浏览全部资源
扫码关注微信
1.华南理工大学 发光材料与器件国家重点实验室, 广东 广州 510641
2.广州新视界光电科技有限公司, 广东 广州 510630
Published:05 January 2023,
Received:05 September 2022,
Revised:29 September 2022,
移动端阅览
邹建华,朱冠成,王磊等.有机电致发光器件及显示驱动研究进展[J].发光学报,2023,44(01):198-217.
ZOU Jianhua,ZHU Guancheng,WANG Lei,et al.Research Progress on Organic Light-emitting Diodes and Display Drive[J].Chinese Journal of Luminescence,2023,44(01):198-217.
邹建华,朱冠成,王磊等.有机电致发光器件及显示驱动研究进展[J].发光学报,2023,44(01):198-217. DOI: 10.37188/CJL.20220322.
ZOU Jianhua,ZHU Guancheng,WANG Lei,et al.Research Progress on Organic Light-emitting Diodes and Display Drive[J].Chinese Journal of Luminescence,2023,44(01):198-217. DOI: 10.37188/CJL.20220322.
经过30多年的发展,得益于对高效有机半导体材料、新型器件结构、器件工作机理的深入理解以及产业界坚持不懈的工程探索,有机发光二极管(Organic light⁃emitting diodes,OLEDs)的综合性能取得了突破性进展,并成功实现了商业化应用,OLEDs新型显示已成为新一代信息技术的先导性支柱产业。本文将从OLEDs器件角度阐述有机电致发光器件以及显示驱动的研究进展,首先结合光电器件性能提升介绍OLED的基本器件结构演变过程,随后系统性重点阐述现阶段产业上广泛使用以及极具应用前景的器件结构,包括p⁃i⁃n OLEDs 器件结构、叠层器件结构、非掺杂器件结构,最后简述OLEDs显示驱动技术,以期为相关科研工作者提供一些有益的参考。
With more than 30 years of development, organic light-emitting diodes (OLEDs) have made a breakthrough in overall device performances and successfully realized commercial applications due to the development of high-efficiency organic semiconductor materials, new device structures, in-depth understanding of device working mechanisms, and unremitting engineering exploration from the industry. To date, OLED display technologies have become a leading pillar industry of the new-generation of information technology. In this review, the research progress of OLED devices and display driving will be introduced from the perspective of OLED devices. Firstly, the evolution process of OLED basic device structure is introduced in combination with the performance improvement of optoelectronic devices, and then the device structures that are widely used in the industry at this stage and have great application prospects are systematically highlighted, including p-i-n OLED device structures, tandem device structures, and doping-free device structures. Finally, the OLED display driving technology will be briefly described, which is expected to provide some useful guidelines for relevant scientific researchers.
有机电致发光器件p-i-n结构叠层器件非掺杂器件显示驱动
organic light-emitting diodesp-i-n structures, tandem devicesdoping-free devicesdisplay driving
TANG C W, VANSLYKE S A. Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51(12): 913-915. doi: 10.1063/1.98799http://dx.doi.org/10.1063/1.98799
OKUMOTO K, KANNO H, HAMAA Y, et al. Green fluorescent organic light-emitting device with external quantum efficiency of nearly 10% [J]. Appl. Phys. Lett., 2006, 89(6): 063504-1-3. doi: 10.1063/1.2266452http://dx.doi.org/10.1063/1.2266452
XU Z, TANG B Z, WANG Y, et al. Recent advances in high performance blue organic light-emitting diodes based on fluorescence emitters [J]. J. Mater. Chem. C, 2020, 8(8): 2614-2642. doi: 10.1039/c9tc06441ahttp://dx.doi.org/10.1039/c9tc06441a
MA Y G, ZHANG H Y, SHEN J C, et al. Electroluminescence from triplet metal-ligand charge-transfer excited state of transition metal complexes [J]. Synth. Met., 1998, 94(3): 245-248. doi: 10.1016/s0379-6779(97)04166-0http://dx.doi.org/10.1016/s0379-6779(97)04166-0
BALDO M A, O'BRIEN D F, YOU Y, et al. Highly efficient phosphorescent emission from organic electroluminescent devices [J]. Nature, 1998, 395(6698): 151-154. doi: 10.1038/25954http://dx.doi.org/10.1038/25954
王哲, 武瑞霞, 冯洋, 等. 基于混合主体结构的溶液法制备的高效蓝色磷光OLED [J]. 发光学报, 2022, 43(5): 763-772. doi: 10.37188/CJL.20220049http://dx.doi.org/10.37188/CJL.20220049
WANG Z, WU R X, FENG Y, et al. High-efficiency blue phosphorescent OLEDs based on mixed-host structure by solution-processed method [J]. Chin. J. Lumin., 2022, 43(5): 763-772. (in English). doi: 10.37188/CJL.20220049http://dx.doi.org/10.37188/CJL.20220049
UOYAMA H, GOUSHI K, SHIZU K, et al. Highly efficient organic light-emitting diodes from delayed fluorescence [J]. Nature, 2012, 492(7428): 234-238. doi: 10.1038/nature11687http://dx.doi.org/10.1038/nature11687
LI W J, LIU D D, SHEN F Z, et al. A twisting donor-acceptor molecule with an intercrossed excited state for highly efficient, deep-blue electroluminescence [J]. Adv. Funct. Mater., 2012, 22(13): 2797-2803. doi: 10.1002/adfm.201200116http://dx.doi.org/10.1002/adfm.201200116
刘婷婷, 李淑红, 王文军, 等. 基于器件结构提高TADF-OLED器件的发光性能 [J]. 发光学报, 2020, 41(1): 77-85. doi: 10.3788/fgxb20204101.0077http://dx.doi.org/10.3788/fgxb20204101.0077
LIU T T, LI S H, WANG W J, et al. Enhanced luminescent properties of TADF-OLEDs based on device structures [J]. Chin. J. Lumin., 2020, 41(1): 77-85. (in Chinese). doi: 10.3788/fgxb20204101.0077http://dx.doi.org/10.3788/fgxb20204101.0077
AI X, EMRYS W, DONG S Z, et al. Efficient radical-based light-emitting diodes with doublet emission [J]. Nature, 2018, 563(7732): 536-540. doi: 10.1038/s41586-018-0695-9http://dx.doi.org/10.1038/s41586-018-0695-9
ADACHI C, TOKITO S, TSUTSUI T, et al. Electroluminescence in organic films with three-layer structure [J]. Jpn. J. Appl. Phys., 1988, 27(2A): L269-L271. doi: 10.1143/jjap.27.l269http://dx.doi.org/10.1143/jjap.27.l269
HUANG J S, PFEIFFER M, WERNER A, et al. Low-voltage organic electroluminescent devices using pin structures [J]. Appl. Phys. Lett., 2002, 80(1): 139-141. doi: 10.1063/1.1432110http://dx.doi.org/10.1063/1.1432110
WALZER K, MAENNIG B, PFEIFFER M, et al. Highly efficient organic devices based on electrically doped transport layers [J]. Chem. Rev., 2007, 107(4): 1233-1271. doi: 10.1021/cr050156nhttp://dx.doi.org/10.1021/cr050156n
MATSUMOTO T, NAKADA T, ENDO J, et al. Late-news paper: multiphoton organic EL device having charge generation layer [J]. SID Symp. Dig. Tech. Papers, 2003, 34(1): 979-981. doi: 10.1889/1.1832449http://dx.doi.org/10.1889/1.1832449
CHEN Y H, MA D G. Organic semiconductor heterojunctions as charge generation layers and their application in tandem organic light-emitting diodes for high power efficiency [J]. J. Mater. Chem., 2012, 22(36): 18718-18734. doi: 10.1039/c2jm32246chttp://dx.doi.org/10.1039/c2jm32246c
GU G, FORREST S R. Design of flat-panel displays based on organic light-emitting devices [J]. IEEE J. Sel. Top. Quantum Electron., 1998, 4(1): 83-99. doi: 10.1109/2944.669473http://dx.doi.org/10.1109/2944.669473
陈武刚. 基于提升LTPS-AMOLED驱动电路性能的研究 [D]. 成都: 电子科技大学, 2018.
CHEN W G. Research on the Performance of Active Matrix Organic Light Emitting Diode Driving Circuit Based on Low Temperature Poly-silicon Thin Film Transistor Technology [D]. Chengdu: University of Electronic Science and Technology of China, 2018. (in Chinese)
TSUJIMURA T, KOBAYASHI Y, MURAYAMA K, et al. 4.1: A 20-inch OLED display driven by super-amorphous-silicon technology [J]. SID Symp. Dig. Tech. Papers, 2003, 34(1): 6-9. doi: 10.1889/1.1832193http://dx.doi.org/10.1889/1.1832193
LEE J H, KIM J H, HAN M K. A new a-Si∶H TFT pixel circuit compensating the threshold voltage shift of a-Si∶H TFT and OLED for active matrix OLED [J]. IEEE Electron Device Lett., 2005, 26(12): 897-899. doi: 10.1109/led.2005.859674http://dx.doi.org/10.1109/led.2005.859674
王福芝. 有机电致发光器件中的能量与载流子调控问题研究 [D]. 北京: 北京大学, 2008.
WANG F Z. Study on Control of Energy and Charge Carriers in Organic Light-emitting Devices [D]. Beijing: Peking University, 2008. (in Chinese)
侯林涛, 刘彭义, 张靖磊, 等. MoO3作空穴注入层的有机电致发光器件 [J]. 发光学报, 2010, 31(3): 326-330.
HOU L T, LIU P Y, ZHANG J L, et al. Improved hole-injection contact by employing an ultra-thin MoO3 carrier injection layer [J]. Chin. J. Lumin., 2010, 31(3): 326-330. (in English)
张丹丹, 刘磊石, 陈路, 等. Fe3O4 p型掺杂对有机电致发光器件性能的提高 [J]. 发光学报, 2011, 32(1): 42-46. doi: 10.3788/fgxb20113201.0042http://dx.doi.org/10.3788/fgxb20113201.0042
ZHANG D D, LIU L S, CHEN L, et al. Improvement of the performances of organic light-emitting devices using Fe3O4 as p-dopant [J]. Chin. J. Lumin., 2011, 32(1): 42-46. (in Chinese). doi: 10.3788/fgxb20113201.0042http://dx.doi.org/10.3788/fgxb20113201.0042
廖亚琴, 甘至宏, 刘星元. 空穴传输层掺杂SrF2的高效率蓝色磷光OLED器件 [J]. 发光学报, 2011, 32(8): 803-808. doi: 10.3788/fgxb20113208.0803http://dx.doi.org/10.3788/fgxb20113208.0803
LIAO Y Q, GAN Z H, LIU X Y. Highly efficient blue phosphorescent organic light emitting devices with SrF2 doped hole transporting layer [J]. Chin. J. Lumin., 2011, 32(8): 803-808. (in Chinese). doi: 10.3788/fgxb20113208.0803http://dx.doi.org/10.3788/fgxb20113208.0803
林雯嫣, 陈宁, 林宝卿, 等. 利用B3PyPPM∶Cs改善磷光有机电致发光器件性能 [J]. 光子学报, 2020, 40(6): 0623001-1-5. doi: 10.3788/aos202040.0623001http://dx.doi.org/10.3788/aos202040.0623001
LIN W Y, CHEN N, LIN B Q, et al. Performance improvement of phosphorescent organic light-emitting devices using B3PyPPM∶Cs [J]. Acta Opt. Sinica, 2020, 40(6): 0623001-1-5. (in Chinese). doi: 10.3788/aos202040.0623001http://dx.doi.org/10.3788/aos202040.0623001
QIN D S, SHI Z H, CAO H, et al. Enhanced electron current in inverted organic light emitting diodes with an n-doped electron transport layer adopting high and low doping levels [J]. Mater. Res. Express, 2018, 5(1): 016306. doi: 10.1088/2053-1591/aaa742http://dx.doi.org/10.1088/2053-1591/aaa742
CAI Y, WEI H X, LI J, et al. Mechanism of Cs2CO3 as an n-type dopant in organic electron-transport film [J]. Appl. Phys. Lett., 2011, 98(11): 113304-1-3. doi: 10.1063/1.3567526http://dx.doi.org/10.1063/1.3567526
于瑶瑶, 喻叶, 林雯嫣, 等. 高效率N掺杂有机电致发光器件的研制 [J]. 发光学报, 2018, 39(3): 315-321. doi: 10.3788/fgxb20183903.0315http://dx.doi.org/10.3788/fgxb20183903.0315
YU Y Y, YU Y, LIN W Y, et al. Highly efficient N-doped organic light-emitting devices [J]. Chin. J. Lumin., 2018, 39(3): 315-321. (in Chinese). doi: 10.3788/fgxb20183903.0315http://dx.doi.org/10.3788/fgxb20183903.0315
SCACCABAROZZI A D, BASU A, ANIÉS F, et al. Doping approaches for organic semiconductors [J]. Chem. Rev., 2022, 122(4): 4420-4492. doi: 10.1021/acs.chemrev.1c00581http://dx.doi.org/10.1021/acs.chemrev.1c00581
KRÖGER M, HAMWI S, MEYER J, et al. P-type doping of organic wide band gap materials by transition metal oxides: a case-study on molybdenum trioxide [J]. Org. Electron., 2009, 10(5): 932-938. doi: 10.1016/j.orgel.2009.05.007http://dx.doi.org/10.1016/j.orgel.2009.05.007
陈伟华. 基于p-型掺杂空穴传输层的高效绿色磷光有机电致发光器件 [D]. 太原: 太原理工大学, 2017.
CHEN W H. Highly Efficient Green Phosphorescent Organic Light-emitting Devices Based on p-type Doping Hole Transporting Layer [D]. Taiyuan: Taiyuan University of Technology, 2017. (in Chinese)
GAO C H, ZHU X Z, ZHANG L, et al. Comparative studies on the inorganic and organic p-type dopants in organic light-emitting diodes with enhanced hole injection [J]. Appl. Phys. Lett., 2013, 102(15): 153301-1-5. doi: 10.1063/1.4802081http://dx.doi.org/10.1063/1.4802081
SAKAI N, WARREN R, ZHANG F Y, et al. Adduct-based p-doping of organic semiconductors [J]. Nat. Mater., 2021, 20(9): 1248-1254. doi: 10.1038/s41563-021-00980-xhttp://dx.doi.org/10.1038/s41563-021-00980-x
WEI H X, OU Q D, ZHANG Z, et al. The role of cesium fluoride as an n-type dopant on electron transport layer in organic light-emitting diodes [J]. Org. Electron., 2013, 14(3): 839-844. doi: 10.1016/j.orgel.2013.01.007http://dx.doi.org/10.1016/j.orgel.2013.01.007
BIN Z Y, DONG G F, WEI P C, et al. Making silver a stronger n-dopant than cesium via in situ coordination reaction for organic electronics [J]. Nat. Commun., 2019, 10(1): 866-1-7. doi: 10.1038/s41467-019-08821-xhttp://dx.doi.org/10.1038/s41467-019-08821-x
LIN X, WEGNER B, LEE K M, et al. Beating the thermodynamic limit with photo-activation of n-doping in organic semiconductors [J]. Nat. Mater., 2017, 16(12): 1209-1215. doi: 10.1038/nmat5027http://dx.doi.org/10.1038/nmat5027
SMITH H L, DULL J T, LONGHI E, et al. n-doping of a low-electron-affinity polymer used as an electron-transport layer in organic light-emitting diodes [J]. Adv. Funct. Mater., 2020, 30(17): 2000328-1-7. doi: 10.1002/adfm.202000328http://dx.doi.org/10.1002/adfm.202000328
KAO P C, CHIU C T. MoO3 as p-type dopant for Alq3-based p-i-n homojunction organic light-emitting diodes [J]. Org. Electron., 2015, 26: 443-450. doi: 10.1016/j.orgel.2015.08.018http://dx.doi.org/10.1016/j.orgel.2015.08.018
YOOK K S, LEE J Y. Simplified p-i-n organic light-emitting diodes using an universal ambipolar material [J]. J. Indust. Eng. Chem., 2012, 18(1): 309-311. doi: 10.1016/j.jiec.2011.11.044http://dx.doi.org/10.1016/j.jiec.2011.11.044
CAO X A, LIU N, SHELHAMMER D, et al. Stable blue fluorescent organic light-emitting diodes based on an inorganically doped homojunction [J]. IEEE Trans. Electron Devices, 2021, 68(7): 3424-3428. doi: 10.1109/ted.2021.3083237http://dx.doi.org/10.1109/ted.2021.3083237
HE G F, PFEIFFER M, LEO K, et al. High-efficiency and low-voltage p-i-n electrophosphorescent organic light-emitting diodes with double-emission layers [J]. Appl. Phys. Lett., 2004, 85(17): 3911-3913. doi: 10.1063/1.1812378http://dx.doi.org/10.1063/1.1812378
SMITH H L, DULL J T, MOHAPATRA S K, et al. Powerful organic molecular oxidants and reductants enable ambipolar injection in a large-gap organic homojunction diode [J]. ACS Appl. Mater. Interfaces, 2022, 14(1): 2381-2389. doi: 10.1021/acsami.1c21302http://dx.doi.org/10.1021/acsami.1c21302
ZHANG H M, DAI Y F, MA D G, et al. High efficiency tandem organic light-emitting devices with Al/WO3/Au interconnecting layer [J]. Appl. Phys. Lett., 2007, 91(12): 123504-1-3. doi: 10.1063/1.2787877http://dx.doi.org/10.1063/1.2787877
ZHANG T, WANG D K, JIANG N, et al. Stacking multiple connecting functional materials in tandem organic light-emitting diodes [J]. Sci. Rep., 2017, 7: 43130-1-8. doi: 10.1038/srep43130http://dx.doi.org/10.1038/srep43130
LIU Y D, LI J C, ZHANG J, et al. Efficient blue fluorescence tandem organic light emitting device with a novel intermediate connector [J]. Optoelectron. Lett., 2019, 15(2): 85-88. doi: 10.1007/s11801-019-8125-2http://dx.doi.org/10.1007/s11801-019-8125-2
XU T, ZHOU J G, HUANG C C, et al. Highly simplified tandem organic light-emitting devices incorporating a green phosphorescence ultrathin emitter within a novel interface exciplex for high efficiency [J]. ACS Appl. Mater. Interfaces, 2017, 9(12): 10955-10962. doi: 10.1021/acsami.6b16094http://dx.doi.org/10.1021/acsami.6b16094
YU A R, TANG Y J, ZENG Q, et al. Recovery of electroluminescence in electron-only organic light-emitting diode by inserting a thin MoO3 layer at Bphen/NPB interface [J]. AIP Adv., 2019, 9(3): 035149-1-6. doi: 10.1063/1.5089710http://dx.doi.org/10.1063/1.5089710
HUSEYNOVA G, LEE J H, GASONOO A, et al. Efficient tandem organic light-emitting diode with fluorinated hexaazatrinaphthylene charge generation layer [J]. J. Inf. Disp., 2022, 23(4): 259-266. doi: 10.1080/15980316.2022.2089751http://dx.doi.org/10.1080/15980316.2022.2089751
WEI H X, ZHANG R, HUANG G Y, et al. Interfacial charge transfer study of hexacarbonitrile-based intermediate connecter in blue tandem organic light-emitting diodes [J]. Opt. Mater., 2022, 128: 112345. doi: 10.1016/j.optmat.2022.112345http://dx.doi.org/10.1016/j.optmat.2022.112345
WEI H X, ZHANG R, HUANG G Y, et al. Highly stable and efficient tandem white light emitting diodes based on efficient electron injection and transport [J]. J. Mater. Chem. C, 2022, 10(15): 5994-6001. doi: 10.1039/d1tc05687ehttp://dx.doi.org/10.1039/d1tc05687e
FAN Y X, SUN A H, TIAN Y H, et al. Deep blue exciplex tandem OLEDs using n- and p-doped planar heterojunction as a charge generation layer [J]. J. Phys. D: Appl. Phys., 2022, 55(31): 315103-1-9. doi: 10.1088/1361-6463/ac683dhttp://dx.doi.org/10.1088/1361-6463/ac683d
PARK W H, PARK D P, KIM S S. Highly efficient tandem PHOLEDs with lithium-doped BPhen/NDP-9-doped TAPC as a charge generation layer [J]. J. Inf. Disp., 2022, 23(1): 45-52. doi: 10.1080/15980316.2021.1947403http://dx.doi.org/10.1080/15980316.2021.1947403
HUANG C C, ZHANG Y J, ZHOU J G, et al. Hybrid tandem white OLED with long lifetime and 150 lm·W-1 in luminous efficacy based on TADF blue emitter stabilized with phosphorescent red emitter [J]. Adv. Opt. Mater., 2020, 8(18): 2000727-1-7. doi: 10.1002/adom.202000727http://dx.doi.org/10.1002/adom.202000727
武聪伶, 陈柳青, 景姝, 等. 非掺杂式电荷生成层的结构设计及其在叠层OLED器件中的应用 [J]. 发光学报, 2015, 36(6): 679-684. doi: 10.3788/fgxb20153606.0679http://dx.doi.org/10.3788/fgxb20153606.0679
WU C L, CHEN L Q, JING S,et al. Structure design of charge generation layer without doping and its application in tandem OLED devices [J]. Chin. J. Lumin., 2015, 36(6): 679-684. (in Chinese). doi: 10.3788/fgxb20153606.0679http://dx.doi.org/10.3788/fgxb20153606.0679
WANG J, WANG Y Z, QIN Y, et al. Highly efficient ultra-flexible tandem organic light-emitting diodes adopting a non-doped charge generation unit [J]. J. Mater. Chem. C, 2021, 9(27): 8570-8578. doi: 10.1039/d1tc01157jhttp://dx.doi.org/10.1039/d1tc01157j
YUAN J K, LIU W, YAO J W, et al. Highly efficient charge generation and injection in HAT-CN/TAPC heterojunction for high efficiency tandem organic light-emitting diodes [J]. Org. Electron., 2020, 83: 105745-1-6. doi: 10.1016/j.orgel.2020.105745http://dx.doi.org/10.1016/j.orgel.2020.105745
CHEN A, WANG Z, XIE J F, et al. Highly efficient tandem blue phosphorescent organic LEDs with external quantum efficiency exceeding 42% [J]. Appl. Phys. Express, 2020, 13(3): 031002-1-5. doi: 10.35848/1882-0786/ab6ed6http://dx.doi.org/10.35848/1882-0786/ab6ed6
陈爱, 王振, 谢嘉凤, 等. 基于有机异质结C60/ZnPc的绿色磷光TOLED [J]. 光子学报, 2019, 48(7): 0723003-1-8. doi: 10.3788/gzxb20194807.0723003http://dx.doi.org/10.3788/gzxb20194807.0723003
CHEN A, WANG Z, XIE J F, et al. Green phosphorescent tandem organic light-emitting diodes based on organic heterojunction of C60/ZnPc [J]. Acta Photon. Sinica, 2019, 48(7): 0723003-1-8. (in Chinese). doi: 10.3788/gzxb20194807.0723003http://dx.doi.org/10.3788/gzxb20194807.0723003
CHEN A, WANG Z, XIE J F, et al. Remarkable enhancement of efficiencies for red, green, and blue tandem phosphorescent organic light-emitting diodes by utilizing a non-doped photovoltaic-type charge generation unit [J]. Jpn. J. Appl. Phys., 2019, 58(7): 070904-1-5. doi: 10.7567/1347-4065/ab2815http://dx.doi.org/10.7567/1347-4065/ab2815
ZHANG X W, ZHANG M K, LIU M J, et al. Highly efficient tandem organic light-emitting devices adopting a nondoped charge-generation unit and ultrathin emitting layers [J]. Org. Electron., 2018, 53: 353-360. doi: 10.1016/j.orgel.2017.10.042http://dx.doi.org/10.1016/j.orgel.2017.10.042
YANG H S, YU Y Y, WU L S, et al. Highly efficient tandem organic light-emitting devices employing an easily fabricated charge generation unit [J]. Appl. Phys. Express, 2018, 11(2): 022101-1-4. doi: 10.7567/apex.11.022101http://dx.doi.org/10.7567/apex.11.022101
LÜ Z Y, ZHANG L J, WANG J L, et al. Enhanced efficiency of tandem organic light‐emitting diodes via manipulating heterojunction composition of charge generation unit [J]. Phys. Status Solidi (A), 2021, 218(17): 2100188-1-6. doi: 10.1002/pssa.202100188http://dx.doi.org/10.1002/pssa.202100188
BAO C, CHEN C, MUHAMMAD M, et al. Hybrid perovskite charge generation layer for highly efficient tandem organic light-emitting diodes [J]. Org. Electron., 2019, 73: 299-303. doi: 10.1016/j.orgel.2019.06.022http://dx.doi.org/10.1016/j.orgel.2019.06.022
TSUTSUI T, TERAI M. Electric field-assisted bipolar charge spouting in organic thin-film diodes [J]. Appl. Phys. Lett., 2004, 84(3): 440-442. doi: 10.1063/1.1640470http://dx.doi.org/10.1063/1.1640470
YANG J P, XIAO Y, DENG Y H, et al. Electric-field-assisted charge generation and separation process in transition metal oxide-based interconnectors for tandem organic light-emitting diodes [J]. Adv. Funct. Mater., 2012, 22(3): 600-608. doi: 10.1002/adfm.201102136http://dx.doi.org/10.1002/adfm.201102136
KRÖGER M, HAMWI S, MEYER J, et al. Temperature-independent field-induced charge separation at doped organic/organic interfaces: experimental modeling of electrical properties [J]. Phys. Rev. B, 2007, 75(23): 235321-1-8. doi: 10.1103/physrevb.75.235321http://dx.doi.org/10.1103/physrevb.75.235321
BAO Q Y, YANG J P, LI Y Q, et al. Electronic structures of MoO3-based charge generation layer for tandem organic light-emitting diodes [J]. Appl. Phys. Lett., 2010, 97(6): 063303-1-3. doi: 10.1063/1.3479477http://dx.doi.org/10.1063/1.3479477
YUAN J K, GUO X M, LIU W, et al. Investigation on the mechanism of charge generation in organic heterojunctions: analysis of I-V and C-V characteristics [J]. Org. Electron., 2021, 88: 105979-1-8. doi: 10.1016/j.orgel.2020.105979http://dx.doi.org/10.1016/j.orgel.2020.105979
林雯嫣, 陈宁, 吴志军, 等. 基于B3PyMPM∶Cs高效叠层OLED器件的制备 [J]. 光子学报, 2020, 49(1): 0123003-1-8. doi: 10.3788/gzxb20204901.0123003http://dx.doi.org/10.3788/gzxb20204901.0123003
LIN W Y, CHEN N, WU Z J, et al. Preparation of highly-efficient tandem OLED based on B3PyMPM∶Cs [J]. Acta Photon. Sinica, 2020, 49(1): 0123003-1-8. (in Chinese). doi: 10.3788/gzxb20204901.0123003http://dx.doi.org/10.3788/gzxb20204901.0123003
XU Y C, NIU Y X, GONG C L, et al. High-performance inverted tandem OLEDs with the charge generation layer based on MoOx and Ag doped planar heterojunction [J]. Adv. Opt. Mater., 2022, 10(16): 2200984. doi: 10.1002/adom.202200984http://dx.doi.org/10.1002/adom.202200984
XU T, ZHOU J G, FUNG M K, et al. Simplified efficient warm white tandem organic light-emitting devices by ultrathin emitters using energy transfer from exciplexes [J]. Org. Electron., 2018, 63: 369-375. doi: 10.1016/j.orgel.2018.09.026http://dx.doi.org/10.1016/j.orgel.2018.09.026
YU Y Y, WU Z J, YU Y, et al. Highly-efficient tandem organic light-emitting device employing bis-4, 6-(3, 5-di-3-pyridylphenyl)-2-methylpyrimi-dine doped with cesium azide in charge generation unit [J]. Org. Electron., 2018, 52: 329-334. doi: 10.1016/j.orgel.2017.11.022http://dx.doi.org/10.1016/j.orgel.2017.11.022
陶洪, 高栋雨, 刘佰全, 等. 电荷生成层中引入超薄金属Ag层对串联有机发光二极管性能的提升 [J]. 物理学报, 2017, 66(1): 017302-1-8. doi: 10.7498/aps.66.017302http://dx.doi.org/10.7498/aps.66.017302
TAO H, GAO D Y, LIU B Q, et al. Enhancement of tandem organic light-emitting diode performance by inserting an ultra-thin Ag layer in charge generation layer [J]. Acta Phys. Sinica, 2017, 66(1): 017302-1-8. (in Chinese). doi: 10.7498/aps.66.017302http://dx.doi.org/10.7498/aps.66.017302
CHAN C Y, TANAKA M, LEE Y T, et al. Stable pure-blue hyperfluorescence organic light-emitting diodes with high-efficiency and narrow emission [J]. Nat. Photonics, 2021, 15(3): 203-207. doi: 10.1038/s41566-020-00745-zhttp://dx.doi.org/10.1038/s41566-020-00745-z
GUO Q X, DAI Y F, SUN Q, et al. Properties of highly efficient charge generation and transport of multialternating organic heterojunctions and its application in organic light-emitting diodes [J]. Adv. Electron. Mater., 2018, 4(9): 1800177. doi: 10.1002/aelm.201800177http://dx.doi.org/10.1002/aelm.201800177
YANG H S. White organic light-emitting devices based on blue fluorescent dye combined with dual sub-monolayer [J]. J. Lumin., 2013, 142: 231-235. doi: 10.1016/j.jlumin.2013.04.010http://dx.doi.org/10.1016/j.jlumin.2013.04.010
XUE Q, ZHANG S M, XIE G H, et al. Efficient fluorescent white organic light-emitting devices based on a ultrathin 5, 6, 11, 12-tetraphenylnaphthacene layer [J]. Solid-State Electron., 2011, 57(1): 35-38. doi: 10.1016/j.sse.2010.11.020http://dx.doi.org/10.1016/j.sse.2010.11.020
ZHAO Y B, CHEN J S, MA D G. Realization of high efficiency orange and white organic light emitting diodes by introducing an ultra-thin undoped orange emitting layer [J]. Appl. Phys. Lett., 2011, 99(16): 163303-1-3. doi: 10.1063/1.3654150http://dx.doi.org/10.1063/1.3654150
ZHAO Y B, CHEN J S, MA D G. Ultrathin nondoped emissive layers for efficient and simple monochrome and white organic light-emitting diodes [J]. ACS Appl. Mater. Interfaces, 2013, 5(3): 965-971. doi: 10.1021/am3026097http://dx.doi.org/10.1021/am3026097
LIU B Q, XU M, WANG L, et al. High-performance hybrid white organic light-emitting diodes comprising ultrathin blue and orange emissive layers [J]. Appl. Phys. Express, 2013, 6(12): 122101-1-4. doi: 10.7567/apex.6.122101http://dx.doi.org/10.7567/apex.6.122101
PLEASANTS S. Ultrathin emissive layers [J]. Nat. Photonics, 2014, 8(2): 84-1-1. doi: 10.1038/nphoton.2014.15http://dx.doi.org/10.1038/nphoton.2014.15
LIU B Q, TAO H, WANG L, et al. High-performance doping-free hybrid white organic light-emitting diodes: the exploitation of ultrathin emitting nanolayers (< 1 nm) [J]. Nano Energy, 2016, 26: 26-36. doi: 10.1016/j.nanoen.2016.04.054http://dx.doi.org/10.1016/j.nanoen.2016.04.054
LIU B Q, WANG L, TAO H, et al. Doping-free tandem white organic light-emitting diodes [J]. Sci. Bull., 2017, 62(17): 1193-1200. doi: 10.1016/j.scib.2017.08.021http://dx.doi.org/10.1016/j.scib.2017.08.021
HAN H J, HU S J, ZHANG S L, et al. Achieving solution-processed non-doped single-emitting-layer white organic light-emitting diodes through adjusting pyrene-based polyaromatic hydrocarbons [J]. Chem. Eur. J, 2022, 28(56): e202201741. doi: 10.1002/chem.202201741http://dx.doi.org/10.1002/chem.202201741
CHATSIRISUPACHAI J, NALAOH P, KAIYASUAN C, et al. Unique dual fluorescence emission in the solid state from a small molecule based on phenanthrocarbazole with an AIE luminogen as a single-molecule white-light emissive material [J]. Mater. Chem. Front., 2021, 5(5): 2361-2372. doi: 10.1039/d0qm00951bhttp://dx.doi.org/10.1039/d0qm00951b
CHEN H, DENG Y H, ZHU X Y, et al. Toward achieving single-molecule white electroluminescence from dual emission of fluorescence and phosphorescence [J]. Chem. Mater., 2020, 32(9): 4038-4044. doi: 10.1021/acs.chemmater.0c00710http://dx.doi.org/10.1021/acs.chemmater.0c00710
周雷. OLED像素驱动电路设计 [D]. 广州: 华南理工大学, 2013.
ZHOU L. Pixel Circuit Design of OLED [D]. Guangzhou: South China University of Technology, 2013. (in Chinese)
LIU Y, CAI S T, HAN C Y, et al. Scaling down effect on low frequency noise in polycrystalline silicon thin-film transistors [J]. IEEE J. Electron Devices Soc., 2019, 7: 203-209. doi: 10.1109/jeds.2018.2890737http://dx.doi.org/10.1109/jeds.2018.2890737
岳致富, 吴勇, 李喜峰, 等. 柔性低温多晶硅薄膜晶体管的弯曲稳定性 [J]. 发光学报, 2017, 38(9): 1205-1209. doi: 10.3788/fgxb20173809.1205http://dx.doi.org/10.3788/fgxb20173809.1205
YUE Z F, WU Y, LI X F, et al. Bending stability of flexible low temperature poly-silicon thin-film transistors [J]. Chin. J. Lumin., 2017, 38(9): 1205-1209. (in Chinese). doi: 10.3788/fgxb20173809.1205http://dx.doi.org/10.3788/fgxb20173809.1205
三星SDI株式会社. 有机发光器件像素电路及其驱动方法: 韩国, CN1577453A [P]. 2005-02-09.
Samsung SDI Co., Ltd. Organic light emitting device pixel circuit and driving method therefor: KR, CN1577453A [P]. 2005-02-09. (in Chinese)
ANGELIS C T, DIMITRIADIS C A, SAMARAS I, et al. Study of leakage current in n-channel and p-channel polycrystalline silicon thin-film transistors by conduction and low frequency noise measurements [J]. J. Appl. Phys., 1997, 82(8): 4095-4101. doi: 10.1063/1.365720http://dx.doi.org/10.1063/1.365720
邓立昂, 陈世林, 黄博天, 等. 基于低温多晶硅-氧化物半导体混合集成的薄膜晶体管显示背板技术 [J]. 液晶与显示, 2021, 36(3): 420-431. doi: 10.37188/CJLCD.2020-0268http://dx.doi.org/10.37188/CJLCD.2020-0268
DENG L A, CHEN S L, HUANG B T, et al. TFT display backplane technology based on low-temperature polysilicon-oxide semiconductor hybrid integration [J]. Chin. J. Liq. Cryst. Disp., 2021, 36(3): 420-431. (in Chinese). doi: 10.37188/CJLCD.2020-0268http://dx.doi.org/10.37188/CJLCD.2020-0268
NOMURA K, OHTA H, TAKAGI A, et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors [J]. Nature, 2004, 432(7016): 488-492. doi: 10.1038/nature03090http://dx.doi.org/10.1038/nature03090
PARK J S, MAENG W J, KIM H S, et al. Review of recent developments in amorphous oxide semiconductor thin-film transistor devices [J]. Thin Solid Films, 2012, 520(6): 1679-1693. doi: 10.1016/j.tsf.2011.07.018http://dx.doi.org/10.1016/j.tsf.2011.07.018
王磊, 徐苗, 兰林锋, 等. 金属氧化物TFT驱动AMOLED显示研究进展 [J]. 中国科学: 化学, 2013, 43(11): 1383-1397. doi: 10.1360/032013-293http://dx.doi.org/10.1360/032013-293
WANG L, XU M, LAN L F, et al. Research progress of active matrix organic light emitting diode (AMOLED) displays driven by metal oxide thin film transistors (TFT) [J]. Sci. Sinica Chem., 2013, 43(11): 1383-1397. (in Chinese). doi: 10.1360/032013-293http://dx.doi.org/10.1360/032013-293
曹镛, 陶洪, 邹建华, 等. 金属氧化物薄膜晶体管及其在新型显示中的应用 [J]. 华南理工大学学报(自然科学版), 2012, 40(10): 1-11. doi: 10.3969/j.issn.1000-565X.2012.10.001http://dx.doi.org/10.3969/j.issn.1000-565X.2012.10.001
CAO Y, TAO H, ZOU J H, et al. Metal oxide thin film transistors and their application to novel display technology [J]. J. South China Univ. Technol. (Nat. Sci. Ed.), 2012, 40(10): 1-11. (in Chinese). doi: 10.3969/j.issn.1000-565X.2012.10.001http://dx.doi.org/10.3969/j.issn.1000-565X.2012.10.001
ZHU Y B, XU H, XU M, et al. Enhanced negative-bias illumination temperature stability of praseodymium-doped InGaO thin-film transistors [J]. Phys. Status Solidi (A), 2021, 218(14): 2000812-1-6. doi: 10.1002/pssa.202000812http://dx.doi.org/10.1002/pssa.202000812
徐华, 刘京栋, 蔡炜, 等. N2O处理对背沟刻蚀金属氧化物薄膜晶体管性能的影响 [J]. 物理学报, 2022, 71(5): 058503-1-8. doi: 10.7498/aps.71.20211350http://dx.doi.org/10.7498/aps.71.20211350
XU H, LIU J D, CAI W, et al. Effect of N2O treatment on performance of back channel etched metal oxide thin film transistors [J]. Acta Phys. Sinica, 2022, 71(5): 058503-1-8. (in Chinese). doi: 10.7498/aps.71.20211350http://dx.doi.org/10.7498/aps.71.20211350
CHANG T K, LIN C W, CHANG S. 39-3: Invited Paper: LTPO TFT technology for AMOLEDs [J]. SID Symp. Dig. Tech. Papers, 2019, 50(1): 545-548. doi: 10.1002/sdtp.12978http://dx.doi.org/10.1002/sdtp.12978
IncApple. Display with silicon and semiconducting oxide thin-film transistors: US, US2015055051A1 [P]. 2015-02-26. doi: 10.1088/978-0-7503-2556-1ch12http://dx.doi.org/10.1088/978-0-7503-2556-1ch12
0
Views
837
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution