浏览全部资源
扫码关注微信
1.华南理工大学 发光材料与器件国家重点实验室, 广东 广州 510640
2.广东工业大学 轻工化工学院, 广东 广州 510006
Published:05 January 2023,
Received:08 September 2022,
Revised:28 September 2022,
移动端阅览
谭文乐,俞越,胡德华等.有机发光二极管蓝光材料研究进展[J].发光学报,2023,44(01):1-11.
TAN Wenle,YU Yue,HU Dehua,et al.Recent Progress of Blue-light Emitting Materials for Organic Light-emitting Diodes[J].Chinese Journal of Luminescence,2023,44(01):1-11.
谭文乐,俞越,胡德华等.有机发光二极管蓝光材料研究进展[J].发光学报,2023,44(01):1-11. DOI: 10.37188/CJL.20220328.
TAN Wenle,YU Yue,HU Dehua,et al.Recent Progress of Blue-light Emitting Materials for Organic Light-emitting Diodes[J].Chinese Journal of Luminescence,2023,44(01):1-11. DOI: 10.37188/CJL.20220328.
有机发光二极管(Organic light‑emitting diodes,OLEDs)经过30余年的发展,在显示和照明领域已经进入了大规模应用的阶段。有机红光及绿光OLEDs基本上已能够达到商业应用的标准,但是蓝光OLEDs仍然存在亮度低、高亮度下寿命短的问题,因而商业上对兼具高激子利用率及高稳定性的蓝光材料和器件的需求显得尤为迫切。为了解决这一问题,国内和国际上相继提出了基于重金属配位的磷光配合物、三线态‐三线态湮灭、热活化延迟荧光、“热激子”等材料结构的设计策略,期望在获得高发光量子效率和激子利用率的同时,尽量减小器件的效率滚降,获得具有高稳定性、长寿命的蓝光OLEDs器件。本文总结了不同类型蓝光OLEDs材料的研究进展,并对未来蓝光材料的发展趋势进行了展望。
Organic light-emitting diodes have been widely used in display and lighting fields after more than 30 years of development. Red and green emitting OLEDs have basically been able to meet the commercial requirements, but blue-emitting OLEDs still have the defect of low brightness and short operation lifetime at high brightness. Therefore, the commercial is dying to blue-emitting materials with high exciton utilization efficiency(EUE) and high device stability. Design strategies for material such as heavy-metal phosphorescent complexes, triplet-triplet annihilation (TTA), thermally activated delayed fluorescent (TADF) and “hot exciton” have been proposed so as to meet the demands of industrial standards. It is expected to obtain blue-emitting OLEDs device with high stability and long lifetime while achieving high photoluminescence quantum yield (PLQY) and the exciton utilization efficiency as well as reduce the efficiency roll-off of devices whenever possible. This paper summarizes the recent progress of different material structure design schemes and prospects the development trends of blue-emitting OLEDs materials.
蓝光OLEDs热激子热活化延迟荧光金属磷光配合物三线态-三线态湮灭
blue-emitting OLEDshot excitonthermally activated delayed fluorescentmetal phosphorescent complexestriplet-triplet annihilation
XU Z, TANG B Z, WANG Y, et al. Recent advances in high performance blue organic light-emitting diodes based on fluorescence emitters [J]. J. Mater. Chem. C, 2020, 8(8): 2614-2642. doi: 10.1039/c9tc06441ahttp://dx.doi.org/10.1039/c9tc06441a
HONG G, GAN X M, LEONHARDT C, et al. A brief history of OLEDs-emitter development and industry milestones [J]. Adv. Mater., 2021, 33(9): 2005630-1-24. doi: 10.1002/adma.202005630http://dx.doi.org/10.1002/adma.202005630
YANG X L, XU X B, ZHOU G J. Recent advances of the emitters for high performance deep-blue organic light-emitting diodes [J]. J. Mater. Chem. C, 2015, 3(5): 913-944. doi: 10.1039/c4tc02474ehttp://dx.doi.org/10.1039/c4tc02474e
ZHU Z L, NI S F, CHEN W C, et al. A high performance deep-blue emitter with an anti-parallel dipole design [J]. Dyes Pigm., 2017, 146: 219-225. doi: 10.1016/j.dyepig.2017.07.008http://dx.doi.org/10.1016/j.dyepig.2017.07.008
MA J, IDRIS M, LI T Y, et al. Symmetric “Double Spiro” wide energy gap hosts for blue phosphorescent OLED devices [J]. Adv. Opt. Mater., 2022, 10(2): 2101530. doi: 10.1002/adom.202101530http://dx.doi.org/10.1002/adom.202101530
LEE J H, CHEN C H, LEE P H, et al. Blue organic light-emitting diodes: current status, challenges, and future outlook [J]. J. Mater. Chem. C, 2019, 7(20): 5874-5888. doi: 10.1039/c9tc00204ahttp://dx.doi.org/10.1039/c9tc00204a
LI X N, XIE Y J, LI Z. Diversity of luminescent metal complexes in OLEDs: beyond traditional precious metals [J]. Chem. -Asian J., 2021, 16(19): 2817-2829. doi: 10.1002/asia.202100784http://dx.doi.org/10.1002/asia.202100784
TENG J M, WANG Y F, CHEN C F. Recent progress of narrowband TADF emitters and their applications in OLEDs [J]. J. Mater. Chem. C, 2020, 8(33): 11340-11353. doi: 10.1039/d0tc02682dhttp://dx.doi.org/10.1039/d0tc02682d
XU Y W, XU P, HU D H, et al. Recent progress in hot exciton materials for organic light-emitting diodes [J]. Chem. Soc. Rev., 2021, 50(2): 1030-1069. doi: 10.1039/d0cs00391chttp://dx.doi.org/10.1039/d0cs00391c
WEI Q, FEI N N, ISLAM A, et al. Small-molecule emitters with high quantum efficiency: mechanisms, structures, and applications in OLED devices [J]. Adv. Opt. Mater., 2018, 6(20): 1800512-1-31. doi: 10.1002/adom.201800512http://dx.doi.org/10.1002/adom.201800512
TAGARE J, VAIDYANATHAN S. Recent development of phenanthroimidazole-based fluorophores for blue organic light-emitting diodes (OLEDs): an overview [J]. J. Mater. Chem. C, 2018, 6(38): 10138-10173. doi: 10.1039/c8tc03689fhttp://dx.doi.org/10.1039/c8tc03689f
KIM J U, PARK I S, CHAN C Y, et al. Nanosecond-time-scale delayed fluorescence molecule for deep-blue OLEDs with small efficiency rolloff [J]. Nat. Commun., 2020, 11(1): 1765-1-8. doi: 10.1038/s41467-020-15558-5http://dx.doi.org/10.1038/s41467-020-15558-5
YAO L, ZHANG S T, WANG R, et al. Highly efficient near-infrared organic light-emitting diode based on a butterfly-shaped donor-acceptor chromophore with strong solid-state fluorescence and a large proportion of radiative excitons [J]. Angew. Chem. Int. Ed., 2014, 53(8): 2119-2123. doi: 10.1002/anie.201308486http://dx.doi.org/10.1002/anie.201308486
MA Y G, ZHANG H Y, SHEN J C, et al. Electroluminescence from triplet metal-ligand charge-transfer excited state of transition metal complexes [J]. Synth. Met., 1998, 94(3): 245-248. doi: 10.1016/s0379-6779(97)04166-0http://dx.doi.org/10.1016/s0379-6779(97)04166-0
BALDO M A, O'BRIEN D F, YOU Y, et al. Highly efficient phosphorescent emission from organic electroluminescent devices [J]. Nature, 1998, 395(6698): 151-154. doi: 10.1038/25954http://dx.doi.org/10.1038/25954
SUN J, AHN H, KANG S, et al. Exceptionally stable blue phosphorescent organic light-emitting diodes [J]. Nat. Photonics, 2022, 16(3): 212-218. doi: 10.1038/s41566-022-00958-4http://dx.doi.org/10.1038/s41566-022-00958-4
KIM K J, LEE H, KANG S, et al. Superbly long lifetime over 13 000 h for multiple energy transfer channels in deep blue phosphorescence organic light-emitting diodes with Ir complex under CIEy of 0.17 [J]. Chem. Eng. J., 2022, 448: 137671. doi: 10.1016/j.cej.2022.137671http://dx.doi.org/10.1016/j.cej.2022.137671
WANG L D, FANG P Y, ZHAO Z F, et al. Rare earth complexes with 5d-4f transition: new emitters in organic light-emitting diodes [J]. J. Phys. Chem. Lett., 2022, 13(12): 2686-2694. doi: 10.1021/acs.jpclett.2c00400http://dx.doi.org/10.1021/acs.jpclett.2c00400
DORENBOS P. f→d transition energies of divalent lanthanides in inorganic compounds [J]. J. Phys.: Condens. Matter, 2003, 15(3): 575-594. doi: 10.1088/0953-8984/15/3/322http://dx.doi.org/10.1088/0953-8984/15/3/322
ZHAO Z F, WANG L D, ZHAN G, et al. Efficient rare earth cerium(Ⅲ) complex with nanosecond d-f emission for blue organic light-emitting diodes [J]. Natl. Sci. Rev., 2021, 8(2): nwaa193-1-6. doi: 10.1093/nsr/nwaa193http://dx.doi.org/10.1093/nsr/nwaa193
KONDAKOV D Y. Characterization of triplet-triplet annihilation in organic light-emitting diodes based on anthracene derivatives [J]. J. Appl. Phys., 2007, 102(11): 114504-1-5. doi: 10.1063/1.2818362http://dx.doi.org/10.1063/1.2818362
SUZUKI T, NONAKA Y, WATABE T, et al. Highly efficient long-life blue fluorescent organic light-emitting diode exhibiting triplet-triplet annihilation effects enhanced by a novel hole-transporting material [J]. Jpn. J. Appl. Phys., 2014, 53(5): 052102-1-6. doi: 10.7567/jjap.53.052102http://dx.doi.org/10.7567/jjap.53.052102
NALAOH P, SUNGWORAWONGPANA N, CHASING P, et al. A dimeric π-stacking of anthracene inducing efficiency enhancement in solid-state fluorescence and non-doped deep-blue triplet-triplet annihilation organic light-emitting diodes [J]. Adv. Opt. Mater., 2021, 9(17): 2100500-1-13. doi: 10.1002/adom.202100500http://dx.doi.org/10.1002/adom.202100500
CHEN C H, TIERCE N T, LEUNG M K, et al. Efficient triplet-triplet annihilation upconversion in an electroluminescence device with a fluorescent sensitizer and a triplet-diffusion singlet-blocking layer [J]. Adv. Mater., 2018, 30(50): 1804850-1-8. doi: 10.1002/adma.201804850http://dx.doi.org/10.1002/adma.201804850
CHEN C H, LIN B Y, TIERCE N T, et al. Efficient Solid-State triplet-triplet annihilation up-conversion electroluminescence device by incorporating intermolecular intersystem-crossing dark sensitizer [J]. Chem. Eng. J., 2022, 427: 130889. doi: 10.1016/j.cej.2021.130889http://dx.doi.org/10.1016/j.cej.2021.130889
GAO C, WONG W W H, QIN Z S, et al. Application of triplet-triplet annihilation upconversion in organic optoelectronic devices: advances and perspectives [J]. Adv. Mater., 2021, 33(45): 2100704-1-25. doi: 10.1002/adma.202100704http://dx.doi.org/10.1002/adma.202100704
UOYAMA H, GOUSHI K, SHIZU K, et al. Highly efficient organic light-emitting diodes from delayed fluorescence [J]. Nature, 2012, 492(7428): 234-238. doi: 10.1038/nature11687http://dx.doi.org/10.1038/nature11687
YANG Z Y, MAO Z, XIE Z L, et al. Recent advances in organic thermally activated delayed fluorescence materials [J]. Chem. Soc. Rev., 2017, 46(3): 915-1016. doi: 10.1039/c6cs00368khttp://dx.doi.org/10.1039/c6cs00368k
KONDO Y, YOSHIURA K, KITERA S, et al. Narrowband deep-blue organic light-emitting diode featuring an organoboron-based emitter [J]. Nat. Photonics, 2019, 13(10): 678-682. doi: 10.1038/s41566-019-0476-5http://dx.doi.org/10.1038/s41566-019-0476-5
PARK J, KIM K J, LIM J, et al. High efficiency of over 25% and long device lifetime of over 500 h at 1 000 nit in blue fluorescent organic light-emitting diodes [J]. Adv. Mater., 2022, 34(21): 2108581-1-7. doi: 10.1002/adma.202108581http://dx.doi.org/10.1002/adma.202108581
CHAN C Y, TANAKA M, LEE Y T, et al. Stable pure-blue hyperfluorescence organic light-emitting diodes with high-efficiency and narrow emission [J]. Nat. Photonics, 2021, 15(3): 203-207. doi: 10.1038/s41566-020-00745-zhttp://dx.doi.org/10.1038/s41566-020-00745-z
LI W J, LIU D D, SHEN F Z, et al. A twisting donor-acceptor molecule with an intercrossed excited state for highly efficient, deep-blue electroluminescence [J]. Adv. Funct. Mater., 2012, 22(13): 2797-2803. doi: 10.1002/adfm.201200116http://dx.doi.org/10.1002/adfm.201200116
PAN Y Y, LI W J, ZHANG S T, et al. High yields of singlet excitons in organic electroluminescence through two paths of cold and hot excitons [J]. Adv. Optical. Mater., 2014, 2(6): 510-515. doi: 10.1002/adom.201300467http://dx.doi.org/10.1002/adom.201300467
LI W J, PAN Y Y, XIAO R, et al. Employing~100% excitons in OLEDs by utilizing a fluorescent molecule with hybridized local and charge-transfer excited state [J]. Adv. Funct. Mater., 2014, 24(11): 1609-1614. doi: 10.1002/adfm.201301750http://dx.doi.org/10.1002/adfm.201301750
JIANG J X, HU D H, HANIF M, et al. Twist angle and rotation freedom effects on luminescent donor-acceptor materials: crystal structures, photophysical properties, and OLED application [J]. Adv. Opt. Mater., 2016, 4(12): 2109-2118. doi: 10.1002/adom.201600608http://dx.doi.org/10.1002/adom.201600608
XU Y W, LIANG X M, ZHOU X H, et al. Highly efficient blue fluorescent OLEDs based on upper level triplet‐singlet intersystem crossing [J]. Adv. Mater., 2019, 31(12): 1807388-1-8. doi: 10.1002/adma.201807388http://dx.doi.org/10.1002/adma.201807388
XU Y W, WANG C, ZHOU X H, et al. Fine modulation of the higher-order excitonic states toward more efficient conversion from upper-level triplet to singlet [J]. J. Phys. Chem. Lett., 2019, 10(21): 6878-6884. doi: 10.1021/acs.jpclett.9b02751http://dx.doi.org/10.1021/acs.jpclett.9b02751
LIN C W, HAN P B, XIAO S, et al. Efficiency breakthrough of fluorescence OLEDs by the strategic management of “Hot Excitons” at highly lying excitation triplet energy levels [J]. Adv. Funct. Mater., 2021, 31(48): 2106912-1-8. doi: 10.1002/adfm.202106912http://dx.doi.org/10.1002/adfm.202106912
LIU L Q, CAI C, ZHANG Z J, et al. Lamellar organic light-emitting crystals exhibiting spectral gain and 3.6% external quantum efficiency in transistors [J]. ACS Mater. Lett., 2021, 3(4): 428-432. doi: 10.1021/acsmaterialslett.1c00056http://dx.doi.org/10.1021/acsmaterialslett.1c00056
CHAN C Y, LEE Y T, TANAKA M, et al. 19-1: invited paper: stable pure-blue hyperfluorescence OLEDs [J]. SID Symp. Digest Tech. Papers, 2021, 52(1): 224-227. doi: 10.1002/sdtp.14653http://dx.doi.org/10.1002/sdtp.14653
WANG L D, ZHAO Z F, WEI C, et al. Review on the electroluminescence study of lanthanide complexes [J]. Adv. Opt. Mater., 2019, 7(11): 1801256-1-49. doi: 10.1002/adom.201801256http://dx.doi.org/10.1002/adom.201801256
BAE H J, KIM J S, YAKUBOVICH A, et al. Protecting benzylic C—H bonds by deuteration doubles the operational lifetime of deep-blue Ir-phenylimidazole dopants in phosphorescent OLEDs [J]. Adv. Opt. Mater., 2021, 9(16): 2100630-1-10. doi: 10.1002/adom.202100630http://dx.doi.org/10.1002/adom.202100630
XIN J H, SUN P F, ZHU F, et al. Doped crystalline thin-film deep-blue organic light-emitting diodes [J]. J. Mater. Chem. C, 2021, 9(7): 2236-2242. doi: 10.1039/d0tc05934jhttp://dx.doi.org/10.1039/d0tc05934j
HATAKEYAMA T, SHIREN K, NAKAJIMA K, et al. Ultrapure blue thermally activated delayed fluorescence molecules: efficient HOMO-LUMO separation by the multiple resonance effect [J]. Adv. Mater., 2016, 28(14): 2777-2781. doi: 10.1002/adma.201505491http://dx.doi.org/10.1002/adma.201505491
YE X Y, XU L, QIU F F, et al. Narrow-band orange-red emission organic luminophore with dominant low-frequency vibronic coupling [J]. Energy Fuels, 2021, 35(23): 19139-19145. doi: 10.1021/acs.energyfuels.1c02156http://dx.doi.org/10.1021/acs.energyfuels.1c02156
0
Views
967
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution