浏览全部资源
扫码关注微信
中国计量大学 光电材料与器件研究所, 浙江 杭州 310018
Published:05 April 2023,
Received:27 September 2022,
Revised:16 October 2022,
扫 描 看 全 文
温一诺,陈彦伶,付杰等.Bi3+、Eu3+共掺双钙钛矿Gd2ZnTiO6荧光粉制备及其温度传感性能[J].发光学报,2023,44(04):615-626.
WEN Yinuo,CHEN Yanling,FU Jie,et al.Preparation and Temperature Sensing Properties of Bi3+, Eu3+ Co-doped Double Perovskite Gd2ZnTiO6 Phosphor[J].Chinese Journal of Luminescence,2023,44(04):615-626.
温一诺,陈彦伶,付杰等.Bi3+、Eu3+共掺双钙钛矿Gd2ZnTiO6荧光粉制备及其温度传感性能[J].发光学报,2023,44(04):615-626. DOI: 10.37188/CJL.20220341.
WEN Yinuo,CHEN Yanling,FU Jie,et al.Preparation and Temperature Sensing Properties of Bi3+, Eu3+ Co-doped Double Perovskite Gd2ZnTiO6 Phosphor[J].Chinese Journal of Luminescence,2023,44(04):615-626. DOI: 10.37188/CJL.20220341.
采用高温固相法制备了一系列具有双发射中心的Gd
2 (1-
x-y
)
ZnTiO
6
∶
x
Bi
3+
,
y
Eu
3+
荧光粉。采用X射线衍射、扫描电子显微镜、荧光光谱、寿命衰减曲线和变温发射光谱等方法,系统地研究了该材料的结构、发光性能和温度传感特性。在Gd
2
ZnTiO
6
∶Bi
3+
,Eu
3+
荧光粉中,Bi
3+
和Eu
3+
离子占据了Gd
3+
离子的位置。在紫外激发下,Eu
3+
的激发光谱和Bi
3+
的发射光谱存在光谱重叠,表明从Bi
3+
到Eu
3+
可能存在能量传递。通过荧光强度比技术探究了Bi
3+
蓝光发射与Eu
3+
红光发射的不同温度响应特性。在293~473 K温度范围内,测得Gd
2
ZnTiO
6
∶Bi
3+
,Eu
3+
荧光粉的最大相对温度灵敏度为1.133%·K
-1
,最大绝对灵敏度为0.73 %·K
-1
。因此,Gd
2
ZnTiO
6
∶Bi
3+
,Eu
3+
荧光粉是一种有潜力的非接触式光学测温材料。
A series of Gd
2 (1
-x-y
)
ZnTiO
6
∶
x
Bi
3+
,
y
Eu
3+
phosphors with dual emission centers were prepared by high-temperature solid phase method. The structure, luminescence properties and temperature sensing characteristics of the material were systematically studied by X-ray diffraction, scanning electron microscopy, fluorescence spectroscopy, lifetime decay curve and variable temperature emission spectroscopy, respectively. In Gd
2
ZnTiO
6
∶Bi
3+
,Eu
3+
phosphor, Bi
3+
and Eu
3+
ions occupy Gd
3+
ion position. Under UV excitation, the excitation spectra of Eu
3+
and emission spectra of Bi
3+
overlap, indicating that there may be energy transfer from Bi
3+
to Eu
3+
. The fluorescence intensity ratio technique was used to explore the different temperature response characteristics of Bi
3+
blue light emission and Eu
3+
red light emission. In the temperature range of 293-473 K, the maximum relative temperature sensitivity of Gd
2
ZnTiO
6
∶Bi
3+
,Eu
3+
phosphors was 1.133%·K
-1
, and the maximum absolute sensitivity value was 0.73%·K
-1
, respectively. Therefore, Gd
2
ZnTiO
6
∶Bi
3+
,Eu
3+
phosphor is a potential non-contact optical temperature measurement material.
Gd2ZnTiO6∶Bi3+,Eu3+双钙钛矿荧光能量传递光学测温荧光强度比
Gd2ZnTiO6∶Bi3+,Eu3+double perovskitefluorescence energy transferoptical thermometryfluorescence intensity ratio
FUJIMOTO D, AKIBA K Y, NAKAMURA N. Isolation and characterization of a fluorescent material in bovine achilles tendon collagen [J]. Biochem. Biophys. Res. Commun., 1977, 76 (4): 1124-1129. doi: 10.1016/0006-291X(77)90972-Xhttp://dx.doi.org/10.1016/0006-291X(77)90972-X
PETORAL R M, SÖDERLIND F, KLASSON A, et al. Synthesis and characterization of Tb3+-doped Gd2O3 nanocrystals: a bifunctional material with combined fluorescent labeling and MRI contrast agent properties [J]. J. Phys. Chem. C, 2009, 113 (17): 6913-6920. doi: 10.1021/jp808708mhttp://dx.doi.org/10.1021/jp808708m
DE SOUZA SIERRA M M, DONARD O F X, LAMOTTE M. Spectral identification and behaviour of dissolved organic fluorescent material during estuarine mixing processes [J]. Mar. Chem., 2097, 58 (1-2): 51-58.
DAI W B, HU J, LIU G, et al. Thermometer of stable SrAl2Si2O8∶Ce3+,Tb3+ based on synergistic luminescence [J]. J. Lumin., 2020, 217: 116807-1-7. doi: 10.1016/j.jlumin.2019.116807http://dx.doi.org/10.1016/j.jlumin.2019.116807
张娜, 李阳, 尹延如, 等. Dy3+掺杂Lu2O3和Y2O3单晶光纤下转换荧光测温性能 [J]. 发光学报, 2022, 43 (2): 182-191. doi: 10.37188/cjl.20210345http://dx.doi.org/10.37188/cjl.20210345
ZHANG N, LI Y, YIN Y R, et al. Down-conversion luminescence performance of Dy3+ doped Lu2O3 and Y2O3 single crystal fibers for temperature sensing [J]. Chin. J. Lumin., 2022, 43 (2): 182-191. (in Chinese). doi: 10.37188/cjl.20210345http://dx.doi.org/10.37188/cjl.20210345
LAVIGNE M B. Differences in stem respiration responses to temperature between balsam fir trees in thinned and unthinned stands [J]. Tree Physiol., 1987, 3 (3): 225-233. doi: 10.1093/treephys/3.3.225http://dx.doi.org/10.1093/treephys/3.3.225
COUPEAUD A, DEMYK K, MENY C, et al. Low-temperature FIR and submillimetre mass absorption coefficient of interstellar silicate dust analogues [J]. Astron. Astrophys., 2011, 535: A124-1-15. doi: 10.1051/0004-6361/201116945http://dx.doi.org/10.1051/0004-6361/201116945
ZHENG Z G, ZHANG J F, LIU X Y, et al. Luminescence and self-referenced optical temperature sensing performance in Ca2YZr2Al3O12∶Bi3+, Eu3+ phosphors [J]. Ceram. Int., 2020, 46 (5): 6154-6159. doi: 10.1016/j.ceramint.2019.11.081http://dx.doi.org/10.1016/j.ceramint.2019.11.081
XU F, ZHENG B, XIA H P, et al. Ratiometric temperature sensing behavior of dual-emitting Ce3+/Tb3+ co-doped Na5Y9F32 single crystal with high relative sensitivity [J]. J. Alloys Compd., 2021, 873 (25): 159790-1-11. doi: 10.1016/j.jallcom.2021.159790http://dx.doi.org/10.1016/j.jallcom.2021.159790
ZHAO J T, SUN X Y, WANG Z Q. Ce3+/Eu2+ doped SrSc2O4 phosphors: synthesis, luminescence and energy transfer from Ce3+ to Eu2+ [J]. Chem. Phys. Lett., 2018, 691: 68-72. doi: 10.1016/j.cplett.2017.10.062http://dx.doi.org/10.1016/j.cplett.2017.10.062
ZHANG X Z, ZHU Z P, GUO Z Y, et al. A ratiometric optical thermometer with high sensitivity and superior signal discriminability based on Na3Sc2P3O12∶Eu2+, Mn2+ thermochromic phosphor [J]. Chem. Eng. J., 2019, 365: 413-422. doi: 10.1016/j.cej.2018.09.075http://dx.doi.org/10.1016/j.cej.2018.09.075
CHEN D Q, WANG Z Y, ZHOU Y, et al. Tb3+/Eu3+∶YF3 nanophase embedded glass ceramics: structural characterization, tunable luminescence and temperature sensing behavior [J]. J. Alloys Compd., 2015, 646: 339-344. doi: 10.1016/j.jallcom.2015.06.030http://dx.doi.org/10.1016/j.jallcom.2015.06.030
FU J P, PANG R, JIANG L H, et al. A novel dichromic self-referencing optical probe SrO∶Bi3+,Eu3+ for temperature spatially and temporally imaging [J]. Dalton Trans., 2016, 45 (34): 13317-13323. doi: 10.1039/c6dt01552bhttp://dx.doi.org/10.1039/c6dt01552b
WANG Z L, LIANG H B, GONG M L, et al. Novel red phosphor of Bi3+, Sm3+ co-activated NaEu (MoO4)2 [J]. Opt. Mater., 2007, 29 (7): 896-900. doi: 10.1016/j.optmat.2005.12.010http://dx.doi.org/10.1016/j.optmat.2005.12.010
LUWANG M N, NINGTHOUJAM R S, SRIVASTAVA S K, et al. Disappearance and recovery of luminescence in Bi3+, Eu3+ codoped YPO4 nanoparticles due to the presence of water molecules up to 800 ℃ [J]. J. Am. Chem. Soc., 2011, 133 (9): 2998-3004. doi: 10.1021/ja1092437http://dx.doi.org/10.1021/ja1092437
DAS N, NATH M A, THAKUR G S, et al. Monoclinically distorted perovskites, A2ZnTiO6 (A= Pr, Gd): rietveld refinement, and dielectric studies [J]. J. Solid State Chem., 2015, 229: 97-102. doi: 10.1016/j.jssc.2015.05.003http://dx.doi.org/10.1016/j.jssc.2015.05.003
FU A J, GUAN A X, GAO F F, et al. A novel double perovskite La2ZnTiO6∶Eu3+ red phosphor for solid-state lighting: synthesis and optimum luminescence [J]. Opt. Laser Technol., 2017, 96: 43-49. doi: 10.1016/j.optlastec.2017.04.025http://dx.doi.org/10.1016/j.optlastec.2017.04.025
潘金泉, 吴启运, 杨汝军, 等. 低温制备Mn4+掺杂Gd2ZnTiO6红色荧光粉及其发光性能研究 [J]. 中国稀土学报, 2021, 39 (6): 881-889.
PAN J Q, WU Q Y, YANG R J, et al. Low-temperature preparation and luminescence properties of Mn4+ doped Gd2ZnTiO6 red phosphor [J]. J. Chin. Soc. Rare Earths, 2021, 39 (6): 881-889. (in Chinese)
KIM D R, PARK S W, MOON B K, et al. The role of Yb3+ concentrations on Er3+ doped SrLaMgTaO6 double perovskite phosphors [J]. RSC Adv., 2017, 7 (3): 1464-1470. doi: 10.1039/c6ra24808jhttp://dx.doi.org/10.1039/c6ra24808j
VERMA B, BAGHEL R N, BISEN D P, et al. A. Structural characterization and effects of Dy concentration on luminescent properties of BaMgSiO4 phosphors [J]. J. Alloys Compd., 2019, 805: 663-672. doi: 10.1016/j.jallcom.2019.07.077http://dx.doi.org/10.1016/j.jallcom.2019.07.077
ZHANG J, JIN C. Electronic structure, upconversion luminescence and optical temperature sensing behavior of Yb3+-Er3+/Ho3+ doped NaLaMgWO6 [J]. J. Alloys Compd., 2019, 783: 84-94. doi: 10.1016/j.jallcom.2018.12.281http://dx.doi.org/10.1016/j.jallcom.2018.12.281
WOOD D L, TAUC J. Weak absorption tails in amorphous semiconductors [J]. Phys. Rev. B, 1972, 5 (8): 3144-3151. doi: 10.1103/physrevb.5.3144http://dx.doi.org/10.1103/physrevb.5.3144
MORALES A E, MORA E S, PAL U. Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures [J]. Rev. Mexic. Fís. S, 2007, 53 (5): 18-22.
SETLUR A A, SRIVASTAVA A M. The nature of Bi3+ luminescence in garnet hosts [J]. Opt. Mater., 2006, 29 (4): 410-415. doi: 10.1016/j.optmat.2005.09.076http://dx.doi.org/10.1016/j.optmat.2005.09.076
RIBEIRO S J L, DAHMOUCHE K, RIBEIRO C A, et al. Study of hybrid silica-polyethyleneglycol xerogels by Eu3+ luminescence spectroscopy [J]. J. Sol⁃Gel Sci. Technol., 1998, 13 (1-3): 427-432. doi: 10.1023/a:1008673211834http://dx.doi.org/10.1023/a:1008673211834
CHEN X Y, ZHENG Z G, TENG L M, et al. Self-calibrated optical thermometer based on luminescence from SrLu2O4∶ Bi3+, Eu3+ phosphors [J]. RSC Adv., 2018, 8 (62): 35422-35428. doi: 10.1039/c8ra06358chttp://dx.doi.org/10.1039/c8ra06358c
FU J, LIU F W, ZHOU L Y, et al. Dual-mode optical thermometry based on Bi3+/Eu3+ co-activated BaGd2O4 phosphor with high sensitivity and signal discriminability [J]. Ceram. Int., 2021, 47 (21): 30221-30233. doi: 10.1016/j.ceramint.2021.07.202http://dx.doi.org/10.1016/j.ceramint.2021.07.202
邓超, 林利添, 汤利, 等. Al3+掺杂ScVO4∶Eu3+, Bi3+荧光粉的制备及发光性质 [J]. 发光学报, 2015, 36 (11): 1246-1251. doi: 10.3788/fgxb20153611.1246http://dx.doi.org/10.3788/fgxb20153611.1246
DENG C, LIN L T, TANG L, et al. Synthesis and luminescence of ScVO4∶Eu3+, Bi3+,Al3+ phosphors [J]. Chin. J. Lumin., 2015, 36 (11): 1246-1251. (in Chinese). doi: 10.3788/fgxb20153611.1246http://dx.doi.org/10.3788/fgxb20153611.1246
MCCAMY C S. Correlated color temperature as an explicit function of chromaticity coordinates [J]. Color Res. Appl., 1992, 17 (2): 142-144. doi: 10.1002/col.5080170211http://dx.doi.org/10.1002/col.5080170211
CHEN Y H, CHEN J, TONG Y, et al. Y4GeO8∶Er3+,Yb3+ up-conversion phosphors for optical temperature sensor based on FIR technique [J]. J. Rare Earths, 2021, 39 (12): 1512-1519. doi: 10.1016/j.jre.2021.06.007http://dx.doi.org/10.1016/j.jre.2021.06.007
TIAN Y, CHEN B J, HUA R N, et al. Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3∶Eu3+ phosphor [J]. J. Appl. Phys., 2011, 109 (5): 053511-1-6. doi: 10.1063/1.3551584http://dx.doi.org/10.1063/1.3551584
CHEN W P, CAO J K, HU F F, et al. Highly efficient Na5Gd9F32∶Tb3+ glass ceramic as nanocomposite scintillator for X-ray imaging [J]. Opt. Mater. Express, 2018, 8 (1): 41-49. doi: 10.1364/ome.8.000041http://dx.doi.org/10.1364/ome.8.000041
DENG H J, GAO Z W, XUE N, et al. A novel Eu3+-doped garnet-type tellurate red-emitting phosphor with high thermal stability and color purity [J]. J. Lumin., 2017, 192: 684-689. doi: 10.1016/j.jlumin.2017.07.063http://dx.doi.org/10.1016/j.jlumin.2017.07.063
ZOU A L, SUN S X, YU J J, et al. Luminescence and energy transfer mechanism of KZnPO4∶Dy3+, Eu3+ [J]. J. Mater. Sci. Mater. Electron., 2019, 30 (10): 9155-9162. doi: 10.1007/s10854-019-01244-whttp://dx.doi.org/10.1007/s10854-019-01244-w
GUO H, HUANG X Y, ZENG Y J. Synthesis and photoluminescence properties of novel highly thermal-stable red-emitting Na3Sc2 (PO4)3∶Eu3+ phosphors for UV-excited white-light-emitting diodes [J]. J. Alloys Compd., 2018, 741: 300-306. doi: 10.1016/j.jallcom.2017.12.316http://dx.doi.org/10.1016/j.jallcom.2017.12.316
LIU Y, WANG J Y, LIU X X, et al. Energy transfer and luminescence properties of BaSr2Gd1-xMx (PO4)3(M= Dy, Tm, Eu) phosphors for warm white UV LEDs [J]. Opt. Mater., 2019, 95: 109194-1-8. doi: 10.1016/j.optmat.2019.109194http://dx.doi.org/10.1016/j.optmat.2019.109194
LENG Z H, YU G H, LI L L, et al. Enhanced of Tb3+ emission in KSr4(BO3)3∶Dy3+,Tb3+ phosphors via energy transfer from Dy3+ [J]. J. Alloys Compd., 2015, 651: 679-684. doi: 10.1016/j.jallcom.2015.08.184http://dx.doi.org/10.1016/j.jallcom.2015.08.184
DEXTER D L. A theory of sensitized luminescence in solids [J]. J. Chem. Phys., 1953, 21 (5): 836-850. doi: 10.1063/1.1699044http://dx.doi.org/10.1063/1.1699044
ZHANG J S, CHEN B J, LIANG Z Q, et al. Optical transition and thermal quenching mechanism in CaSnO3∶Eu3+ phosphors [J]. J. Alloys Compd., 2014, 612 (5): 204-209。. doi: 10.1016/j.jallcom.2014.05.188http://dx.doi.org/10.1016/j.jallcom.2014.05.188
BAJGIRAN K R, DARAPANENI P, MELVIN A T, et al. Effects of weak electric field on the photoluminescence behavior of Bi3+-doped YVO4-Eu3+ core-shell nanoparticles [J]. J. Phys. Chem. C, 2019, 123 (20): 13027-13035. doi: 10.1021/acs.jpcc.9b01872http://dx.doi.org/10.1021/acs.jpcc.9b01872
PENG X S, CHEN J, CHEN Y H, et al. Optical thermometry based fluorescence intensity ratio in Y2Mg2Al2Si2O12∶Bi3+,Eu3+ phosphors [J]. J. Alloys Compd., 2021, 885: 161010-1-8. doi: 10.1016/j.jallcom.2021.161010http://dx.doi.org/10.1016/j.jallcom.2021.161010
WEI R F, GUO J L, LI K J, et al. Dual-emitting SrY2O4∶Bi3+,Eu3+ phosphor for ratiometric temperature sensing [J]. J. Lumin., 2019, 216: 116737. doi: 10.1016/j.jlumin.2019.116737http://dx.doi.org/10.1016/j.jlumin.2019.116737
CHEN J, GUO J J, CHEN Y H, et al. Up-conversion properties of Ba3Lu2Zn5O11∶Yb3+,Er3+ phosphors for optical thermometer based on FIR technique [J]. J. Lumin., 2021, 238: 118294-1-8. doi: 10.1016/j.jlumin.2021.118294http://dx.doi.org/10.1016/j.jlumin.2021.118294
SOLER-CARRACEDO K, MARTÍN I R, LAHOZ F, et al. Er3+/Ho3+ codoped nanogarnet as an optical FIR based thermometer for a wide range of high and low temperatures [J]. J. Alloys Compd., 2020, 847: 156541-1-7. doi: 10.1016/j.jallcom.2020.156541http://dx.doi.org/10.1016/j.jallcom.2020.156541
SHEN Y Y, CHEN Y, CHEN L, et al. Dual emitting from Bi3+/Eu3+ co-activated Sr3La2Ge3O12 phosphor for optical thermometry [J]. Opt. Mater., 2021, 115: 111036-1-8. doi: 10.1016/j.optmat.2021.111036http://dx.doi.org/10.1016/j.optmat.2021.111036
JIA M C, SUN Z, XU H Y, et al. An ultrasensitive luminescent nanothermometer in the first biological window based on phonon-assisted thermal enhancing and thermal quenching [J]. J. Mater. Chem. C, 2020, 8 (44): 15603-15608. doi: 10.1039/d0tc04082ghttp://dx.doi.org/10.1039/d0tc04082g
JIA M C, SUN Z, ZHANG M X, et al. What determines the performance of lanthanide-based ratiometric nanothermometers? [J]. Nanoscale, 2020, 12 (40): 20776-20785. doi: 10.1039/d0nr05035khttp://dx.doi.org/10.1039/d0nr05035k
WEI X T, ZHAO J B, CHEN Y H, et al. Quantum cutting downconversion by cooperative energy transfer from Bi3+ to Yb3+ in Y2O3 phosphor [J]. Chin. Phys. B, 2010, 19 (7): 077804-1-5. doi: 10.1088/1674-1056/19/7/077804http://dx.doi.org/10.1088/1674-1056/19/7/077804
JIN Y H, HU Y H, WU H Y, et al. A deep red phosphor Li2MgTiO4∶Mn4+ exhibiting abnormal emission: potential application as color converter for warm w-LEDs [J]. Chem. Eng. J., 2016, 288: 596-607. doi: 10.1016/j.cej.2015.12.027http://dx.doi.org/10.1016/j.cej.2015.12.027
MARCINIAK L, TREJGIS K. Luminescence lifetime thermometry with Mn3+-Mn4+ co-doped nanocrystals [J]. J. Mater. Chem. C, 2018, 6 (26): 7092-7100. doi: 10.1039/c8tc01981ahttp://dx.doi.org/10.1039/c8tc01981a
0
Views
206
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution