晶体的荧光发射谱及连续激光特性,在室温下获得了斜效率为23.1% 的2.85 μm连续激光输出,最高输出功率5.24 W。80 min功率RMS(Root mean square)稳定性优于1.4%,不同输出功率水平的激光光束质量
M
2
因子优于2.17。实验结果表明,导模法生长的Er∶Lu
2
O
3
激光晶体具备输出高功率、高效率中红外激光的能力。
Abstract
As an excellent crystal growth method, the EFG (Edge-defined film-fed growth) method is excepted to grow Er∶Lu
2
O
3
crystal with high quality, large size and high doping concentrations. In this letter, the fluorescence spectrum and continuous-wave (CW) laser performances of Er∶Lu
2
O
3
crystal grown by EFG method have been characterized. A 2.85 μm CW laser with a slope efficiency of 23.1% was realized at room temperature, and the maximum output power was 5.24 W. The RMS (Root mean square) power stability is better than 1.4% during 80 min, and the
M
2
factor of laser beam quality at different power levels is better than 2.17. The experimental results demonstrate that Er∶Lu
2
O
3
laser gain medium grown by EFG method has the ability to generate high output power and high efficiency mid-infrared laser.
关键词
激光器固体激光器3 μmEr∶Lu2O3晶体
Keywords
lasersolid-state laser3 μmEr∶Lu2O3 crystal
references
ROTHMAN L S, RINSLAND C P, GOLDMAN A, et al. The HITRAN molecular spectroscopic database and HAWKS(HITRAN atmospheric workstation): 1996 edition [J]. J. Quant. Spectrosc. Radiat. Transfer, 1998, 60(5): 665-710. doi: 10.1016/s0022-4073(98)00078-8http://dx.doi.org/10.1016/s0022-4073(98)00078-8
TOOR F, JACKSON S, SHANG X M, et al. Mid-infrared lasers for medical applications: introduction to the feature issue [J]. Biomed. Opt. Express, 2018, 9(12): 6255-6257. doi: 10.1364/boe.9.006255http://dx.doi.org/10.1364/boe.9.006255
SKORCZAKOWSKI M, SWIDERSKI J, PICHOLA W, et al. Mid-infrared Q-switched Er∶YAG laser for medical applications [J]. Laser Phys. Lett., 2010, 7(7): 498-504. doi: 10.1002/lapl.201010019http://dx.doi.org/10.1002/lapl.201010019
WOODWARD R I, MAJEWSKI M R, HUDSON D D, et al. Swept-wavelength mid-infrared fiber laser for real-time ammonia gas sensing [J]. APL Photonics, 2019, 4(2): 020801-1-7. doi: 10.1063/1.5065415http://dx.doi.org/10.1063/1.5065415
JACKSON S D. Towards high-power mid-infrared emission from a fibre laser [J]. Nat. Photonics, 2012, 6(7): 423-431. doi: 10.1038/nphoton.2012.149http://dx.doi.org/10.1038/nphoton.2012.149
NIE H K, WANG F F, LIU J T, et al. Rare-earth ions-doped mid-infrared (2.7-3 µm) bulk lasers: a review [invited] [J]. Chin. Opt. Lett., 2021, 19(9): 091407-1-13. doi: 10.3788/col202119.091407http://dx.doi.org/10.3788/col202119.091407
LI T, BEIL K, KRÄNKEL C, et al. Efficient high-power continuous wave Er∶Lu2O3 laser at 2.85 μm [J]. Opt. Lett., 2012, 37(13): 2568-2570. doi: 10.1364/ol.37.002568http://dx.doi.org/10.1364/ol.37.002568
YOU Z Y, WANG Y, XU J L, et al. Diode-end-pumped midinfrared multiwavelength Er∶Pr∶GGG laser [J]. IEEE Photonics Technol. Lett., 2014, 26(7): 667-670. doi: 10.1109/lpt.2014.2302837http://dx.doi.org/10.1109/lpt.2014.2302837
YOU L, LU D Z, PAN Z B, et al. High-efficiency 3 μm Er∶YGG crystal lasers [J]. Opt. Lett., 2018, 43(23): 5873-5876. doi: 10.1364/ol.43.005873http://dx.doi.org/10.1364/ol.43.005873
HU Q Q, NIE H K, MU W X, et al. Bulk growth and an efficient mid-IR laser of high-quality Er∶YSGG crystals [J]. CrystEngComm, 2019, 21(12): 1928-1933. doi: 10.1039/c9ce00084dhttp://dx.doi.org/10.1039/c9ce00084d
YAO W C, UEHARA H, KAWASE H, et al. Highly efficient Er∶YAP laser with 6.9 W of output power at 2 920 nm [J]. Opt. Express, 2020, 28(13): 19000-19007. doi: 10.1364/oe.395802http://dx.doi.org/10.1364/oe.395802
YAO W C, UEHARA H, TOKITA S, et al. LD-pumped 2.8 μm Er∶Lu2O3 ceramic laser with 6.7 W output power and >30% slope efficiency [J]. Appl. Phys. Express, 2021, 14(1): 012001-1-4. doi: 10.35848/1882-0786/abce9ahttp://dx.doi.org/10.35848/1882-0786/abce9a
WANG G J, YIN Y R, JIA Z T, et al. Growth and property characterization of Er∶Lu2 O3 single crystals by EFG method [J]. J. Synth. Cryst., 2021, 50(4): 747-751. (in Chinese). doi: 10.3969/j.issn.1000-985X.2021.04.019http://dx.doi.org/10.3969/j.issn.1000-985X.2021.04.019
KRÄNKEL C. Rare-earth-doped sesquioxides for diode-pumped high-power lasers in the 1-, 2-, and 3-μm spectral range [J]. IEEE J. Sel. Top. Quantum Electron., 2015, 21(1): 250-262. doi: 10.1109/jstqe.2014.2346618http://dx.doi.org/10.1109/jstqe.2014.2346618
YIN Y R, WANG G J, JIA Z T, et al. Controllable and directional growth of Er∶Lu2O3 single crystals by the edge-defined film-fed technique [J]. CrystEngComm, 2020, 22(39): 6569-6573. doi: 10.1039/d0ce00855ahttp://dx.doi.org/10.1039/d0ce00855a
WANG L, HUANG H T, SHEN D Y, et al. Room temperature continuous-wave laser performance of LD pumped Er∶Lu2O3 and Er∶Y2O3 ceramic at 2.7 μm [J]. Opt. Express, 2014, 22(16): 19495-19503. doi: 10.1364/oe.22.019495http://dx.doi.org/10.1364/oe.22.019495