浏览全部资源
扫码关注微信
1.吉林大学 化学学院, 超分子结构与材料国家重点实验室, 吉林 长春 130012
2.吉林大学第一医院 医学与化学光功能诊疗联合实验室, 吉林 长春 130012
Published:05 March 2023,
Received:07 September 2022,
Revised:22 September 2022,
移动端阅览
宗佳,李维俊,刘璐璐等.杂化X射线探测器的优势与进展[J].发光学报,2023,44(03):496-507.
ZONG Jia,LI Weijun,LIU Lulu,et al.Advances and Progress of Hybrid X-ray Detectors[J].Chinese Journal of Luminescence,2023,44(03):496-507.
宗佳,李维俊,刘璐璐等.杂化X射线探测器的优势与进展[J].发光学报,2023,44(03):496-507. DOI: 10.37188/CJL.20220327.
ZONG Jia,LI Weijun,LIU Lulu,et al.Advances and Progress of Hybrid X-ray Detectors[J].Chinese Journal of Luminescence,2023,44(03):496-507. DOI: 10.37188/CJL.20220327.
占主导地位的X射线探测器主要分为直接半导体型X射线探测器和间接闪烁体型X射线探测器。近年来,杂化X射线探测器通过结合半导体和闪烁体材料的优势而出现。作为活性层的混合半导体和闪烁体导致了不同的工作机制。两相之间电荷/能量转移可以避免闪烁体的余辉效应。并且闪烁体的存在也优化了半导体材料的性能。本文总结了杂化X射线探测器的机制、进展和协同效应,以突出杂化X射线探测器的优势。根据不同的工作机制和各自的特点,我们详细讨论了三种类型的杂化X射线探测器。最后,我们对杂化X射线探测器存在的局限性和未来的发展方向进行了展望。
Dominating X-ray detectors are mainly divided into direct semiconductor X-ray detectors and indirect scintillator X-ray detectors. In recent years, hybrid X-ray detectors have emerged by combing the advantages of semiconductors and scintillators. The mixed semiconductors and scintillators as active layers lead to different working mechanisms. The charge/energy transfer between the two phases avoids the afterglow effect of the scintillator. And the presence of scintillators also optimizes the properties of the semiconductor material. The review summarizes the mechanism, progress, and synergistic effect of hybrid X-ray detectors to highlight the advances of hybrid X-ray detectors. Three types of hybrid X-ray detectors are discussed in detail according to different working mechanisms and their respective characteristics. Finally, we present an outlook on hybrid X-ray detectors’ limitations and the future development direction.
杂化X射线探测器直接X射线探测间接X射线探测工作机制
hybrid X-ray detectordirect X-ray detectionindirect X-ray detectionworking mechanism
ROWLANDS J A. Material change for X-ray detectors [J]. Nature, 2017, 550(7674): 47-48. doi: 10.1038/550047ahttp://dx.doi.org/10.1038/550047a
SPAHN M. X-ray detectors in medical imaging [J]. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip., 2013, 731: 57-63. doi: 10.1016/j.nima.2013.05.174http://dx.doi.org/10.1016/j.nima.2013.05.174
LI Z Z, ZHOU F G, YAO H H, et al. Halide perovskites for high-performance X-ray detector [J]. Mater. Today, 2021, 48: 155-175. doi: 10.1016/j.mattod.2021.01.028http://dx.doi.org/10.1016/j.mattod.2021.01.028
DANIELSSON M, PERSSON M, SJÖLIN M. Photon-counting X-ray detectors for CT [J]. Phys. Med. Biol., 2021, 66(3): 03TR01-1-35. doi: 10.1088/1361-6560/abc5a5http://dx.doi.org/10.1088/1361-6560/abc5a5
SCOTT C C, FARRIER M, LI Y, et al. High-energy micrometre-scale pixel direct conversion X-ray detector [J]. J. Synchrotron Radiat., 2021, 28(4): 1081-1089. doi: 10.1107/s1600577521004835http://dx.doi.org/10.1107/s1600577521004835
OLIVEIRA J, CORREIA V, COSTA P, et al. Stretchable scintillator composites for indirect X-ray detectors [J]. Compos. Part B Eng., 2018, 133: 226-231. doi: 10.1016/j.compositesb.2017.09.031http://dx.doi.org/10.1016/j.compositesb.2017.09.031
ZOU T Y, XIANG B, XU Y B, et al. Pixellated perovskite photodiode on IGZO thin film transistor backplane for low dose indirect X-ray detection [J]. IEEE J. Electron Devices Soc., 2021, 9: 96-101. doi: 10.1109/jeds.2020.3040771http://dx.doi.org/10.1109/jeds.2020.3040771
WEI H T, FANG Y J, MULLIGAN P, et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals [J]. Nat. Photonics, 2016, 10(5): 333-339. doi: 10.1038/nphoton.2016.41http://dx.doi.org/10.1038/nphoton.2016.41
SONG X, LI Q, HAN J, et al. Highly luminescent metal-free perovskite single crystal for biocompatible X-ray detector to attain highest sensitivity [J]. Adv. Mater., 2021, 33(36): 2102190-1-10. doi: 10.1002/adma.202102190http://dx.doi.org/10.1002/adma.202102190
ZHENG X J, ZHAO W, WANG P, et al. Ultrasensitive and stable X-ray detection using zero-dimensional lead-free perovskites [J]. J. Energy Chem., 2020, 49: 299-306. doi: 10.1016/j.jechem.2020.02.049http://dx.doi.org/10.1016/j.jechem.2020.02.049
STREET R. Semiconductor of distinction [J]. Phys. World, 1993, 6(4): 54-60. doi: 10.1088/2058-7058/6/4/27http://dx.doi.org/10.1088/2058-7058/6/4/27
KASAP S O. X-ray sensitivity of photoconductors: application to stabilized a-Se [J]. J. Phys. D Appl. Phys., 2000, 33(21): 2853-2865. doi: 10.1088/0022-3727/33/21/326http://dx.doi.org/10.1088/0022-3727/33/21/326
KASAP S, FREY J B, BELEV G, et al. Amorphous and polycrystalline photoconductors for direct conversion flat panel X-ray image sensors [J]. Sensors, 2011, 11(5): 5112-5157. doi: 10.3390/s110505112http://dx.doi.org/10.3390/s110505112
JIANG H, ZHAO Q H, ANTONUK L E, et al. Development of active matrix flat panel imagers incorporating thin layers of polycrystalline HgI2 for mammographic X-ray imaging [J]. Phys. Med. Biol., 2013, 58(3): 703-714. doi: 10.1088/0031-9155/58/3/703http://dx.doi.org/10.1088/0031-9155/58/3/703
EVANS R D, BEISER A. The atomic nucleus [J]. Phys. Tod., 1956, 9(12): 33. doi: 10.1063/1.3059850http://dx.doi.org/10.1063/1.3059850
MAINPRIZE J G, FORD N L, YIN S, et al. A CdZnTe slot-scanned detector for digital mammography [J]. Med. Phys., 2002, 29(12): 2767-2781. doi: 10.1118/1.1523932http://dx.doi.org/10.1118/1.1523932
YUAN Y H, XIE S P, DING C G, et al. Fabricating flexible wafer-size inorganic semiconductor devices [J]. J. Mater. Chem. C, 2020, 8(6): 1915-1922. doi: 10.1039/c9tc05781ahttp://dx.doi.org/10.1039/c9tc05781a
PEI K. Recent advances in molecular doping of organic semiconductors [J]. Surf. Interfaces, 2022, 30: 101887-1-5. doi: 10.1016/j.surfin.2022.101887http://dx.doi.org/10.1016/j.surfin.2022.101887
WANG D L, CUI H J, HOU G J, et al. Highly efficient light management for perovskite solar cells [J]. Sci. Rep., 2016, 6: 18922-1-10. doi: 10.1038/srep18922http://dx.doi.org/10.1038/srep18922
SAIDAMINOV M I, ABDELHADY A L, MURALI B, et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization [J]. Nat. Commun., 2015, 6: 7586-1-6. doi: 10.1038/ncomms8586http://dx.doi.org/10.1038/ncomms8586
OGA H, SAEKI A, OGOMI Y, et al. Improved understanding of the electronic and energetic landscapes of perovskite solar cells: high local charge carrier mobility, reduced recombination, and extremely shallow traps [J]. J. Am. Chem. Soc., 2014, 136(39): 13818-13825. doi: 10.1021/ja506936fhttp://dx.doi.org/10.1021/ja506936f
LI W, XIN D Y, TIE S J, et al. Zero-dimensional lead-free FA3Bi2I9 single crystals for high-performance X-ray detection [J]. J. Phys. Chem. Lett., 2021, 12(7): 1778-1785. doi: 10.1021/acs.jpclett.1c00090http://dx.doi.org/10.1021/acs.jpclett.1c00090
MCGOVERN L, GRIMALDI G, FUTSCHER M H, et al. Reduced barrier for ion migration in mixed-halide perovskites [J]. ACS Appl. Energy Mater., 2021, 4(12): 13431-13437. doi: 10.1021/acsaem.1c03095http://dx.doi.org/10.1021/acsaem.1c03095
LIU Y T, IEVLEV A, COLLINS L, et al. Operando imaging of ion migration in metal halide perovskites [J]. Microsc. Microanal., 2020, 26(S2): 2046-2048. doi: 10.1017/s1431927620020267http://dx.doi.org/10.1017/s1431927620020267
CAO J T, GUO Z, ZHU S, et al. Preparation of lead-free two-dimensional-layered (C8H17NH3)2SnBr4 perovskite scintillators and their application in X-ray imaging [J]. ACS Appl. Mater. Interfaces, 2020, 12(17): 19797-19804. doi: 10.1021/acsami.0c02116http://dx.doi.org/10.1021/acsami.0c02116
ZHANG Y H, SUN R J, OU X Y, et al. Metal halide perovskite nanosheet for X-ray high-resolution scintillation imaging screens [J]. ACS Nano, 2019, 13(2): 2520-2525. doi: 10.1021/acsnano.8b09484http://dx.doi.org/10.1021/acsnano.8b09484
BELLAZZINI R, SPANDRE G, BREZ A, et al. Chromatic X-ray imaging with a fine pitch CdTe sensor coupled to a large area photon counting pixel ASIC [J]. J. Instrum., 2013, 8(2): C02028-1-10. doi: 10.1088/1748-0221/8/02/c02028http://dx.doi.org/10.1088/1748-0221/8/02/c02028
LEE H S, BHANG H, CHOI J H, et al. A search for low-mass dark matter with CsI(Tl) crystal detectors [J]. Phys. Rev. D, 2014, 90(5): 052006-1-6. doi: 10.1103/physrevd.90.052006http://dx.doi.org/10.1103/physrevd.90.052006
CHA B K, KIM J Y, KIM T J, et al. Fabrication and imaging characterization of high sensitive CsI(Tl) and Gd2O2S(Tb) scintillator screens for X-ray imaging detectors [J]. Radiat. Meas., 2010, 45(3-6): 742-745. doi: 10.1016/j.radmeas.2009.12.025http://dx.doi.org/10.1016/j.radmeas.2009.12.025
BUGBY S L, JAMBI L K, LEES J E. A comparison of CsI:Tl and GOS in a scintillator-CCD detector for nuclear medicine imaging [J]. J. Instrum., 2016, 11(9): P09009-1-13. doi: 10.1088/1748-0221/11/09/p09009http://dx.doi.org/10.1088/1748-0221/11/09/p09009
GILL H S, ELSHAHAT B, KOKIL A, et al. Flexible perovskite based X-ray detectors for dose monitoring in medical imaging applications [J]. Phys. Med., 2018, 5: 20-23. doi: 10.1016/j.phmed.2018.04.001http://dx.doi.org/10.1016/j.phmed.2018.04.001
MAITI A, PAL A J. Effect of cation occupancy ordering in double perovskites to overcome hurdles in carrier transport: Cs2AgBiBr6 as a case study [J]. J. Phys. Chem. C, 2021, 125(29): 16324-16333. doi: 10.1021/acs.jpcc.1c04730http://dx.doi.org/10.1021/acs.jpcc.1c04730
XU L J, LIN X S, HE Q Q, et al. Highly efficient eco-friendly X-ray scintillators based on an organic manganese halide [J]. Nat. Commun., 2020, 11(1): 4329-1-7. doi: 10.1038/s41467-020-18119-yhttp://dx.doi.org/10.1038/s41467-020-18119-y
HE Q Q, ZHOU C K, XU L J, et al. Highly stable organic antimony halide crystals for X-ray scintillation [J]. ACS Mater. Lett., 2020, 2(6): 633-638. doi: 10.1021/acsmaterialslett.0c00133http://dx.doi.org/10.1021/acsmaterialslett.0c00133
YANG B, YIN L X, NIU G D, et al. Lead-free halide Rb2CuBr3 as sensitive X-ray scintillator [J]. Adv. Mater., 2019, 31(44): 1904711-1-8. doi: 10.1002/adma.201904711http://dx.doi.org/10.1002/adma.201904711
LI Y, SHAO W Y, OUYANG X P, et al. Scintillation properties of perovskite single crystals [J]. J. Phys. Chem. C, 2019, 123(28): 17449-17453. doi: 10.1021/acs.jpcc.9b05269http://dx.doi.org/10.1021/acs.jpcc.9b05269
MA W B, JIANG T M, YANG Z, et al. Highly resolved and robust dynamic X-ray imaging using perovskite glass-ceramic scintillator with reduced light scattering [J]. Adv. Sci., 2021, 8(15): 2003728-1-8. doi: 10.1002/advs.202003728http://dx.doi.org/10.1002/advs.202003728
LI W J, LIU L L, TAN M R, et al. Low-cost and large-area hybrid X-ray detectors combining direct perovskite semiconductor and indirect scintillator [J]. Adv. Funct. Mater., 2021, 31(51): 2107843-1-9. doi: 10.1002/adfm.202107843http://dx.doi.org/10.1002/adfm.202107843
LIU L L, LI W J, FENG X P, et al. Energy transfer assisted fast X-ray detection in direct/indirect hybrid perovskite wafer [J]. Adv. Sci., 2022, 9(15): 2103735-1-8. doi: 10.1002/advs.202103735http://dx.doi.org/10.1002/advs.202103735
LI H Y, SONG J M, PANG W T, et al. Sensitive and stable 2D perovskite single-crystal X-ray detectors enabled by a supramolecular anchor [J]. Adv. Mater., 2020, 8(32): 2003790.
NAGARKAR V V, GAYSINSKIY V, OVECHKINA E E, et al. Suppression of afterglow in CsI(Tl) by codoping with Eu2+: fabrication of microcolumnar films for high-resolution high-speed imaging [J]. IEEE Trans. Nucl. Sci., 2007, 54(4): 1378-1382. doi: 10.1109/tns.2007.903167http://dx.doi.org/10.1109/tns.2007.903167
XIANG L, HUANG X K, WANG Y, et al. X-ray sensitive hybrid organic photodetectors with embedded CsPbBr3 perovskite quantum dots [J]. Org. Electron., 2021, 98: 106306-1-7. doi: 10.1016/j.orgel.2021.106306http://dx.doi.org/10.1016/j.orgel.2021.106306
ANKAH G N, BÜCHELE P, POULSEN K, et al. PbS quantum dot based hybrid-organic photodetectors for X-ray sensing [J]. Org. Electron., 2016, 33: 201-206. doi: 10.1016/j.orgel.2016.03.023http://dx.doi.org/10.1016/j.orgel.2016.03.023
BÜCHELE P, RICHTER M, TEDDE S F, et al. X-ray imaging with scintillator-sensitized hybrid organic photodetectors [J]. Nat. Photonics, 2015, 9(12): 843-848. doi: 10.1038/nphoton.2015.216http://dx.doi.org/10.1038/nphoton.2015.216
YAPARPALVI R, FONTENLA D P, VIKRAM B. Clinical experience with routine diode dosimetry for electron beam radiotherapy [J]. Int. J. Radiat. Oncol. Biol. Phys., 2000, 48(4): 1259-1265. doi: 10.1016/s0360-3016(00)00763-xhttp://dx.doi.org/10.1016/s0360-3016(00)00763-x
LNTANIWET A, MILLS C A, SHKUNOV M, et al. Characterization of thick film poly(triarylamine) semiconductor diodes for direct x-ray detection [J]. J. Appl. Phys., 2009, 106(6): 064513-1-7. doi: 10.1063/1.3225909http://dx.doi.org/10.1063/1.3225909
KIM S, LEE J, KANG J. Sensitivity improvement of quantum dot-blended hybrid detector for X-ray imaging [J]. Coatings, 2020, 10(3): 222-1-10. doi: 10.3390/coatings10030222http://dx.doi.org/10.3390/coatings10030222
LEE K, LEE J, HAN D, et al. A study on improving the sensitivity of indirect X-ray detectors by adding hybrid perovskite quantum dots [J]. Coatings, 2022, 12(4): 492-1-11. doi: 10.3390/coatings12040492http://dx.doi.org/10.3390/coatings12040492
INTANIWET A, MILLS C A, SHKUNOV M, et al. Heavy metallic oxide nanoparticles for enhanced sensitivity in semiconducting polymer X-ray detectors [J]. Nanotechnology, 2012, 23(23): 235502-1-7. doi: 10.1088/0957-4484/23/23/235502http://dx.doi.org/10.1088/0957-4484/23/23/235502
THIRIMANNE H M, JAYAWARDENA K D G I, PARNELL A J, et al. High sensitivity organic inorganic hybrid X-ray detectors with direct transduction and broadband response [J]. Nat. Commun., 2018, 9(1): 2926-1-10. doi: 10.1038/s41467-018-05301-6http://dx.doi.org/10.1038/s41467-018-05301-6
DE JONG M P, VAN IJZENDOORN L J, DE VOIGT M J A. Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes [J]. Appl. Phys. Lett., 2000, 77(14): 2255-2257. doi: 10.1063/1.1315344http://dx.doi.org/10.1063/1.1315344
SALSBERG E, AZIZ H. Degradation of PEDOT∶PSS hole injection layers by electrons in organic light emitting devices [J]. Org. Electron., 2019, 69: 313-319. doi: 10.1016/j.orgel.2019.03.009http://dx.doi.org/10.1016/j.orgel.2019.03.009
NANAYAKKARA M P A, MATJAČIĆ L, WOOD S, et al. Ultra-low dark current organic-inorganic hybrid X-ray detectors [J]. Adv. Funct. Mater., 2021, 31(8): 2008482-1-14. doi: 10.1002/adfm.202008482http://dx.doi.org/10.1002/adfm.202008482
THIRIMANNE H M, JAYAWARDENA K D G I, NISBET A, et al. Hybrid multipixel array X-ray detectors for real-time direct detection of hard X-rays [J]. IEEE Trans. Nucl. Sci., 2020, 67(10): 2238-2245. doi: 10.1109/tns.2020.3021612http://dx.doi.org/10.1109/tns.2020.3021612
NANAYAKKARA M P A, MASTEGHIN M G, BASIRICÒL, et al. Molecular weight tuning of organic semiconductors for curved organic-inorganic hybrid X-ray detectors [J]. Adv. Sci., 2022, 9(2): 2101746-1-15. doi: 10.1002/advs.202101746http://dx.doi.org/10.1002/advs.202101746
JAYAWARDENA K D G, THIRIMANNE H M, TEDDE S F, et al. Millimeter-scale unipolar transport in high sensitivity organic-inorganic semiconductor X-ray detectors [J]. ACS Nano, 2019, 13(6): 6973-6981. doi: 10.1021/acsnano.9b01916http://dx.doi.org/10.1021/acsnano.9b01916
孙锡娟, 夏梦玲, 许银生, 等. 钙钛矿直接型X射线探测成像研究进展 [J]. 发光学报, 2022, 43(7): 1014-1026. doi: 10.37188/cjl.20220119http://dx.doi.org/10.37188/cjl.20220119
SUN X J, XIA M L, XU Y S, et al. Research progress of perovskite direct X-ray imaging [J]. Chin. J. Lumin., 2022, 43(7): 1014-1026. (in Chinese). doi: 10.37188/cjl.20220119http://dx.doi.org/10.37188/cjl.20220119
郭素文, 杨伟峰, 胡云浩, 等. 硫化锌电致发光材料在智能可穿戴领域研究进展 [J]. 发光学报, 2022, 43(5): 796-806. doi: 10.37188/cjl.20220027http://dx.doi.org/10.37188/cjl.20220027
GUO S W, YANG W F, HU Y H, et al. Progress of zinc sulfide electroluminescent materials in intelligent wearable field [J]. Chin. J. Lumin., 2022, 43(5): 796-806. (in Chinese). doi: 10.37188/cjl.20220027http://dx.doi.org/10.37188/cjl.20220027
CHEN Y, YANG Z, WANG S B, et al. Design of an inorganic mesoporous hole-transporting layer for highly efficient and stable inverted perovskite solar cells [J]. Adv. Mater., 2018, 30(52): 1805660-1-9. doi: 10.1002/adma.201805660http://dx.doi.org/10.1002/adma.201805660
0
Views
492
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution