浏览全部资源
扫码关注微信
1.中国科学院福建物质结构研究所 中国科学院功能纳米结构设计与组装重点实验室, 福建省纳米材料重点实验室, 福建 福州 350108
2.福州大学材料科学与工程学院 先进材料技术重点实验室, 福建 福州 350108
3.中国福建光电信息科学与技术创新实验室(闽都创新实验室), 福建 福州 350108
Published:05 March 2023,
Received:23 September 2022,
Revised:10 October 2022,
移动端阅览
张伟,郑伟,李凌云等.Cd2+掺杂Cs2ZnCl4黄光荧光粉及其光学性能[J].发光学报,2023,44(03):518-527.
ZHANG Wei,ZHENG Wei,LI Lingyun,et al.Cd2+-doped Cs2ZnCl4 Yellow-emitting Phosphor and Its Optical Properties[J].Chinese Journal of Luminescence,2023,44(03):518-527.
张伟,郑伟,李凌云等.Cd2+掺杂Cs2ZnCl4黄光荧光粉及其光学性能[J].发光学报,2023,44(03):518-527. DOI: 10.37188/CJL.20220344.
ZHANG Wei,ZHENG Wei,LI Lingyun,et al.Cd2+-doped Cs2ZnCl4 Yellow-emitting Phosphor and Its Optical Properties[J].Chinese Journal of Luminescence,2023,44(03):518-527. DOI: 10.37188/CJL.20220344.
全无机零维金属卤化物因其独特的光学性能和可溶液法加工的特点,有望成为替代铅卤钙钛矿的新一代发光材料,在固态照明和光电探测等领域发挥重要作用。本文报道了一种Cd
2+
掺杂的Cs
2
ZnCl
4
新型黄光荧光粉。该材料在270 nm紫外光激发下,呈现565 nm的宽带、长寿命(11.4 ms)发光,荧光量子产率达到46.0%。通过变温高分辨光谱测试分析,证明了其发光来源于Cd
2+
的
3
E→
1
A
1
禁戒跃迁,并且在低温下(
<
170 K)还观测到局域态激子的发光及其到Cd
2+
的高效能量传递过程。此外,该材料还展现出优异的抗热猝灭性能,150 ℃温度下的发光强度依然保持室温时的90.0%。本工作为Cd
2+
掺杂金属卤化物的激发态动力学提供了新发现,也为新型高效零维金属卤化物发光材料的设计开发提供了新思路。
All-inorganic zero-dimensional (0D) metal halides, owing to their intriguing optical properties and easy solution processibility, are emerging as a new generation of luminescent materials and as an alternative to lead halide perovskites for various applications such as solid-state lighting and photodetectors. Herein, a new yellow phosphor is developed based on Cd
2+
-doped Cs
2
ZnCl
4
, which exhibits intense broadband and long-lived (11.4 ms) photoluminescence (PL) at 565 nm upon 270 nm excitation, with a PL quantum yield up to 46.0%. Temperature-dependent PL spectroscopic analyses reveal that the broadband PL originates from the forbidden
3
E→
1
A
1
transition of Cd
2+
. Specifically, localized exciton emission is observed at low temperatures below 170 K, in parallel with efficient energy transfer from the localized excitons to Cd
2+
. Besides, the phosphor displays an excellent anti-thermal quenching property, remaining 90% PL intensity at 150 ℃ in comparison with that at room temperature. These findings provide not only new insights into the excited-state dynamics of Cd
2+
in metal halides, but also a new avenue for the exploration of novel and efficient luminescent materials based on 0D metal halides.
金属卤化物Cs2ZnCl4镉掺杂光致发光激发态动力学
metal halideCs2ZnCl4cadmium dopingphotoluminescenceexcited-state dynamics
苏彬彬, 夏志国. 新兴零维金属卤化物的光致发光与应用研究进展 [J]. 发光学报, 2021, 42(6): 733-754. doi: 10.37188/CJL.20210088http://dx.doi.org/10.37188/CJL.20210088
SU B B, XIA Z G. Research progresses of photoluminescence and application for emerging zero-dimensional metal halides luminescence materials [J]. Chin J. Lumin., 2021, 42(6): 733-754. (in Chinese). doi: 10.37188/CJL.20210088http://dx.doi.org/10.37188/CJL.20210088
SUN S Q, LU M, GAO X P, et al. 0D perovskites: unique properties, synthesis, and their applications [J]. Adv. Sci., 2021, 8(24): 2102689-1-23. doi: 10.1002/advs.202102689http://dx.doi.org/10.1002/advs.202102689
LI M Z, XIA Z G. Recent progress of zero-dimensional luminescent metal halides [J]. Chem. Soc. Rev., 2021, 50(4): 2626-2662. doi: 10.1039/d0cs00779jhttp://dx.doi.org/10.1039/d0cs00779j
HAN Y, YUE S J, CUI B B. Low-dimensional metal halide perovskite crystal materials: structure strategies and luminescence applications [J]. Adv. Sci., 2021, 8(15): 2004805-1-21. doi: 10.1002/advs.202004805http://dx.doi.org/10.1002/advs.202004805
GUO Y, CHEN B, REN X L, et al. Recent advances in all-inorganic zero-dimensional metal halides [J]. ChemPlusChem, 2021, 86(12): 1577-1585. doi: 10.1002/cplu.202100459http://dx.doi.org/10.1002/cplu.202100459
CHEN W B, LI W, ZHANG X J, et al. Carbon dots embedded in lead-free luminescent metal halide crystals toward single-component white emitters [J]. Sci. China Mater., 2022, 65(10): 2802-2808. doi: 10.1007/s40843-022-2009-yhttp://dx.doi.org/10.1007/s40843-022-2009-y
XIAO H, DANG P P, YUN X H, et al. Solvatochromic photoluminescent effects in all-inorganic manganese(Ⅱ)-based perovskites by highly selective solvent-induced crystal-to-crystal phase transformations [J]. Angew. Chem. Int. Ed., 2021, 60(7): 3699-3707. doi: 10.1002/anie.202012383http://dx.doi.org/10.1002/anie.202012383
ZHANG W, WEI J, GONG Z, et al. Unveiling the excited‐state dynamics of Mn2+ in 0D Cs4PbCl6 perovskite nanocrystals [J]. Adv. Sci., 2020, 7(22): 2002210-1-8. doi: 10.1002/advs.202002210http://dx.doi.org/10.1002/advs.202002210
CHENG X W, XIE Z, ZHENG W, et al. Boosting the self-trapped exciton emission in alloyed Cs2(Ag/Na)InCl6 double perovskite via Cu+ doping [J]. Adv. Sci., 2022, 9(7): 2103724-1-8. doi: 10.1002/advs.202103724http://dx.doi.org/10.1002/advs.202103724
杨洁男, 闻学敏, 魏钦华, 等. 红光-近红外发光卤化物闪烁晶体研究现状 [J]. 发光学报, 2021, 42(11): 1661-1672. doi: 10.37188/cjl.20210270http://dx.doi.org/10.37188/cjl.20210270
YANG J N, WEN X M, WEI Q H, et al. Current status of red and near-infrared emission halide scintillation crystals [J]. Chin J. Lumin., 2021, 42(11): 1661-1672. (in Chinese). doi: 10.37188/cjl.20210270http://dx.doi.org/10.37188/cjl.20210270
杨洁, 皮明雨, 张丁可, 等. 低维钙钛矿光电探测器研究进展 [J]. 发光学报, 2021, 42(6): 755-773. doi: 10.37188/CJL.20210033http://dx.doi.org/10.37188/CJL.20210033
YANG J, PI M Y, ZHANG D K, et al. Recent progress on low-dimensional perovskite photodetectors [J]. Chin. J. Lumin., 2021, 42(6): 755-773. (in Chinese). doi: 10.37188/CJL.20210033http://dx.doi.org/10.37188/CJL.20210033
黄浩, 赵韦人, 李杨, 等. 金属卤化物钙钛矿光催化材料研究进展 [J]. 发光学报, 2020, 41(9): 1058-1081. doi: 10.37188/fgxb20204109.1058http://dx.doi.org/10.37188/fgxb20204109.1058
HUANG H, ZHAO W R, LI Y, et al. Research advances of metal halide perovskites for photocatalysis [J]. Chin. J. Lumin., 2020, 41(9): 1058-1081. (in Chinese). doi: 10.37188/fgxb20204109.1058http://dx.doi.org/10.37188/fgxb20204109.1058
ZHOU L, LIAO J F, KUANG D B. An overview for zero-dimensional broadband emissive metal-halide single crystals [J]. Adv. Opt. Mater., 2021, 9(17): 2100544-1-28. doi: 10.1002/adom.202100544http://dx.doi.org/10.1002/adom.202100544
WEI J H, LUO J B, LIAO J F, et al. Te4+-doped Cs2InCl5·H2O single crystals for remote optical thermometry [J]. Sci. China Mater., 2022, 65(3): 764-772. doi: 10.1007/s40843-021-1792-1http://dx.doi.org/10.1007/s40843-021-1792-1
WEI J J, ZHENG W, HUANG P, et al. Direct photoinduced synthesis of lead halide perovskite nanocrystals and nanocomposites [J]. Nano Today, 2021, 39: 101179. doi: 10.1016/j.nantod.2021.101179http://dx.doi.org/10.1016/j.nantod.2021.101179
ZHANG F, YANG D W, SHI Z F, et al. Stable zero-dimensional cesium indium bromide hollow nanocrystals emitting blue light from self-trapped excitons [J]. Nano Today, 2021, 38: 101153-1-10. doi: 10.1016/j.nantod.2021.101153http://dx.doi.org/10.1016/j.nantod.2021.101153
CHENG X W, LI R F, ZHENG W, et al. Tailoring the broadband emission in all-inorganic lead-free 0D In-based halides through Sb3+ doping [J]. Adv. Opt. Mater., 2021, 9(12): 2100434-1-7. doi: 10.1002/adom.202100434http://dx.doi.org/10.1002/adom.202100434
YANG F, WANG A C, YUE S, et al. Lead-free perovskites: growth, properties, and applications [J]. Sci. China Mater., 2021, 64(12): 2889-2914. doi: 10.1007/s40843-021-1755-4http://dx.doi.org/10.1007/s40843-021-1755-4
ZHU Y S, ZHU J Y, SONG H Z, et al. Samarium doping improves luminescence efficiency of Cs3Bi2Br9 perovskite quantum dots enabling efficient white light-emitting diodes [J]. J. Rare Earths, 2021, 39(4): 374-379. doi: 10.1016/j.jre.2020.06.007http://dx.doi.org/10.1016/j.jre.2020.06.007
宋宏伟, 徐文. 钙钛矿发光-光电器件中的光谱调控 [J]. 发光学报, 2021, 42(5): 575-579. doi: 10.37188/CJL.20210177http://dx.doi.org/10.37188/CJL.20210177
SONG H W, XU W. Spectra control of perovskite luminescence and optoelectronic devices [J]. Chin. J. Lumin., 2021, 42(5): 575-579. (in Chinese). doi: 10.37188/CJL.20210177http://dx.doi.org/10.37188/CJL.20210177
胡强, 白雪, 宋宏伟. 稀土离子掺杂钙钛矿纳米晶的光学性质和应用 [J]. 发光学报, 2022, 43(1): 8-25. doi: 10.37188/CJL.20210330http://dx.doi.org/10.37188/CJL.20210330
HU Q, BAI X, SONG H W. Rare earth ion doped perovskite nanocrystals [J]. Chin. J. Lumin., 2022, 43(1): 8-25. (in Chinese). doi: 10.37188/CJL.20210330http://dx.doi.org/10.37188/CJL.20210330
XIE Y J, ZHOU A Q, ZHANG X S, et al. Metal cation substitution of halide perovskite nanocrystals [J]. Nano Res., 2022, 15(7): 6522-6550. doi: 10.1007/s12274-022-4224-7http://dx.doi.org/10.1007/s12274-022-4224-7
LU C H, BIESOLD-MCGEE G V, LIU Y J, et al. Doping and ion substitution in colloidal metal halide perovskite nanocrystals [J]. Chem. Soc. Rev., 2020, 49(14): 4953-5007. doi: 10.1039/c9cs00790chttp://dx.doi.org/10.1039/c9cs00790c
MIR W J, SHEIKH T, ARFIN H, et al. Lanthanide doping in metal halide perovskite nanocrystals: spectral shifting, quantum cutting and optoelectronic applications [J]. NPG Asia Mater., 2020, 12(1): 9-1-9. doi: 10.1038/s41427-019-0192-0http://dx.doi.org/10.1038/s41427-019-0192-0
ZENG R S, BAI K, WEI Q L, et al. Boosting triplet self-trapped exciton emission in Te(Ⅳ)-doped Cs2SnCl6 perovskite variants [J]. Nano Res., 2021, 14(5): 1551-1558. doi: 10.1007/s12274-020-3214-xhttp://dx.doi.org/10.1007/s12274-020-3214-x
SU B B, ZHOU G J, HUANG J L, et al. Mn2+-doped metal halide perovskites: structure, photoluminescence, and application [J]. Laser Photon. Rev., 2021, 15(1): 2000334-1-29. doi: 10.1002/lpor.202000334http://dx.doi.org/10.1002/lpor.202000334
ZHOU B, LIU Z X, FANG S F, et al. Efficient white photoluminescence from self-trapped excitons in Sb3+/Bi3+-codoped Cs2NaInCl6 double perovskites with tunable dual-emission [J]. ACS Energy Lett., 2021, 6(9): 3343-3351. doi: 10.1021/acsenergylett.1c01442http://dx.doi.org/10.1021/acsenergylett.1c01442
JIN M Y, ZHENG W, GONG Z L, et al. Unraveling the triplet excited-state dynamics of Bi3+ in vacancy-ordered double perovskite Cs2SnCl6 nanocrystals [J]. Nano Res., 2022, 15(7): 6422-6429. doi: 10.1007/s12274-022-4277-7http://dx.doi.org/10.1007/s12274-022-4277-7
ZHANG W, ZHENG W, LI L Y, et al. Dual-band-tunable white-light Emission from Bi3+/Te4+ emitters in perovskite-derivative Cs2SnCl6 microcrystals [J]. Angew. Chem. Int. Ed., 2022, 61(9): e202116085-1-9. doi: 10.1002/anie.202116085http://dx.doi.org/10.1002/anie.202116085
ZHANG G Y, WANG D Y, LOU B B, et al. Efficient broadband near-infrared emission from lead-free halide double perovskite single crystal [J]. Angew. Chem. Int. Ed., 2022, 61(33): e202207454-1-9. doi: 10.1002/anie.202207454http://dx.doi.org/10.1002/anie.202207454
LIU Y, RONG X M, LI M Z, et al. Incorporating rare-earth terbium(Ⅲ) ions into Cs2AgInCl6∶Bi nanocrystals toward tunable photoluminescence [J]. Angew. Chem. Int. Ed., 2020, 59(28): 11634-11640. doi: 10.1002/anie.202004562http://dx.doi.org/10.1002/anie.202004562
SUN J Y, ZHENG W, HUANG P, et al. Efficient near-infrared luminescence in lanthanide-doped vacancy-ordered double perovskite Cs2ZrCl6 phosphors via Te4+ sensitization [J]. Angew. Chem. Int. Ed., 2022, 61(26): e202201993-1-7. doi: 10.1002/anie.202201993http://dx.doi.org/10.1002/anie.202201993
XU K Y, CHEN D J, HUANG D C, et al. Thermally stable emission from Yb3+-doped CsPbCl3 nanocrystals [J]. J. Lumin., 2021, 240: 118464-1-5. doi: 10.1016/j.jlumin.2021.118464http://dx.doi.org/10.1016/j.jlumin.2021.118464
XU Z Q, CHEN L H, ZHANG L Q, et al. Yb/Er∶Cs2Ag(In/Bi)Cl6 lead-free double perovskite for dual-modal optical temperature sensing [J]. J. Lumin., 2022, 248: 118996-1-5. doi: 10.1016/j.jlumin.2022.118996http://dx.doi.org/10.1016/j.jlumin.2022.118996
HUANG F Z, LI X H, ZHANG Z, et al. An ultra-stable Eu3+ doped yttrium coordination polymer with dual-function sensing for Cr(Ⅵ) and Fe(Ⅲ) Ions in aqueous solution [J]. Chin. J. Struct. Chem., 2022, 41(4): 2204068-2204074.
刘慧雯, 姚栋, 刘轶, 等. 锰离子掺杂纯无机钙钛矿纳米晶及应用 [J]. 中国光学, 2019, 12(5): 933-951. doi: 10.3788/co.20191205.0933http://dx.doi.org/10.3788/co.20191205.0933
LIU H W, YAO D, LIU Y, et al. Mn2+-doped CsPbX3 (X=Cl, Br and I) perovskite nanocrystals and their applications [J]. Chin. Opt., 2019, 12(5): 933-951. (in English). doi: 10.3788/co.20191205.0933http://dx.doi.org/10.3788/co.20191205.0933
ZENG Z C, HUANG B L, WANG X, et al. Multimodal luminescent Yb3+/Er3+/Bi3+-doped perovskite single crystals for X-ray detection and anti-counterfeiting [J]. Adv. Mater., 2020, 32(43): 2004506-1-10. doi: 10.1002/adma.202004506http://dx.doi.org/10.1002/adma.202004506
ZENG Z C, SUN M Z, ZHANG S, et al. Rare-earth-based perovskite Cs2AgScCl6∶Bi for strong full visible spectrum emission [J]. Adv. Funct. Mater., 2022, 32(32): 2204780-1-10. doi: 10.1002/adfm.202204780http://dx.doi.org/10.1002/adfm.202204780
ZHU D X, ZAFFALON M L, PINCHETTI V, et al. Bright blue emitting Cu-doped Cs2ZnCl4 colloidal nanocrystals [J]. Chem. Mater., 2020, 32(13): 5897-5903. doi: 10.1021/acs.chemmater.0c02017http://dx.doi.org/10.1021/acs.chemmater.0c02017
CHENG P F, FENG L, LIU Y F, et al. Doped zero-dimensional cesium zinc halides for high-efficiency blue light emission [J]. Angew. Chem. Int. Ed., 2020, 59(48): 21414-21418. doi: 10.1002/anie.202008098http://dx.doi.org/10.1002/anie.202008098
SU B B, LI M Z, SONG E H, et al. Sb3+-doping in cesium zinc halides single crystals enabling high-efficiency near-infrared emission [J]. Adv. Funct. Mater., 2021, 31(40): 2105316-1-10. doi: 10.1002/adfm.202105316http://dx.doi.org/10.1002/adfm.202105316
GENG D L, CAI B, OUYANG Z L, et al. Heterovalent doping enabled efficient and stable extrinsic self-trapped exciton emission in zero-dimensional cesium zinc halides [J]. Adv. Opt. Mater., 2022, 10(19): 2201061-1-9. doi: 10.1002/adom.202201061http://dx.doi.org/10.1002/adom.202201061
LI K, YE Y, ZHANG W C, et al. Ultra-stable and color-tunable manganese ions doped lead-free cesium zinc halides nanocrystals in glasses for light-emitting applications [J]. Nano Res., 2022, 15(10): 9368-9376. doi: 10.1007/s12274-022-4607-9http://dx.doi.org/10.1007/s12274-022-4607-9
LIU X X, PENG C D, ZHANG L J, et al. Te4+-doped zero-dimensional Cs2ZnCl4 single crystals for broadband yellow light emission [J]. J. Mater. Chem. C, 2021, 10(1): 204-209. doi: 10.1039/d1tc04990ahttp://dx.doi.org/10.1039/d1tc04990a
WANG M, YANG R T, CHENG S S, et al. Mn and Cu codoped Cs2ZnBr4 metal halide with multiexcitonic emission toward anti-counterfeiting [J]. J. Phys.: Condens. Matter, 2022, 34(20): 204009-1-7. doi: 10.1088/1361-648x/ac58dahttp://dx.doi.org/10.1088/1361-648x/ac58da
WANG X Y, SHEN Q B, CHEN Y S, et al. Self-trapped exciton emission in an Sn(Ⅱ)-doped all-inorganic zero-dimensional zinc halide perovskite variant [J]. Nanoscale, 2021, 13(36): 15285-15291. doi: 10.1039/d1nr04635ghttp://dx.doi.org/10.1039/d1nr04635g
CHEN W D, SHAO H, WU X F, et al. Highly stable and efficient Mn2+ doping zero-dimension Cs2ZnxPb1-xCl4 alloyed nanorods toward white electroluminescent light-emitting diodes [J]. J. Phys. Chem. Lett., 2022, 13(10): 2379-2387. doi: 10.1021/acs.jpclett.2c00381http://dx.doi.org/10.1021/acs.jpclett.2c00381
ZHANG H T, ZENG Z C, SHI X M, et al. In-depth study on the structures and properties of rare-earth-containing perovskite materials [J]. Nanoscale, 2021, 13(33): 13976-13994. doi: 10.1039/d1nr02950ahttp://dx.doi.org/10.1039/d1nr02950a
TAUC J, GRIGOROVICI R, VANCU A. Optical properties and electronic structure of amorphous germanium [J]. Phys. Stat. Sol. (b), 1966, 15(2): 627-637. doi: 10.1002/pssb.19660150224http://dx.doi.org/10.1002/pssb.19660150224
BLASS G, GRABMAIER B C. Luminescent Materials [M]. Berlin: Springer-Verlag, 1994. doi: 10.1007/978-3-642-79017-1http://dx.doi.org/10.1007/978-3-642-79017-1
GAO Y L, HAN X X, WEI Q L, et al. Efficient orange emission in Mn2+-doped Cs3Cd2Cl7 perovskites with excellent stability [J]. J. Phys. Chem. Lett., 2022, 13(31): 7177-7184. doi: 10.1021/acs.jpclett.2c01996http://dx.doi.org/10.1021/acs.jpclett.2c01996
DAI Y R, WEI Q L, CHANG T, et al. Efficient self-trapped exciton emission in ruddlesden-popper Sb-doped Cs3Cd2Cl7 perovskites [J]. J. Phys. Chem. C, 2022, 126(27): 11238-11245. doi: 10.1021/acs.jpcc.2c03110http://dx.doi.org/10.1021/acs.jpcc.2c03110
CAI T, YANG H J, HILLS-KIMBALL K, et al. Synthesis of all-inorganic Cd-doped CsPbCl3 perovskite nanocrystals with dual-wavelength emission [J]. J. Phys. Chem. Lett., 2018, 9(24): 7079-7084. doi: 10.1021/acs.jpclett.8b03412http://dx.doi.org/10.1021/acs.jpclett.8b03412
DEMIRBILEK R, BOZDOĞAN A Ç, ÇALIŞKAN M, et al. Electronic energy levels of CsCdCl3 [J]. J. Lumin., 2011, 131(9): 1853-1856. doi: 10.1016/j.jlumin.2011.05.003http://dx.doi.org/10.1016/j.jlumin.2011.05.003
MATSUMOTO H, NAKAGAWA H. Relaxed excitonic states in CdI2 crystals [J]. J. Lumin., 1979, 18-19: 19-22. doi: 10.1016/0022-2313(79)90065-6http://dx.doi.org/10.1016/0022-2313(79)90065-6
EGRANOV A V, SHENDRIK R Y, SIZOVA T Y. Charge transfer and F-type centers in alkaline-earth fluorides activated by Cd2+ or Zn2+ ions [J]. Opt. Spectrosc., 2020, 128(10): 1572-1576. doi: 10.1134/s0030400x20100094http://dx.doi.org/10.1134/s0030400x20100094
ZHAO H Y, WEI Y C, CHEN Y M, et al. Blue-emitting 0D Cs3ZnX5 (X = Cl, Br) perovskite nanocrystals based on self-trapped excitons [J]. J. Lumin., 2022, 249: 119048-1-5. doi: 10.1016/j.jlumin.2022.119048http://dx.doi.org/10.1016/j.jlumin.2022.119048
WANG B, ZHU M Q, JIA X H, et al. Bridgman growth and intrinsic luminescence of pure Cs2ZnCl4 single crystal [J]. J. Electron. Mater., 2022, 51(11): 6512-6517. doi: 10.1007/s11664-022-09890-3http://dx.doi.org/10.1007/s11664-022-09890-3
YANG B, HAN K L. Ultrafast dynamics of self-trapped excitons in lead-free perovskite nanocrystals [J]. J. Phys. Chem. Lett., 2021, 12(34): 8256-8262. doi: 10.1021/acs.jpclett.1c01828http://dx.doi.org/10.1021/acs.jpclett.1c01828
LI S, XU J, LI Z G, et al. One-dimensional lead-free halide with near-unity greenish-yellow light emission [J]. Chem. Mater., 2020, 32(15): 6525-6531. doi: 10.1021/acs.chemmater.0c01794http://dx.doi.org/10.1021/acs.chemmater.0c01794
GONG Z L, ZHENG W, HUANG P, et al. Highly efficient Sb3+ emitters in 0D cesium indium chloride nanocrystals with switchable photoluminescence through water-triggered structural transformation [J]. Nano Today, 2022, 44: 101460-1-8. doi: 10.1016/j.nantod.2022.101460http://dx.doi.org/10.1016/j.nantod.2022.101460
ZHANG C G, ZHANG M R, ZHENG W, et al. A new class of luminescent nanoprobes based on main-group Sb3+ emitters [J]. Nano Res., 2022, 15(1): 179-185. doi: 10.1007/s12274-021-3454-4http://dx.doi.org/10.1007/s12274-021-3454-4
WEI J J, LIU Y Y, ZHANG M R, et al. Blue-LED-excitable NIR-Ⅱ luminescent lanthanide-doped SrS nanoprobes for ratiometric thermal sensing [J]. Sci. China Mater., 2022, 65(4): 1094-1102. doi: 10.1007/s40843-021-1801-8http://dx.doi.org/10.1007/s40843-021-1801-8
0
Views
634
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution