浏览全部资源
扫码关注微信
1.华南理工大学 材料科学与工程学院, 发光材料与器件国家重点实验室, 广东省光纤激光材料与应用技术重点实验室, 广东省特种光纤材料与器件工程技术研究开发中心, 广东 广州 510641
2.华南理工大学 物理与光电学院, 广东 广州 510641
Published:05 March 2023,
Received:19 September 2022,
Revised:06 October 2022,
移动端阅览
黄敬龙,金建策,苏彬彬等.Cu基金属卤化物发光材料(C12H24O6)NaCuBr2及其全光谱照明应用[J].发光学报,2023,44(03):528-536.
HUANG Jinglong,JIN Jiancte,SU Binbin,et al.Cu(Ⅰ)-based Metal Halide Luminescence Material (C12H24O6)NaCuBr2 for Full-spectrum Lighting Application[J].Chinese Journal of Luminescence,2023,44(03):528-536.
黄敬龙,金建策,苏彬彬等.Cu基金属卤化物发光材料(C12H24O6)NaCuBr2及其全光谱照明应用[J].发光学报,2023,44(03):528-536. DOI: 10.37188/CJL.20220338.
HUANG Jinglong,JIN Jiancte,SU Binbin,et al.Cu(Ⅰ)-based Metal Halide Luminescence Material (C12H24O6)NaCuBr2 for Full-spectrum Lighting Application[J].Chinese Journal of Luminescence,2023,44(03):528-536. DOI: 10.37188/CJL.20220338.
铜(Ⅰ)基金属卤化物作为新一代环境友好的发光材料受到了研究者的广泛关注。本文采用溶剂辅助结晶法设计制备了一种新型零维金属卤化物发光材料(C
12
H
24
O
6
)NaCuBr
2
。在365 nm激发下,该化合物呈现出半峰宽为346 nm的超宽带橙红色发射,光致发光量子产率为42.6%。基于低温光谱、激发波长依赖的发射光谱和理论计算研究表明,峰值700 nm处的超宽带发射来自于Cu
+
离子3d轨道和Br
-
离子4p轨道间相互作用形成的简并能级。在低温下,(C
12
H
24
O
6
)NaCuBr
2
的晶格畸变导致能级的简并度降低,其荧光发射包含峰值为629 nm和735 nm的两个发射带。在高能激发下,电子跃迁到(C
12
H
24
O
6
)NaCuBr
2
的更高能级S
3
而带来的发射与77 K下观测到的480 nm处的发射峰相对应。采用(C
12
H
24
O
6
)NaCuBr
2
制备的白光发光二极管(LED)器件的显色指数高达90.6,表明其在全光谱照明领域具有潜在的应用前景。
Cu(Ⅰ)-based metal halides, as a new generation of environment-friendly luminescent materials, have attracted extensive attention. Herein, a novel zero-dimensional Cu(Ⅰ)-based metal halide (C
12
H
24
O
6
)NaCuBr
2
was prepared by solution assisted crystallization method. Under 365 nm excitation, (C
12
H
24
O
6
)NaCuBr
2
single crystal exhibits ultra-broadband orange red emission with the full width at half maximum of 346 nm and the photoluminescence quantum yield of 42.6%. Theoretical calculation and experimental studies on the low temperature and excitation-dependent emission spectra show that the ultra-broadband emission peaking at 700 nm is derived from the formation of a degenerate energy level by the interaction between the 3d orbital of the Cu
+
ion and the 4p orbital of the Br
-
ion. At low temperature, the degeneracy of the energy level is reduced due to the lattice distortion, and the emission peak at 700 nm is split into two emission peaks at 629 nm and 735 nm, respectively. In addition, the electron is excited to a higher energy level of S
3
for (C
12
H
24
O
6
)NaCuBr
2
under high energy excitation, which corresponds to the emission peak at 480 nm observed at 77 K. The white light-emitting diode (LED) device prepared using (C
12
H
24
O
6
)NaCuBr
2
possesses a color rendering index as high as 90.6, indicating their potential application in the field of full-spectrum lighting.
零维结构Cu基金属卤化物全光谱照明
zero-dimensional structureCu-based metal halidesfull-spectrum lighting
苏彬彬, 夏志国. 新兴零维金属卤化物的光致发光与应用研究进展 [J]. 发光学报, 2021, 42(6): 733-754. doi: 10.37188/CJL.20210088http://dx.doi.org/10.37188/CJL.20210088
SU B B, XIA Z G. Research progresses of photoluminescence and application for emerging zero-dimensional metal halides luminescence materials [J]. Chin. J. Lumin., 2021, 42(6): 733-754. (in Chinese). doi: 10.37188/CJL.20210088http://dx.doi.org/10.37188/CJL.20210088
BLASSE G. Luminescent materials: is there still news? [J]. J. Alloys Compd., 1995, 225(1-2): 529-533. doi: 10.1016/0925-8388(94)07096-2http://dx.doi.org/10.1016/0925-8388(94)07096-2
FELDMANN C, JÜSTEL T, RONDA C R, et al. Inorganic luminescent materials: 100 years of research and application [J]. Adv. Funct. Mater., 2003, 13(7): 511-516. doi: 10.1002/adfm.200301005http://dx.doi.org/10.1002/adfm.200301005
JÜSTEL T, NIKOL H, RONDA C. New developments in the field of luminescent materials for lighting and displays [J]. Angew. Chem. Int. Ed., 1998, 37(22): 3084-3103. doi: 10.1002/(sici)1521-3773(19981204)37:22<3084::aid-anie3084>3.0.co;2-whttp://dx.doi.org/10.1002/(sici)1521-3773(19981204)37:22<3084::aid-anie3084>3.0.co;2-w
ZHAO M, ZHANG Q Y, XIA Z G. Structural engineering of Eu2+-doped silicates phosphors for led applications [J]. Acc. Mater. Res., 2020, 1(2): 137-145. doi: 10.1021/accountsmr.0c00014http://dx.doi.org/10.1021/accountsmr.0c00014
WANG L, XIE R J, LI Y Q, et al. Ca1-xLixAl1-xSi1+xN3∶Eu2+ solid solutions as broadband, color-tunable and thermally robust red phosphors for superior color rendition white light-emitting diodes [J]. Light Sci. Appl., 2016, 5(10): e16155-1-9. doi: 10.1038/LSA.2016.155http://dx.doi.org/10.1038/LSA.2016.155
ZHAO M, LIAO H X, MOLOKEEV M S, et al. Emerging ultra-narrow-band cyan-emitting phosphor for white LEDs with enhanced color rendition [J]. Light Sci. Appl., 2019, 8: 38-1-9. doi: 10.1038/s41377-019-0148-8http://dx.doi.org/10.1038/s41377-019-0148-8
DAI P P, LI C, ZHANG X T, et al. A single Eu2+-activated high-color-rendering oxychloride white-light phosphor for white-light-emitting diodes [J]. Light Sci. Appl., 2016, 5(2): e16024-1-9. doi: 10.1038/lsa.2016.24http://dx.doi.org/10.1038/lsa.2016.24
LI S X, PENG X, LIU X J, et al. Photoluminescence of CaAlSiN3∶Eu2+-based fine red-emitting phosphors synthesized by carbothermal reduction and nitridation method [J]. Opt. Mater., 2014, 38: 242-247. doi: 10.1016/j.optmat.2014.10.039http://dx.doi.org/10.1016/j.optmat.2014.10.039
BRINKLEY S E, PFAFF N, DENAULT K A, et al. Robust thermal performance of Sr2Si5N8∶Eu2+: an efficient red emitting phosphor for light emitting diode based white lighting [J]. Appl. Phys. Lett., 2011, 99(24): 241106-1-3. doi: 10.1063/1.3666785http://dx.doi.org/10.1063/1.3666785
KIM Y S, CHOI S W, PARK J H, et al. Red-emitting (Sr,Ca)AlSiN3∶Eu2+ phosphors synthesized by spark plasma sintering [J]. ECS J. Solid State Sci. Technol., 2013, 2(2): R3021-R3025. doi: 10.1149/2.008302jsshttp://dx.doi.org/10.1149/2.008302jss
PIAO X Q, MACHIDA K I, HORIKAWA T, et al. Preparation of CaAlSiN3∶Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties [J]. Chem. Mater., 2007, 19(8): 4592-4599. doi: 10.1021/cm070623chttp://dx.doi.org/10.1021/cm070623c
DU P, LUO L H, CHENG W. Neoteric Mn2+-activated Cs3Cu2I5 dazzling yellow-emitting phosphors for white-LED [J]. J. Am. Ceram. Soc., 2020, 103(2): 1149-1155. doi: 10.1111/jace.16796http://dx.doi.org/10.1111/jace.16796
CORTECCHIA D, DEWI H A, YIN J, et al. Lead-free Ma2CuClxBr4–x hybrid perovskites [J]. Inorg. Chem., 2016, 55(3): 1044-1052. doi: 10.1021/acs.inorgchem.5b01896http://dx.doi.org/10.1021/acs.inorgchem.5b01896
JUN T, SIM K, IIMURA S, et al. Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0d electronic structure [J]. Adv. Mater., 2018, 30(43): 1804547-1-6. doi: 10.1002/adma.201804547http://dx.doi.org/10.1002/adma.201804547
RYU C K, VITALE M, FORD P C. Photoluminescence properties of the structurally analogous tetranuclear copper(Ⅰ) clusters Cu4X4(dpmp)4(X=I, Br, Cl; dpmp=2-(diphenylmethyl)pyridine) [J]. Inorg. Chem., 1993, 32(6): 869-874. doi: 10.1021/ic00058a020http://dx.doi.org/10.1021/ic00058a020
KYLE K R, RYU C K, FORD P C, et al. Photophysical studies in solution of the tetranuclear copper(Ⅰ) clusters Cu4I4L4 (L = pyridine or substituted pyridine) [J]. J. Am. Chem. Soc., 1991, 113(8): 2954-2965. doi: 10.1021/ja00008a026http://dx.doi.org/10.1021/ja00008a026
HEI X Z, TEAT S J, LIU W, et al. Eco-friendly, solution-processable and efficient low-energy lighting phosphors: copper halide based hybrid semiconductors Cu4X6(L)2 (X = Br, I) composed of covalent, ionic and coordinate bonds [J]. J. Mater. Chem. C, 2020, 8(47): 16790-16797. doi: 10.1039/d0tc04672hhttp://dx.doi.org/10.1039/d0tc04672h
LIU W, FANG Y, WEI G Z, et al. A family of highly efficient CuI-based lighting phosphors prepared by a systematic, bottom-up synthetic approach [J]. J. Am. Chem. Soc., 2015, 137(29): 9400-9408. doi: 10.1021/jacs.5b04840http://dx.doi.org/10.1021/jacs.5b04840
LIU W, FANG Y, LI J. Copper iodide based hybrid phosphors for energy-efficient general lighting technologies [J]. Adv. Funct. Mater., 2018, 28(8): 1705593-1-24. doi: 10.1002/adfm.201705593http://dx.doi.org/10.1002/adfm.201705593
YANGUI A, ROCCANOVA R, MCWHORTER T M, et al. Hybrid organic-inorganic halides (C5H7N2)2MBr4 (M = Hg, Zn) with high color rendering index and high-efficiency white-light emission [J]. Chem. Mater., 2019, 31(8): 2983-2991. doi: 10.1021/acs.chemmater.9b00537http://dx.doi.org/10.1021/acs.chemmater.9b00537
HUANG J L, SU B B, SONG E H, et al. Ultra-broad-band-excitable Cu(Ⅰ)-based organometallic halide with near-unity emission for light-emitting diode applications [J]. Chem. Mater., 2021, 33(12): 4382-4389. doi: 10.1021/acs.chemmater.1c00085http://dx.doi.org/10.1021/acs.chemmater.1c00085
HUANG J L, PENG Y H, JIN J C, et al. Unveiling white light emission of a one-dimensional Cu(Ⅰ)-based organometallic halide toward single-phase light-emitting diode applications [J]. J. Phys. Chem. Lett., 2021, 12(51): 12345-12351. doi: 10.1021/acs.jpclett.1c03767http://dx.doi.org/10.1021/acs.jpclett.1c03767
SHELDRICK G M. A short history of shelx [J]. Acta Cryst, 2008, A64: 112-122. doi: 10.1107/s0108767307043930http://dx.doi.org/10.1107/s0108767307043930
KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Phys. Rev. B, 1999, 59(3): 1758-1775. doi: 10.1103/physrevb.59.1758http://dx.doi.org/10.1103/physrevb.59.1758
KRESSE G, FURTHMÜLLER J. FURTHMU. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev. B, 1996, 54(16): 11169-11186. doi: 10.1103/physrevb.54.11169http://dx.doi.org/10.1103/physrevb.54.11169
BLÖCHL P E. Projector augmented-wave method [J]. Phys. Rev. B, 1994, 50(24): 17953-17979. doi: 10.1103/physrevb.50.17953http://dx.doi.org/10.1103/physrevb.50.17953
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77(18): 3865-3868. doi: 10.1103/physrevlett.77.3865http://dx.doi.org/10.1103/physrevlett.77.3865
RATH N P, HOLT E M. Copper(Ⅰ) iodide complexes of novel structure: [Cu4I6][Cu8I13]K7(12-crown-4)6, [Cu4I6]K2-(15-crown-5)2, and [Cu3I4]K(Dibenzo-24-crown-8) [J]. J. Chem. Soc. Chem. Commun., 1985(10): 665-667. doi: 10.1039/c39850000665http://dx.doi.org/10.1039/c39850000665
MORAD V, YAKUNIN S, KOVALENKO M V. Supramolecular approach for fine-tuning of the bright luminescence from zero-dimensional antimony(Ⅲ) halides [J]. ACS Mater. Lett., 2020, 2(7): 845-852. doi: 10.1021/acsmaterialslett.0c00174http://dx.doi.org/10.1021/acsmaterialslett.0c00174
MERZLYAKOVA E, WOLF S, LEBEDKIN S, et al. 18-crown-6 coordinated metal halides with bright luminescence and nonlinear optical effects [J]. J. Am. Chem. Soc., 2021, 143(2): 798-804. doi: 10.1021/jacs.0c09454http://dx.doi.org/10.1021/jacs.0c09454
SU B B, JIN J C, PENG Y H, et al. Zero-dimensional organic copper(Ⅰ) iodide hybrid with high anti-water stability for blue-light-excitable solid-state lighting [J]. Adv. Opt. Mater., 2022, 10(12): 2102619. doi: 10.1002/adom.202102619http://dx.doi.org/10.1002/adom.202102619
YANG B, YIN L X, NIU G D, et al. Lead-free halide Rb2CuBr3 as sensitive X-ray scintillator [J]. Adv. Mater., 2019, 31(44): 1904711-1-8. doi: 10.1002/adma.201904711http://dx.doi.org/10.1002/adma.201904711
LI Y Y, ZHOU Z C, SHEONG F K, et al. Tuning the self-trapped emission: reversible transformation to 0D copper clusters permits bright red emission in potassium and rubidium copper bromides [J]. ACS Energy Lett., 2021, 6(12): 4383-4389. doi: 10.1021/acsenergylett.1c01957http://dx.doi.org/10.1021/acsenergylett.1c01957
YANG Z Y, LIU G C, ZHAO Y F, et al. Competitive site occupation toward improved quantum efficiency of SrLaScO4∶Eu red phosphors for warm white LEDs [J]. Adv. Opt. Mater., 2022, 10(6): 2102373-1-9. doi: 10.1002/adom.202102373http://dx.doi.org/10.1002/adom.202102373
HU T, GAO Y, MOLOKEEV M S, et al. Eu2+ stabilized at octahedrally coordinated Ln3+ site enabling red emission in Sr3LnAl2O7.5 (Ln = Y or Lu) phosphors [J]. Adv. Opt. Mater., 2021, 9(9): 2100077-1-7. doi: 10.1002/adom.202100077http://dx.doi.org/10.1002/adom.202100077
0
Views
273
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution