浏览全部资源
扫码关注微信
1.长春工业大学 材料科学与工程学院, 吉林 长春 130012
2.长春工业大学 材料科学高等研究院, 吉林 长春 130012
Received:15 September 2022,
Revised:28 September 2022,
Published:05 February 2023
移动端阅览
崔文豪,彭亚茹,李静等.808 nm/980 nm 近红外光激发下CaSc2O4∶Er, Nd纳米晶的上转换发光特性[J].发光学报,2023,44(02):289-297.
CUI Wenhao,PENG Yaru,LI Jing,et al.Upconversion Luminescence of CaSc2O4∶Er, Nd Nanocrystals Under 808 nm/980 nm Near Infrared Excitation[J].Chinese Journal of Luminescence,2023,44(02):289-297.
崔文豪,彭亚茹,李静等.808 nm/980 nm 近红外光激发下CaSc2O4∶Er, Nd纳米晶的上转换发光特性[J].发光学报,2023,44(02):289-297. DOI: 10.37188/CJL.20220336.
CUI Wenhao,PENG Yaru,LI Jing,et al.Upconversion Luminescence of CaSc2O4∶Er, Nd Nanocrystals Under 808 nm/980 nm Near Infrared Excitation[J].Chinese Journal of Luminescence,2023,44(02):289-297. DOI: 10.37188/CJL.20220336.
通过水热法合成了一系列CaSc
2
O
4
∶Er
3+
,Nd
3+
纳米晶。随着Nd
3+
浓度和激发波长的变化,详细研究了CaSc
2
O
4
∶Er
3+
,Nd
3+
氧化物在可见光和近红外(NIR)区域的发光特性。在808 nm激发下,Er
3+
离子的发光强度随着Nd
3+
离子浓度的增加出现增强。相对的红色强度也有轻微的增强。在980 nm激发下,Nd
3+
离子几乎不吸收980 nm的光子,只有Er
3+
离子的吸收和发射被发现。相对的红色强度没有变化。此外,在近红外光谱中,只观察到Er
3+
离子的发射,这与可见光光谱一致。详细的研究揭示了新型CaSc
2
O
4
∶Er
3+
,Nd
3+
纳米晶在808 nm和980 nm近红外激发下的上转换发光(UCL)机制。
A series of CaSc
2
O
4
∶Er
3+
,Nd
3+
nanocrystals were synthesized by the hydrothermal method. The luminescence properties of the CaSc
2
O
4
∶Er
3+
,Nd
3+
oxide crystals in the visible-light and near infrared (NIR) regions were investigated in detail as the Nd
3+
concentrations and excited wavelengths vary. Under 808 nm excitation, the luminescence intensity of Er
3+
ions appears to be enhanced as the concentration of Nd
3+
ions increase. The relative red intensity also has the slight enhancement. Under 980 nm excitation, Nd
3+
ions hardly absorb 980 nm photons, only the absorption and emission of Er
3+
ions are found. The relative red intensity has no change. Furthermore, only the emission of Er
3+
ion was observed in NIR spectrum, which is consist as the visible spectrum. The detailed study reveals the possible upconversion luminescence (UCL) mechanism involved in a novel CaSc
2
O
4
∶Er
3+
,Nd
3+
nanocrystals under 808 nm and 980 nm NIR excitation.
HAASE M , SCHÄFER H . Upconverting nanoparticles [J]. Angew. Chem. Int. Ed. , 2011 , 50 ( 26 ): 5808 - 5829 . doi: 10.1002/anie.201005159 http://dx.doi.org/10.1002/anie.201005159
ZHOU B , SHI B Y , JIN D Y , et al . Controlling upconversion nanocrystals for emerging applications [J]. Nat. Nanotechnol. , 2015 , 10 ( 11 ): 924 - 936 . doi: 10.1038/nnano.2015.251 http://dx.doi.org/10.1038/nnano.2015.251
WANG Y , ZHENG K Z , SONG S Y , et al . Remote manipulation of upconversion luminescence [J]. Chem. Soc. Rev. , 2018 , 47 ( 17 ): 6473 - 6485 . doi: 10.1039/c8cs00124c http://dx.doi.org/10.1039/c8cs00124c
XIANG G T , XIA Q , LIU X T , et al . Upconversion nanoparticles modified by Cu 2 S for photothermal therapy along with real‐time optical thermometry [J]. Nanoscale , 2021 , 13 ( 15 ): 7161 - 7168 . doi: 10.1039/d0nr09115d http://dx.doi.org/10.1039/d0nr09115d
JIA Z W , YUAN C X , LIU Y F , et al . Strategies to approach high performance in Cr 3+ ‑doped phosphors for high‑power NIR‐LED light sources [J]. Light Sci. Appl. , 2020 , 9 : 86-1 - 9 . doi: 10.1038/s41377-020-0326-8 http://dx.doi.org/10.1038/s41377-020-0326-8
ZHANG C , YANG L , ZHAO J , et al . White‐light emission from an integrated upconversion nanostructure: toward multicolor displays modulated by laser power [J]. Angew. Chem. Int. Ed. , 2015 , 54 ( 39 ): 11531 - 11535 . doi: 10.1002/anie.201504518 http://dx.doi.org/10.1002/anie.201504518
LIU S , PAN X T , LIU H Y . Two‑dimensional nanomaterials for photothermal therapy [J]. Angew. Chem. Int. Ed. , 2020 , 59 ( 15 ): 5890 - 5900 . doi: 10.1002/anie.201911477 http://dx.doi.org/10.1002/anie.201911477
WANG F , WEN S H , HE H , et al . Microscopic inspection and tracking of single upconversion nanoparticles in living cells [J]. Light Sci. Appl. , 2018 , 7 : 18007-1 - 6 . doi: 10.1038/lsa.2018.7 http://dx.doi.org/10.1038/lsa.2018.7
JALANI G , TAM V , VETRONE F , et al . Seeing, targeting and delivering with upconverting nanoparticles [J]. J. Am. Chem. Soc. , 2018 , 140 ( 35 ): 10923 - 10931 . doi: 10.1021/jacs.8b03977 http://dx.doi.org/10.1021/jacs.8b03977
DUBEY A , SONI A K , KUMARI A , et al . Enhanced green upconversion emission in NaYF 4 ∶Er 3+ /Yb 3+ /Li + phosphors for optical thermometry [J]. J. Alloys Compd. , 2017 , 693 : 194 - 200 . doi: 10.1016/j.jallcom.2016.09.154 http://dx.doi.org/10.1016/j.jallcom.2016.09.154
DEBASU M L , ANANIAS D , PASTORIZA-SANTOS I , et al . All‑in‑one optical heater‑thermometer nanoplatform operative from 300 to 2 000 K based on Er 3+ emission and blackbody radiation [J]. Adv. Mater. , 2013 , 25 ( 35 ): 4868 - 4874 . doi: 10.1002/adma.201300892 http://dx.doi.org/10.1002/adma.201300892
ZHENG B Z , FAN J Y , CHEN B , et al . Rare‑earth doping in nanostructured inorganic materials [J]. Chem. Rev. , 2022 , 122 ( 6 ): 5519 - 5603 . doi: 10.1021/acs.chemrev.1c00644 http://dx.doi.org/10.1021/acs.chemrev.1c00644
QI C Y , CHEN L , GAO Y , et al . Digestive ripening‑mediated growth of NaYbF 4 ∶Tm@NaYF 4 core‑shell nanoparticles for bioimaging [J]. ACS Appl. Nano Mater. , 2020 , 3 ( 10 ): 10049 - 10056 . doi: 10.1021/acsanm.0c02057 http://dx.doi.org/10.1021/acsanm.0c02057
相国涛 , 刘小桐 , 夏清 , 等 . β‑NaYF 4 ∶Yb 3+ /Er 3+ @β‑NaYF 4 ∶Yb 3+ 的上转换发光特性 [J]. 发光学报 , 2020 , 41 ( 6 ): 679 - 683 .
XIANG G T , LIU X T , XIA Q , et al . Upconversion luminescence properties of β‑NaYF 4 ∶Yb 3+ /Er 3+ @β‑NaYF 4 ∶Yb 3+ [J]. Chin. J. Lumin. , 2020 , 41 ( 6 ): 679 - 683 . (in Chinese)
杨飘萍 , 盖世丽 , 贺飞 . 稀土上转换发光材料 [M]. 北京 : 科学出版社 , 2018 .
YANG P P , GAI S L , HE F . Rare Earth Upcooversion Luminescemt Materals [M]. Beijing : Science Press , 2018 . (in Chinese)
WEI T , HAN Y D , WEI Y , et al . CaSc 2 O 4 hosted upconversion and downshifting luminescence [J]. J. Mater. Chem. C , 2021 , 9 ( 11 ): 3800 - 3805 . doi: 10.1039/d1tc00239b http://dx.doi.org/10.1039/d1tc00239b
袁美娟 , 李静 , 秦慧连 , 等 . 碱金属共掺MgSc 2 O 4 ∶Er 3+ /Yb 3+ 纳米晶的上转换发光性能 [J]. 发光学报 , 2020 , 41 ( 11 ): 1351 - 1357 . doi: 10.37188/CJL.20200294 http://dx.doi.org/10.37188/CJL.20200294
YUAN M J , LI J , QIN H L , et al . Upconversion luminescence of MgSc 2 O 4 ∶Er 3+ /Yb 3+ nanocrystals co‑doped alkali ions [J]. Chin. J. Lumin. , 2020 , 41 ( 11 ): 1351 - 1357 . (in Chinese) . doi: 10.37188/CJL.20200294 http://dx.doi.org/10.37188/CJL.20200294
WANG Y G , WEN T , ZHANG H N , et al . Low‐temperature fluorination route to lanthanide‑doped monoclinic ScOF host material for tunable and nearly single band up‐conversion luminescence [J]. J. Phys. Chem. C , 2014 , 118 ( 19 ): 10314 - 10320 . doi: 10.1021/jp5020274 http://dx.doi.org/10.1021/jp5020274
XIANG G T , XIA Q , XU S , et al . Multipath optical thermometry realized in CaSc 2 O 4 ∶Yb 3+ /Er 3+ with high sensitivity and superior resolution [J]. J. Am. Ceram. Soc. , 2021 , 104 ( 6 ): 2711 - 2720 . doi: 10.1111/jace.17686 http://dx.doi.org/10.1111/jace.17686
LI J , ZHANG J H , HAO Z D , et al . Spectroscopic properties and upconversion studies in Ho 3+ /Yb 3+ Co‐doped calcium scandate with spectrally pure green emission [J]. ChemPhysChem , 2013 , 14 ( 18 ): 4114 - 4120 . doi: 10.1002/cphc.201300842 http://dx.doi.org/10.1002/cphc.201300842
LI J , ZHANG J H , HAO Z D , et al . Intense upconversion luminescence of CaSc 2 O 4 ∶Ho 3+ /Yb 3+ from large absorption cross section and energy‑transfer rate of Yb 3+ [J]. ChemPhysChem , 2015 , 16 ( 7 ): 1366 - 1369 . doi: 10.1002/cphc.201500011 http://dx.doi.org/10.1002/cphc.201500011
GEORGESCU Ş , ŞTEFAN A , TOMA O . Judd‑Ofelt and energy‑transfer analysis of Er 3+ doped in CaSc 2 O 4 ceramic samples [J]. J. Lumin. , 2015 , 167 : 186 - 192 . doi: 10.1016/j.jlumin.2015.06.028 http://dx.doi.org/10.1016/j.jlumin.2015.06.028
SHI Y C , YUAN M J , LI J , et al . Upconversion properties and temperature‑sensing behaviors of alkaline‑earth‑metal scandate nanocrystals doped with Er 3+ /Yb 3+ ions in the presence of alkali ions (Li + , Na + , and K + ) [J]. Inorg. Chem. , 2022 , 61 ( 13 ): 5309 - 5317 . doi: 10.1021/acs.inorgchem.1c04041 http://dx.doi.org/10.1021/acs.inorgchem.1c04041
ŞTEFAN A , TOMA O , GEORGESCU Ş . Upconversion luminescence in CaSc 2 O 4 doped with Er 3+ and Yb 3+ [J]. J. Lumin. , 2016 , 180 : 376 - 383 . doi: 10.1016/j.jlumin.2016.04.042 http://dx.doi.org/10.1016/j.jlumin.2016.04.042
周慧丽 , 吴锋 , 张志宏 , 等 . Lu 2 O 3 ∶Er 3+ /Yb 3+ 荧光材料的上转换发光及其温度传感特性 [J]. 发光学报 , 2022 , 43 ( 2 ): 192 - 200 . doi: 10.37188/cjl.20210363 http://dx.doi.org/10.37188/cjl.20210363
ZHOU H L , WU F , ZHANG Z H , et al . Upconversion luminescence and temperature sensing characteristics of Lu 2 O 3 ∶Er 3+ /Yb 3+ phosphor [J]. Chin. J. Lumin. , 2022 , 43 ( 2 ): 192 - 200 . (in Chinese) . doi: 10.37188/cjl.20210363 http://dx.doi.org/10.37188/cjl.20210363
SHEN J , CHEN G Y , VU A M , et al . Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri‑doped upconversion colloidal nanoparticles at 800 nm [J]. Adv. Opt. Mater. , 2013 , 1 ( 9 ): 644 - 650 . doi: 10.1002/adom.201300160 http://dx.doi.org/10.1002/adom.201300160
ZHONG Y T , TIAN G , GU Z J , et al . Elimination of photon quenching by a transition layer to fabricate a quenching‑shield sandwich structure for 800 nm excited upconversion luminescence of Nd 3+ ‑sensitized nanoparticles [J]. Adv. Mater. , 2014 , 26 ( 18 ): 2831 - 2837 . doi: 10.1002/adma.201304903 http://dx.doi.org/10.1002/adma.201304903
BAI G X , TAO L L , LI K F , et al . Enhanced light emission near 2.7 μm from Er‑Nd co‑doped germanate glass [J]. Opt. Mater. , 2013 , 35 ( 6 ): 1247 - 1250 . doi: 10.1016/j.optmat.2013.01.017 http://dx.doi.org/10.1016/j.optmat.2013.01.017
SHEN X , NIE Q H , XU T F , et al . Investigation on energy transfer from Er 3+ to Nd 3+ in tellurite glass [J]. J. Rare Earths , 2008 , 26 ( 6 ): 899 - 903 . doi: 10.1016/s1002-0721(09)60029-6 http://dx.doi.org/10.1016/s1002-0721(09)60029-6
SARDAR D K , CHANDRA S , GRUBER J B , et al . Preparation and spectroscopic characterization of Nd 3+ ∶Y 2 O 3 nanocrystals suspended in polymethyl methacrylate [J]. J. Appl. Phys. , 2009 , 105 ( 9 ): 093105-1-8 . doi: 10.1063/1.3122300 http://dx.doi.org/10.1063/1.3122300
DAN H K , ZHOU D C , YANG Z W , et al . Optimizing Nd/Er ratio for enhancement of broadband near‑infrared emission and energy transfer in the Er 3+ ‑Nd 3+ co‑doped transparent silicate glass‑ceramics [J]. J. Non‑Cryst. Solids , 2015 , 414 : 21 - 26 . doi: 10.1016/j.jnoncrysol.2015.02.001 http://dx.doi.org/10.1016/j.jnoncrysol.2015.02.001
ZHANG W , WANG Y , LI J F , et al . Spectroscopic analyses and laser properties simulation of Er/Yb, Er/Nd, Er/Dy∶ BaLaGa 3 O 7 crystals [J]. J. Lumin. , 2019 , 208 : 259 - 266 . doi: 10.1016/j.jlumin.2018.12.061 http://dx.doi.org/10.1016/j.jlumin.2018.12.061
RAKOV N , XING Y T , MACIEL G S . Optical thermometry operation within all three biological windows using Nd 3+ ∶Er 3+ ∶ Y 2 O 3 nanocomposite phosphors [J]. ACS Appl. Nano Mater. , 2020 , 3 ( 10 ): 10479 - 10486 . doi: 10.1021/acsanm.0c02397 http://dx.doi.org/10.1021/acsanm.0c02397
POLLNAU M , GAMELIN D R , LÜTHI S R , et al . Power dependence of upconversion luminescence in lanthanide and transition‐metal‐ion systems [J]. Phys. Rev. B , 2000 , 61 ( 5 ): 3337 - 3346 . doi: 10.1103/physrevb.61.3337 http://dx.doi.org/10.1103/physrevb.61.3337
LI F , LI J , CHEN L , et al . Hydrothermal synthesis and upconversion properties of about 19 nm Sc 2 O 3 ∶Er 3+ ,Yb 3+ nanoparticles with detailed investigation of the energy transfer mechanism [J]. Nanoscale Res. Lett. , 2018 , 13 ( 1 ): 372-1-9 . doi: 10.1186/s11671-018-2794-9 http://dx.doi.org/10.1186/s11671-018-2794-9
0
Views
313
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution