浏览全部资源
扫码关注微信
清华大学化学系 有机光电子与分子工程教育部重点实验室, 北京 100084
Published:05 January 2023,
Received:15 September 2022,
Revised:07 October 2022,
移动端阅览
王琪,黄天宇,张东东等.基于热活化敏化荧光的蓝光材料与器件研究进展[J].发光学报,2023,44(01):77-89.
WANG Qi,HUANG Tianyu,ZHANG Dongdong,et al.Research Progress of Blue Emission Materials and Devices Based on TADF Sensitized Fluorescence[J].Chinese Journal of Luminescence,2023,44(01):77-89.
王琪,黄天宇,张东东等.基于热活化敏化荧光的蓝光材料与器件研究进展[J].发光学报,2023,44(01):77-89. DOI: 10.37188/CJL.20220334.
WANG Qi,HUANG Tianyu,ZHANG Dongdong,et al.Research Progress of Blue Emission Materials and Devices Based on TADF Sensitized Fluorescence[J].Chinese Journal of Luminescence,2023,44(01):77-89. DOI: 10.37188/CJL.20220334.
有机发光二极管(Organic light emitting diode,OLED)作为新一代显示技术已经成功产业化,但兼具高效率和长寿命的蓝光OLED仍是亟待解决的问题。近年来,采用热活化延迟荧光(Thermally activated delayed fluorescence, TADF)材料敏化窄光谱荧光染料的热活化敏化荧光(TADF sensitized fluorescence,TSF)机制日益受到广泛关注。随着发光材料和器件结构的不断创新,基于该机制的蓝光OLED器件性能显著提升。本文围绕稳定高效蓝光敏化剂分子的设计开发,综述了近年来蓝光TSF器件在效率与寿命方面的进展,并进一步讨论了未来的发展目标以及面临的挑战。
As a new generation of display technology, organic light emitting diodes (OLEDs) have been successfully commercialized, but efforts are still needed to develop efficient and stable blue OLED devices. In recent years, a new mechanism combining thermally activated delayed fluorescence (TADF) sensitizers and narrow spectrum final emitters, namely TADF sensitized fluorescence (TSF) has attracted more and more attention. With the continuous innovation of materials and device structures, performances of blue OLEDs based on this mechanism have been significantly improved. Here, focusing on the development of stable and efficient blue sensitizers, the progress in efficiency and lifetime of blue TSF devices in recent years is reviewed, and the future development goals and challenges are further discussed.
有机发光二极管热活化延迟荧光热活化敏化荧光高效稳定蓝光
organic light emitting diodethermally activated delayed fluorescenceTADF sensitized fluorescenceefficient and stable blue OLED devices
TANG C W, VANSLYKE S A. Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51(12): 913-915. doi: 10.1063/1.98799http://dx.doi.org/10.1063/1.98799
TANG C W, VANSLYKE S A, CHEN C H. Electroluminescence of doped organic thin films [J]. J. Appl. Phys., 1989, 65(9): 3610-3616. doi: 10.1063/1.343409http://dx.doi.org/10.1063/1.343409
BALDO M A, O’BRIEN D F, YOU Y, et al. Highly efficient phosphorescent emission from organic electroluminescent devices [J]. Nature, 1998, 395(6698): 151-154. doi: 10.1038/25954http://dx.doi.org/10.1038/25954
MA Y G, ZHANG H Y, SHEN J C, et al. Electroluminescence from triplet metal-ligand charge-transfer excited state of transition metal complexes [J]. Synth. Met., 1998, 94(3): 245-248. doi: 10.1016/s0379-6779(97)04166-0http://dx.doi.org/10.1016/s0379-6779(97)04166-0
ZYSMAN-COLMAN E. Molecular designs offer fast exciton conversion [J]. Nat. Photonics, 2020, 14(10): 593-594. doi: 10.1038/s41566-020-0696-8http://dx.doi.org/10.1038/s41566-020-0696-8
LEE J, JEONG C, BATAGODA T, et al. Hot excited state management for long-lived blue phosphorescent organic light-emitting diodes [J]. Nat. Commun., 2017, 8: 15566-1-9. doi: 10.1038/ncomms15566http://dx.doi.org/10.1038/ncomms15566
BARNES B. Reflected phonons reveal strong coupling [J]. Nat. Photonics, 2021, 15(3): 169-170. doi: 10.1038/s41566-021-00773-3http://dx.doi.org/10.1038/s41566-021-00773-3
ENDO A, SATO K, YOSHIMURA K, et al. Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes [J]. Appl. Phys. Lett., 2011, 98(8): 083302-1-3. doi: 10.1063/1.3558906http://dx.doi.org/10.1063/1.3558906
UOYAMA H, GOUSHI K, SHIZU K, et al. Highly efficient organic light-emitting diodes from delayed fluorescence [J]. Nature, 2012, 492(7428): 234-238. doi: 10.1038/nature11687http://dx.doi.org/10.1038/nature11687
TAO Y, YUAN K, CHEN T, et al. Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics [J]. Adv. Mater., 2014, 26(47): 7931-7958. doi: 10.1002/adma.201402532http://dx.doi.org/10.1002/adma.201402532
NODA H, NAKANOTANI H, ADACHI C. Excited state engineering for efficient reverse intersystem crossing [J]. Sci. Adv., 2018, 4(6): eaao6910-1-7. doi: 10.1126/sciadv.aao6910http://dx.doi.org/10.1126/sciadv.aao6910
ZHANG D D, DUAN L, LI C, et al. High-efficiency fluorescent organic light-emitting devices using sensitizing hosts with a small singlet-triplet exchange energy [J]. Adv. Mater., 2014, 26(29): 5050-5055. doi: 10.1002/adma.201401476http://dx.doi.org/10.1002/adma.201401476
NAKANOTANI H, HIGUCHI T, FURUKAWA T, et al. High-efficiency organic light-emitting diodes with fluorescent emitters [J]. Nat. Commun., 2014, 5(1): 4016-1-7. doi: 10.1038/ncomms5016http://dx.doi.org/10.1038/ncomms5016
KONDO Y, YOSHIURA K, KITERA S, et al. Narrowband deep-blue organic light-emitting diode featuring an organoboron-based emitter [J]. Nat. Photonics, 2019, 13(10): 678-682. doi: 10.1038/s41566-019-0476-5http://dx.doi.org/10.1038/s41566-019-0476-5
HAN S H, LEE J Y. Spatial separation of sensitizer and fluorescent emitter for high quantum efficiency in hyperfluorescent organic light-emitting diodes [J]. J. Mater. Chem. C, 2018, 6(6): 1504-1508. doi: 10.1039/c7tc05283ahttp://dx.doi.org/10.1039/c7tc05283a
WONG M Y, ZYSMAN-COLMAN E. Purely organic thermally activated delayed fluorescence materials for organic light-emitting diodes [J]. Adv. Mater., 2017, 29(22): 1605444-1-54. doi: 10.1002/adma.201605444http://dx.doi.org/10.1002/adma.201605444
SAMANTA P K, KIM D, COROPCEANU V, et al. Up-conversion intersystem crossing rates in organic emitters for thermally activated delayed fluorescence: impact of the nature of singlet vs triplet excited states [J]. J. Am. Chem. Soc., 2017, 139(11): 4042-4051. doi: 10.1021/jacs.6b12124http://dx.doi.org/10.1021/jacs.6b12124
CHEN X K, KIM D, BRÉDAS J L. Thermally activated delayed fluorescence (TADF) path toward efficient electroluminescence in purely organic materials: molecular level insight [J]. Acc. Chem. Res., 2018, 51(9): 2215-2224. doi: 10.1021/acs.accounts.8b00174http://dx.doi.org/10.1021/acs.accounts.8b00174
HIRATA S, SAKAI Y, MASUI K, et al. Highly efficient blue electroluminescence based on thermally activated delayed fluorescence [J]. Nat. Mater., 2015, 14(3): 330-336. doi: 10.1038/nmat4154http://dx.doi.org/10.1038/nmat4154
KIM M, JEON S K, HWANG S H, et al. Stable blue thermally activated delayed fluorescent organic light-emitting diodes with three times longer lifetime than phosphorescent organic light-emitting diodes [J]. Adv. Mater., 2015, 27(15): 2515-2520. doi: 10.1002/adma.201500267http://dx.doi.org/10.1002/adma.201500267
CUI L S, NOMURA H, GENG Y, et al. Controlling singlet⁃triplet energy splitting for deep‐blue thermally activated delayed fluorescence emitters [J]. Angew. Chem. Int. Ed., 2017, 56(6): 1571-1575. doi: 10.1002/anie.201609459http://dx.doi.org/10.1002/anie.201609459
JEON S O, LEE K H, KIM J S, et al. High-efficiency, long-lifetime deep-blue organic light-emitting diodes [J]. Nat. Photonics, 2021, 15(3): 208-215. doi: 10.1038/s41566-021-00763-5http://dx.doi.org/10.1038/s41566-021-00763-5
DIAS F B, SANTOS J, GRAVES D R, et al. The role of local triplet excited states and D-A relative orientation in thermally activated delayed fluorescence: photophysics and devices [J]. Adv. Sci., 2016, 3(12): 1600080-1-10. doi: 10.1002/advs.201600080http://dx.doi.org/10.1002/advs.201600080
ETHERINGTON M K, GIBSON J, HIGGINBOTHAM H F, et al. Revealing the spin‑vibronic coupling mechanism of thermally activated delayed fluorescence [J]. Nat. Commun., 2016, 7(1): 13680-1-7. doi: 10.1038/ncomms13680http://dx.doi.org/10.1038/ncomms13680
CUI L S, GILLETT A J, ZHANG S F, et al. Fast spin-flip enables efficient and stable organic electroluminescence from charge-transfer states [J]. Nat. Photonics, 2020, 14(10): 636-642. doi: 10.1038/s41566-020-0668-zhttp://dx.doi.org/10.1038/s41566-020-0668-z
CHAN C Y, CUI L S, KIM J U, et al. Rational molecular design for deep‐blue thermally activated delayed fluorescence emitters [J]. Adv. Funct. Mater., 2018, 28(11): 1706023-1-7. doi: 10.1002/adfm.201706023http://dx.doi.org/10.1002/adfm.201706023
ZHANG D D, CAI M H, ZHANG Y G, et al. Sterically shielded blue thermally activated delayed fluorescence emitters with improved efficiency and stability [J]. Mater. Horiz., 2016, 3(2): 145-151. doi: 10.1039/c5mh00258chttp://dx.doi.org/10.1039/c5mh00258c
HOSOKAI T, MATSUZAKI H, NAKANOTANI H, et al. Evidence and mechanism of efficient thermally activated delayed fluorescence promoted by delocalized excited states [J]. Sci. Adv., 2017, 3(5): e1603282-1-9. doi: 10.1126/sciadv.1603282http://dx.doi.org/10.1126/sciadv.1603282
NODA H, CHEN X K, NAKANOTANI H, et al. Critical role of intermediate electronic states for spin-flip processes in charge-transfer-type organic molecules with multiple donors and acceptors [J]. Nat. Mater., 2019, 18(10): 1084-1090. doi: 10.1038/s41563-019-0465-6http://dx.doi.org/10.1038/s41563-019-0465-6
YIN C, ZHANG D D, DUAN L. A perspective on blue TADF materials based on carbazole-benzonitrile derivatives for efficient and stable OLEDs [J]. Appl. Phys. Lett., 2020, 116(12): 120503. doi: 10.1063/1.5143501http://dx.doi.org/10.1063/1.5143501
CHAN C Y, TANAKA M, LEE Y T, et al. Stable pure-blue hyperfluorescence organic light-emitting diodes with high-efficiency and narrow emission [J]. Nat. Photonics, 2021, 15(3): 203-207. doi: 10.1038/s41566-020-00745-zhttp://dx.doi.org/10.1038/s41566-020-00745-z
ZHANG D D, SONG X Z, GILLETT A J, et al. Efficient and stable deep‐blue fluorescent organic light‐emitting diodes employing a sensitizer with fast triplet upconversion [J]. Adv. Mater., 2020, 32(19): 1908355-1-9. doi: 10.1002/adma.201908355http://dx.doi.org/10.1002/adma.201908355
HONG X C, ZHANG D D, YIN C, et al. TADF molecules with π-extended acceptors for simplified high-efficiency blue and white organic light-emitting diodes [J]. Chem, 2022, 8(6): 1705-1719. doi: 10.1016/j.chempr.2022.02.017http://dx.doi.org/10.1016/j.chempr.2022.02.017
LIM H, CHEON H J, WOO S J, et al. Highly efficient deep‐blue OLEDs using a TADF emitter with a narrow emission spectrum and high horizontal emitting dipole ratio [J]. Adv. Mater., 2020, 32(47): 2004083-1-8. doi: 10.1002/adma.202004083http://dx.doi.org/10.1002/adma.202004083
GENG Y, D’ALEO A, INADA K, et al. Donor‐σ‐acceptor motifs: thermally activated delayed fluorescence emitters with dual upconversion [J]. Angew. Chem. Int. Ed., 2017, 56(52): 16536-16540. doi: 10.1002/anie.201708876http://dx.doi.org/10.1002/anie.201708876
ZHANG D D, WADA Y, WANG Q, et al. Highly efficient and stable blue organic light‐emitting diodes based on thermally activated delayed fluorophor with donor‐void‐acceptor motif [J]. Adv. Sci., 2022, 9(12): 2106018. doi: 10.1002/advs.202106018http://dx.doi.org/10.1002/advs.202106018
HUANG T Y, ZHANG D D, ZHAN G, et al. Boosting the efficiency and stability of blue TADF emitters by deuteration [J/OL]. ChemRxiv, Cambridge: Cambridge Open Engage, 2021, doi: 10.26434/chemrxiv-2021-hrlf1http://dx.doi.org/10.26434/chemrxiv-2021-hrlf1.
KIM J U, PARK I S, CHAN C Y, et al. Nanosecond-time-scale delayed fluorescence molecule for deep-blue OLEDs with small efficiency rolloff [J]. Nat. Commun., 2020, 11(1): 1765-1-8. doi: 10.1038/s41467-020-15558-5http://dx.doi.org/10.1038/s41467-020-15558-5
TANG X, CUI L S, LI H C, et al. Highly efficient luminescence from space-confined charge-transfer emitters [J]. Nat. Mater., 2020, 19(12): 1332-1338. doi: 10.1038/s41563-020-0710-zhttp://dx.doi.org/10.1038/s41563-020-0710-z
SONG X Z, ZHANG D D, ZHANG Y W, et al. Strategically modulating carriers and excitons for efficient and stable ultrapure‐green fluorescent OLEDs with a sterically hindered BODIPY dopant [J]. Adv. Opt. Mater., 2020, 8(15): 2000483-1-10. doi: 10.1002/adom.202000483http://dx.doi.org/10.1002/adom.202000483
SUN J, AHN H, KANG S, et al. Exceptionally stable blue phosphorescent organic light-emitting diodes [J]. Nat. Photonics, 2022, 16(3): 212-218. doi: 10.1038/s41566-022-00958-4http://dx.doi.org/10.1038/s41566-022-00958-4
KIM E, PARK J, JUN M, et al. Highly efficient and stable deep-blue organic light-emitting diode using phosphor-sensitized thermally activated delayed fluorescence [J]. Sci. Adv., 2022, 8(41): eabq1641. doi: 10.1126/sciadv.abq1641http://dx.doi.org/10.1126/sciadv.abq1641
0
Views
1250
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution