANG L L, et al. Er3+/Yb3+ codoped phosphor Ba3Y4O9 with intense red upconversion emission and optical temperature sensing behavior [J]. J. Mater. Chem. C, 2018, 6(13): 3459-3467. doi: 10.1039/C7TC05796Bhttp://dx.doi.org/10.1039/C7TC05796B
CHEN H, SETO T, WANG Y H. An efficient blue phosphor with high thermal stability for lighting and optical pressure sensor applications [J]. Inorg. Chem. Front., 2022, 9(8): 1644-1654. doi: 10.1039/d2qi00025chttp://dx.doi.org/10.1039/d2qi00025c
LIU E Y, LEI L, YE R G, et al. Improved relative temperature sensitivity of over 10% K-1 in fluoride nanocrystals via engineering the interfacial layer [J]. Chem. Commun., 2022, 58(65): 9076-9079. doi: 10.1039/d2cc02548ehttp://dx.doi.org/10.1039/d2cc02548e
史书宽, 李斌轩, 杨槐, 等. 仿生光热管理智能高分子材料 [J]. 液晶与显示, 2022, 37(2): 250-263. doi: 10.37188/CJLCD.2021-0314http://dx.doi.org/10.37188/CJLCD.2021-0314
SHI S K, LI B X, YANG H, et al. Bioinspired intelligent polymer materials for optical and thermal management [J]. Chin. J. Liq. Cryst. Disp., 2022, 37(2): 250-263. (in Chinese). doi: 10.37188/CJLCD.2021-0314http://dx.doi.org/10.37188/CJLCD.2021-0314
董国亚, 赵翔, 张燕, 等. 便携式上转换荧光试纸条检测仪的研制 [J]. 光学 精密工程, 2017, 25(3): 584-590. doi: 10.3788/ope.20172503.0584http://dx.doi.org/10.3788/ope.20172503.0584
DONG G Y, ZHAO X, ZHANG Y, et al. Development of portable up-conversion photoluminescence strip detector [J]. Opt. Precision Eng., 2017, 25(3): 584-590. (in Chinese). doi: 10.3788/ope.20172503.0584http://dx.doi.org/10.3788/ope.20172503.0584
CHEN D Q, LIU S, LI X Y, et al. Upconverting luminescence based dual‑modal temperature sensing for Yb3+/Er3+/Tm3+∶YF3 nanocrystals embedded glass ceramic [J]. J. Eur. Ceram. Soc., 2017, 37(15): 4939-4945. doi: 10.1016/j.jeurceramsoc.2017.06.012http://dx.doi.org/10.1016/j.jeurceramsoc.2017.06.012
ZHOU A H, SONG F, HAN Y D, et al. Simultaneous size adjustment and upconversion luminescence enhancement of β‑NaLuF4∶Yb3+/Er3+, Er3+/Tm3+ microcrystals by introducing Ca2+ for temperature sensing [J]. CrystEngComm, 2018, 20(14): 2029-2035. doi: 10.1039/c8ce00127hhttp://dx.doi.org/10.1039/c8ce00127h
袁美娟, 李静, 秦慧连, 等. 碱金属共掺MgSc2O4∶Er3+/Yb3+纳米晶的上转换发光性能 [J]. 发光学报, 2020, 41(11): 1351-1357. doi: 10.37188/CJL.20200294http://dx.doi.org/10.37188/CJL.20200294
YUAN M J, LI J, QIN H L, et al. Upconversion luminescence of MgSc2O4∶Er3+/Yb3+ nanocrystals co‑doped alkali ions [J]. Chin. J. Lumin., 2020, 41(11): 1351-1357. (in Chinese). doi: 10.37188/CJL.20200294http://dx.doi.org/10.37188/CJL.20200294
WANG T H, XU L, WU Z J, et al. Self‑doping induced oxygen vacancies and lattice strains for synergetic enhanced upconversion luminescence of Er3+ ions in 2D BiOCl nanosheets [J]. Nanoscale, 2022, 14(35): 12909-12917. doi: 10.1039/d2nr02624dhttp://dx.doi.org/10.1039/d2nr02624d
ZHAN Y H, YANG Z W, XU Z, et al. Electrochromism induced reversible upconversion luminescence modulation of WO3∶Yb3+, Er3+ inverse opals for optical storage application [J]. Chem. Eng. J., 2020, 394: 124967-1-9. doi: 10.1016/j.cej.2020.124967http://dx.doi.org/10.1016/j.cej.2020.124967
LI H L, ZHANG Z, HUANG J Z, et al. Optical and structural analysis of rare earth and Li co‑doped ZnO nanoparticles [J]. J. Alloys Compd., 2013, 550: 526-530. doi: 10.1016/j.jallcom.2012.10.080http://dx.doi.org/10.1016/j.jallcom.2012.10.080
JIANG Y C, TONG Y, CHEN S Y Z, et al. A three‑mode self‑referenced optical thermometry based on up‑conversion luminescence of Ca2MgWO6‑Er3+,Yb3+ phosphors [J]. Chem. Eng. J., 2021, 413: 127470. doi: 10.1016/j.cej.2020.127470http://dx.doi.org/10.1016/j.cej.2020.127470
ZHU Z P, SUN Z S, GUO Z Y, et al. A high‑sensitive ratiometric luminescent thermometer based on dual‑emission of carbon dots/Rhodamine B nanocomposite [J]. J. Colloid Interface Sci., 2019, 552: 572-582. doi: 10.1016/j.jcis.2019.05.088http://dx.doi.org/10.1016/j.jcis.2019.05.088
JI Y N, XU W, WANG Y, et al. Supersensitive sensing based on upconversion nanoparticles through cascade photon amplification at single‑particle level [J]. Sens. Actuators B Chem., 2022, 367: 132125. doi: 10.1016/j.snb.2022.132125http://dx.doi.org/10.1016/j.snb.2022.132125
JIA H, LI D G, ZHANG D, et al. High color‑purity red, green, and blue‑emissive core‑shell upconversion nanoparticles using ternary near‑infrared quadrature excitations [J]. ACS Appl. Mater. Interfaces, 2021, 13(3): 4402-4409. doi: 10.1021/acsami.0c19902http://dx.doi.org/10.1021/acsami.0c19902
ZHANG J J, LU Y, CAI M Z, et al. 2.8 μm emission and OH quenching analysis in Ho3+ doped fluorotellurite‑germanate glasses sensitized by Yb3+ and Er3+ [J]. Sci. Rep., 2017, 7(1): 16794. doi: 10.1038/s41598-017-16937-7http://dx.doi.org/10.1038/s41598-017-16937-7
WANG K X, WU H, PAN G H, et al. Enhanced upconversion luminescence and optical thermometry in Er3+/Yb3+ heavily doped ZrO2 by stabilizing in the monoclinic phase [J]. Mater. Chem. Front., 2021, 5(13): 5142-5149. doi: 10.1039/d1qm00440ahttp://dx.doi.org/10.1039/d1qm00440a
MENG Q Y, CHEN L, ZHANG S Q, et al. Enhanced photoluminescence and high temperature sensitivity in rare earth doped glass ceramics containing NaGd(WO4)2 nanocrytals [J]. J. Lumin., 2019, 216: 116727-1-7. doi: 10.1016/j.jlumin.2019.116727http://dx.doi.org/10.1016/j.jlumin.2019.116727
LIU Y W, MENG L S, WANG H, et al. Promising lanthanide‑doped BiVO4 phosphors for highly efficient upconversion luminescence and temperature sensing [J]. Dalton Trans., 2021, 50(3): 960-969. doi: 10.1039/d0dt03377dhttp://dx.doi.org/10.1039/d0dt03377d
KSHETRI Y K, REGMI C, CHAUDHARY B, et al. BiVO4 ceramics for high‑sensitivity and high‑temperature optical thermometry [J]. J. Lumin., 2021, 230: 117739-1-9. doi: 10.1016/j.jlumin.2020.117739http://dx.doi.org/10.1016/j.jlumin.2020.117739
WANG D Y, MA P C, ZHANG J C, et al. Efficient down‑ and up‑conversion luminescence in Er3+‑Yb3+ co‑doped Y7O6F9 for photovoltaics [J]. ACS Appl. Energy Mater., 2018, 1(2): 447-454. doi: 10.1021/acsaem.7b00093http://dx.doi.org/10.1021/acsaem.7b00093
MA M, XU C F, YANG L W, et al. Intense ultraviolet and blue upconversion emissions in Yb3+‑Tm3+ codoped stoichiometric Y7O6F9 powder [J]. Phys. B, 2011, 406(17): 3256-3260. doi: 10.1016/j.physb.2011.05.035http://dx.doi.org/10.1016/j.physb.2011.05.035
HAO H Y, LU Z M, LU H Y, et al. Yb3+ concentration on emission color, thermal sensing and optical heater behavior of Er3+ doped Y6O5F8 phosphor [J]. Ceram. Int., 2017, 43(14): 10948-10954. doi: 10.1016/j.ceramint.2017.05.133http://dx.doi.org/10.1016/j.ceramint.2017.05.133
YU J B, HU L L, SHEN Y J, et al. Phase change of NaYF4∶Er crystals in oxyfluoride phosphate upconversion luminescent glass ceramics: an advanced solid‑state NMR study [J]. Inorg. Chem., 2021, 60(8): 5868-5881. doi: 10.1021/acs.inorgchem.1c00283http://dx.doi.org/10.1021/acs.inorgchem.1c00283
ZHAO Z Y, AI B, LIU C, et al. Effects of YF3 doping on the optical properties of Er3+ ions in oxyfluoride glass‑ceramics [J]. J. Lumin., 2014, 153: 252-258. doi: 10.1016/j.jlumin.2014.03.045http://dx.doi.org/10.1016/j.jlumin.2014.03.045
LI X, CHENG Y, XU J, et al. Utilizing Au‑CuS heterodimer to intensify upconversion emission of NaGdF4∶Yb/Er nanocrystals [J]. J. Mater. Sci., 2020, 55(16): 6891-6902. doi: 10.1007/s10853-020-04512-xhttp://dx.doi.org/10.1007/s10853-020-04512-x
DU P, HUANG X Y, YU J S. Yb3+‑concentration dependent upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ codoped Gd2MoO6 nanocrystals prepared by a facile citric⁃assisted sol⁃gel method [J]. Inorg. Chem. Front., 2017, 4(12): 1987-1995. doi: 10.1039/c7qi00497dhttp://dx.doi.org/10.1039/c7qi00497d
WANG S X, LIN J D, LI X Y, et al. Glass⁃limited Yb/Er∶NaLuF4 nanocrystals: reversible hexagonal⁃to⁃cubic phase transition and anti‑counterfeiting [J]. J. Mater. Chem. C, 2020, 8(45): 16151-16159. doi: 10.1039/d0tc03775chttp://dx.doi.org/10.1039/d0tc03775c
ZHANG Z Y, WU Y F, SUO H, et al. Optical thermometric properties of square⁃like KLa(MoO4)2⁃Yb3+/Er3+ up⁃converting phosphors [J]. Mater. Res. Bull., 2020, 133: 111079-1-6. doi: 10.1016/j.materresbull.2020.111079http://dx.doi.org/10.1016/j.materresbull.2020.111079
SONG N, LIU S B, ZHANG P, et al. Enhancing upconversion of Nd3+ through Yb3+‑mediated energy cycling towards temperature sensing [J]. J. Rare Earths, 2021, 39(12): 1506-1511. doi: 10.1016/j.jre.2021.06.013http://dx.doi.org/10.1016/j.jre.2021.06.013
金叶, 李坤, 罗旭, 等. Sc2(WO4)3∶Er3+/Yb3+的上转换发光及其温度传感特性 [J]. 发光学报, 2021, 42(1): 91-97. doi: 10.37188/cjl.20200326http://dx.doi.org/10.37188/cjl.20200326
JIN Y, LI K, LUO X, et al. Upconversion luminescence and temperature sensing properties for Sc2(WO4)3∶Er3+/Yb3+ [J]. Chin. J. Lumin., 2021, 42(1): 91-97. (in Chinese). doi: 10.37188/cjl.20200326http://dx.doi.org/10.37188/cjl.20200326
张旭霞, 李斌, 张黎明, 等. 有机-无机复合纳米材料的传感应用及机理 [J]. 中国光学, 2015, 8(4): 651-666. doi: 10.3788/co.20150804.0651http://dx.doi.org/10.3788/co.20150804.0651
ZHANG X X, LI B, ZHANG L M, et al. Sensing application and mechanism of organic‑inorganic nanocomposites [J]. Chin. Opt., 2015, 8(4): 651-666. (in Chinese). doi: 10.3788/co.20150804.0651http://dx.doi.org/10.3788/co.20150804.0651
HU C L, YANG M, YU H, et al. Synthesis of the wire‑in‑tube structure porous C12H12O12S3Tb2@g⁃C3N4/ZnO luminescent composite in hydrothermal condition [J]. J. Alloys Compd., 2022, 900: 163397. doi: 10.1016/j.jallcom.2021.163397http://dx.doi.org/10.1016/j.jallcom.2021.163397
YU H Q, TIAN Z, WANG H R, et al. Electrospinning‑derived YVO4∶Er/Yb nanowires and nanotubes with temperature sensitivity of their up‑converted emission [J]. Ceram. Int., 2021, 47(18): 25777-25784. doi: 10.1016/j.ceramint.2021.05.305http://dx.doi.org/10.1016/j.ceramint.2021.05.305
WANG Z H, ZHANG L, LIU J, et al. A flexible bimodal sensor based on an electrospun nanofibrous structure for simultaneous pressure⁃temperature detection [J]. Nanoscale, 2019, 11(30): 14242-14249. doi: 10.1039/c9nr03098khttp://dx.doi.org/10.1039/c9nr03098k
PADMARAJ O, RAO B N, JENA P, et al. Electrochemical studies of electrospun organic/inorganic hybrid nanocomposite fibrous polymer electrolyte for lithium battery [J]. Polymer, 2014, 55(5): 1136-1142. doi: 10.1016/j.polymer.2014.01.015http://dx.doi.org/10.1016/j.polymer.2014.01.015
WADE S A, COLLINS S F, BAXTER G W. Fluorescence intensity ratio technique for optical fiber point temperature sensing [J]. J. Appl. Phys., 2003, 94(8): 4743-4756. doi: 10.1063/1.1606526http://dx.doi.org/10.1063/1.1606526
0
Views
221
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution