浏览全部资源
扫码关注微信
中国科学院大学 化学科学学院, 北京 100049
Published:05 January 2023,
Received:04 September 2022,
Revised:25 September 2022,
移动端阅览
刘美惠,彭谦.OLED发光材料的理论计算与分子设计[J].发光学报,2023,44(01):115-128.
LIU Meihui,PENG Qian.Theoretical Calculation and Molecular Design of Light-emitting Materials for OLED[J].Chinese Journal of Luminescence,2023,44(01):115-128.
刘美惠,彭谦.OLED发光材料的理论计算与分子设计[J].发光学报,2023,44(01):115-128. DOI: 10.37188/CJL.20220319.
LIU Meihui,PENG Qian.Theoretical Calculation and Molecular Design of Light-emitting Materials for OLED[J].Chinese Journal of Luminescence,2023,44(01):115-128. DOI: 10.37188/CJL.20220319.
数次有机发光二极管(OLED)器件效率的突破均源于有机电致发光新机制的发现和有机发光材料的创新。理论探究有机分子激发态的形成和衰变过程可以加深理解发光的微观机理,促进发光材料分子的研发。本文简要介绍了热振动关联函数(TVCF)的速率理论,及其在荧光、磷光和热激活延迟小分子材料中的应用。针对这三类小分子材料,我们揭示了其发光机理,建立了分子结构与性质之间的关系,提出了表征效率的描述符,并理论设计了优良的OLED发光分子。
Thanks to the discovery of new mechanisms of organic electroluminescence and the innovation of organic light-emitting materials, several breakthroughs have been made in the efficiency of organic light-emitting diode (OLED) device. Theoretical exploration of the formation and decay processes of excited states of organic molecules can deepen the understanding of the mechanism of electroluminescence and boost the development of molecular materials. This review briefly introduces the rate theory of thermal vibration correlation function (TVCF) and its applications in fluorescence, phosphorescence and thermally activated delayed fluorescence small molecular materials. For these three kinds of materials, their light-emitting mechanisms have been revealed, the relationships between molecular structure and properties have been established, the descriptors of efficiencies have been proposed, and then the excellent OLED light-emitting molecules have been designed theoretically from principles.
OLED发光材料分子描述符热振动关联函数激发态衰减速率常数发光量子效率
OLED light-emitting materialsmolecular descriptorthermal vibration correlation functionexcited state decay rate constantluminescence quantum efficiency
MA W B, SU Y R, ZHANG Q S, et al. Thermally activated delayed fluorescence (TADF) organic molecules for efficient X-ray scintillation and imaging [J]. Nat. Mater., 2022, 21(2): 210-216. doi: 10.1038/s41563-021-01132-xhttp://dx.doi.org/10.1038/s41563-021-01132-x
GAO R, KODAIMATI M S, YAN D P. Recent advances in persistent luminescence based on molecular hybrid materials [J]. Chem. Soc. Rev., 2021, 50(9): 5564-5589. doi: 10.1039/d0cs01463jhttp://dx.doi.org/10.1039/d0cs01463j
HONG G, GAN X M, LEONHARDT C, et al. A brief history of OLEDs-emitter development and industry milestones [J]. Adv. Mater., 2021, 33(9): 2005630-1-24. doi: 10.1002/adma.202005630http://dx.doi.org/10.1002/adma.202005630
LI Q Q, LI Z. Molecular packing: another key point for the performance of organic and polymeric optoelectronic materials [J]. Acc. Chem. Res., 2020, 53(4): 962-973. doi: 10.1021/acs.accounts.0c00060http://dx.doi.org/10.1021/acs.accounts.0c00060
LIU Y C, LI C S, REN Z J, et al. All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes [J]. Nat. Rev. Mater., 2018, 3(4): 18020-1-20. doi: 10.1038/natrevmats.2018.20http://dx.doi.org/10.1038/natrevmats.2018.20
XU S, CHEN R F, ZHENG C, et al. Excited state modulation for organic afterglow: materials and applications [J]. Adv. Mater., 2016, 28(45): 9920-9940. doi: 10.1002/adma.201602604http://dx.doi.org/10.1002/adma.201602604
王剑桥, 马於光. 有机半导体非平衡态HOMO和LUMO能量位移规律与OLED中“热激子”形成的唯象理解 [J]. 高等学校化学学报, 2022, 43(4): 20210856-1-4.
WANG J Q, MA Y G. Extent and changeable rule of HOMO and lumo energy of organic semiconductors in nonequilibrium states and a phenomenological understanding for the formation of “hot excitons” in OLED [J]. Chem. J. Chin. Univ., 2022, 43(4): 20210856-1-4. (in Chinese)
BRÉDAS J L, BELJONNE D, COROPCEANU V, et al. Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: a molecular picture [J]. Chem. Rev., 2004, 104(11): 4971-5004. doi: 10.1021/cr040084khttp://dx.doi.org/10.1021/cr040084k
马东阁. OLEDs中的激子及其高效利用 [J]. 发光学报, 2023, doi: 10.37188/CJL.20220259http://dx.doi.org/10.37188/CJL.20220259.
MA D G. Excitons and their efficient utilization in oleds [J]. Chin. J. Lumin., 2023, doi: 10.37188/CJL.20220259.http://dx.doi.org/10.37188/CJL.20220259.(in Chinese)
TANG C W, VANSLYKE S A. Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51(12): 913-915. doi: 10.1063/1.98799http://dx.doi.org/10.1063/1.98799
BALDO M A, O'BRIEN D F, YOU Y, et al. Highly efficient phosphorescent emission from organic electroluminescent devices [J]. Nature, 1998, 395(6698): 151-154. doi: 10.1038/25954http://dx.doi.org/10.1038/25954
BALDO M A, LAMANSKY S, BURROWS P E, et al. Very high-efficiency green organic light-emitting devices based on electrophosphorescence [J]. Appl. Phys. Lett., 1999, 75(1): 4-6. doi: 10.1063/1.124258http://dx.doi.org/10.1063/1.124258
FLEETHAM T, LI G J, LI J. Phosphorescent Pt(Ⅱ) and Pd(Ⅱ) complexes for efficient, high-color-quality, and stable OLEds [J]. Adv. Mater., 2017, 29(5): 1601861-1-16. doi: 10.1002/adma.201601861http://dx.doi.org/10.1002/adma.201601861
YANG Z Y, MAO Z, XIE Z L, et al. Recent advances in organic thermally activated delayed fluorescence materials [J]. Chem. Soc. Rev., 2017, 46(3): 915-1016. doi: 10.1039/c6cs00368khttp://dx.doi.org/10.1039/c6cs00368k
HA J M, HUR S H, PATHAK A, et al. Recent advances in organic luminescent materials with narrowband emission [J]. NPG Asia Mater., 2021, 13(1): 53-1-36. doi: 10.1038/s41427-021-00318-8http://dx.doi.org/10.1038/s41427-021-00318-8
ZHANG D D, QIAO J, ZHANG D Q, et al. Ultrahigh-efficiency green PHOLEDs with a voltage under 3 V and a power efficiency of nearly 110 lm·W-1 at luminance of 10 000 cd·m-2 [J]. Adv. Mater., 2017, 29(40): 1702847-1-8. doi: 10.1002/adma.201702847http://dx.doi.org/10.1002/adma.201702847
NAGATA R, NAKANOTANI H, POTSCAVAGE W J JR, et al. Exploiting singlet fission in organic light-emitting diodes [J]. Adv. Mater., 2018, 30(33): 1801484-1-6. doi: 10.1002/adma.201801484http://dx.doi.org/10.1002/adma.201801484
SUN Q, WU Y S, CUI Y Y, et al. Molecular design of DBA-type five-membered heterocyclic rings to achieve 200% exciton utilization for electroluminescence [J]. Mater. Horiz., 2022, 9(10): 2518-2523. doi: 10.1039/d2mh00919fhttp://dx.doi.org/10.1039/d2mh00919f
ABDURAHMAN A, HELE T J H, GU Q Y, et al. Understanding the luminescent nature of organic radicals for efficient doublet emitters and pure-red light-emitting diodes [J]. Nat. Mater., 2020, 19(11): 1224-1229. doi: 10.1038/s41563-020-0705-9http://dx.doi.org/10.1038/s41563-020-0705-9
XU Y W, XU P, HU D H, et al. Recent progress in hot exciton materials for organic light-emitting diodes [J]. Chem. Soc. Rev., 2021, 50(2): 1030-1069. doi: 10.1039/d0cs00391chttp://dx.doi.org/10.1039/d0cs00391c
ZHAO W J, HE Z K, TANG B Z. Room-temperature phosphorescence from organic aggregates [J]. Nat. Rev. Mater., 2020, 5(12): 869-885. doi: 10.1038/s41578-020-0223-zhttp://dx.doi.org/10.1038/s41578-020-0223-z
ZHAO W J, HE Z K, LAM J W Y, et al. Rational molecular design for achieving persistent and efficient pure organic room-temperature phosphorescence [J]. Chem, 2016, 1(4): 592-602. doi: 10.1016/j.chempr.2016.08.010http://dx.doi.org/10.1016/j.chempr.2016.08.010
CHEN H, DENG Y H, ZHU X Y, et al. Toward achieving single-molecule white electroluminescence from dual emission of fluorescence and phosphorescence [J]. Chem. Mater., 2020, 32(9): 4038-4044. doi: 10.1021/acs.chemmater.0c00710http://dx.doi.org/10.1021/acs.chemmater.0c00710
XIE Y J, ZHANG T, LI Z, et al. Influences of conjugation extent on the aggregation-induced emission quantum efficiency in silole derivatives: a computational study [J]. Chem. Asian J., 2015, 10(10): 2154-2161. doi: 10.1002/asia.201500303http://dx.doi.org/10.1002/asia.201500303
ZHANG T, MA H L, NIU Y L, et al. Spectroscopic signature of the aggregation-induced emission phenomena caused by restricted nonradiative decay: a theoretical proposal [J]. J. Phys. Chem. C, 2015, 119(9): 5040-5047. doi: 10.1021/acs.jpcc.5b01323http://dx.doi.org/10.1021/acs.jpcc.5b01323
OU Q, PENG Q, SHUAI Z G. Toward quantitative prediction of fluorescence quantum efficiency by combining direct vibrational conversion and surface crossing: BODIPYs as an example [J]. J. Phys. Chem. Lett., 2020, 11(18): 7790-7797. doi: 10.1021/acs.jpclett.0c02054http://dx.doi.org/10.1021/acs.jpclett.0c02054
ROBINSON G W, FROSCH R P. Electronic excitation transfer and relaxation [J]. J. Chem. Phys., 1963, 38(5): 1187-1203. doi: 10.1063/1.1733823http://dx.doi.org/10.1063/1.1733823
PENFOLD T J, GINDENSPERGER E, DANIEL C, et al. Spin-vibronic mechanism for intersystem crossing [J]. Chem. Rev., 2018, 118(15): 6975-7025. doi: 10.1021/acs.chemrev.7b00617http://dx.doi.org/10.1021/acs.chemrev.7b00617
NELSON T R, WHITE A J, BJORGAARD J A, et al. Non-adiabatic excited-state molecular dynamics: theory and applications for modeling photophysics in extended molecular materials [J]. Chem. Rev., 2020, 120(4): 2215-2287. doi: 10.1021/acs.chemrev.9b00447http://dx.doi.org/10.1021/acs.chemrev.9b00447
PENG Q, YI Y P, SHUAI Z G, et al. Excited state radiationless decay process with duschinsky rotation effect: formalism and implementation [J]. J. Chem. Phys., 2007, 126(11): 114302-1-9. doi: 10.1063/1.2710274http://dx.doi.org/10.1063/1.2710274
NIU Y L, PENG Q, SHUAI Z G. Promoting-mode free formalism for excited state radiationless decay process with Duschinsky rotation effect [J]. Sci. China Ser. B: Chem., 2008, 51(12): 1153-1158. doi: 10.1007/s11426-008-0130-4http://dx.doi.org/10.1007/s11426-008-0130-4
PENG Q, SHUAI Z G. Molecular mechanism of aggregation-induced emission [J]. Aggregate, 2021, 2(5): e91-1-20. doi: 10.1002/agt2.91http://dx.doi.org/10.1002/agt2.91
WANG Y, PENG Q, SHUAI Z G. A computational scheme for evaluating the phosphorescence quantum efficiency: applied to blue-emitting tetradentate Pt(Ⅱ) complexes [J]. Mater. Horiz., 2022, 9(1): 334-341. doi: 10.1039/d1mh00552ahttp://dx.doi.org/10.1039/d1mh00552a
CHEN J Y, XIAO X X, LI S, et al. A novel strategy toward thermally activated delayed fluorescence from a locally excited state [J]. J. Phys. Chem. Lett., 2022, 13(11): 2653-2660. doi: 10.1021/acs.jpclett.2c00224http://dx.doi.org/10.1021/acs.jpclett.2c00224
WANG Y, PENG Q, OU Q, et al. A novel molecular descriptor for highly efficient (ϕTADF > 90%) transition metal TADF Au(Ⅲ) complexes [J]. J. Mater. Chem. A, 2020, 8(36): 18721-18725. doi: 10.1039/d0ta07149hhttp://dx.doi.org/10.1039/d0ta07149h
LIN S Y, PENG Q, OU Q, et al. Strong solid-state fluorescence induced by restriction of the coordinate bond bending in two-coordinate copper(Ⅰ)-carbene complexes [J]. Inorg. Chem., 2019, 58(21): 14403-14409. doi: 10.1021/acs.inorgchem.9b01705http://dx.doi.org/10.1021/acs.inorgchem.9b01705
PENG Q, NIU Y L, WANG Z H, et al. Theoretical predictions of red and near-infrared strongly emitting X-annulated rylenes [J]. J. Chem. Phys., 2011, 134(7): 074510-1-10. doi: 10.1063/1.3549143http://dx.doi.org/10.1063/1.3549143
SHUAI Z G, PENG Q. Organic light-emitting diodes: theoretical understanding of highly efficient materials and development of computational methodology [J]. Natl. Sci. Rev., 2017, 4(2): 224-239. doi: 10.1093/nsr/nww024http://dx.doi.org/10.1093/nsr/nww024
PENG Q, NIU Y L, SHI Q H, et al. Correlation function formalism for triplet excited state decay: combined spin-orbit and nonadiabatic couplings [J]. J. Chem. Theory Comput., 2013, 9(2): 1132-1143. doi: 10.1021/ct300798thttp://dx.doi.org/10.1021/ct300798t
SHERWOOD P, DE VRIES A H, GUEST M F, et al. QUASI: a general purpose implementation of the QM/MM approach and its application to problems in catalysis [J]. J. Mol. Struct.: THEOCHEM, 2003, 632(1-3): 1-28. doi: 10.1016/s0166-1280(03)00285-9http://dx.doi.org/10.1016/s0166-1280(03)00285-9
AHLRICHS R, BÄR M, HÄSER M, et al. Electronic structure calculations on workstation computers: the program system turbomole [J]. Chem. Phys. Lett., 1989, 162(3): 165-169. doi: 10.1016/0009-2614(89)85118-8http://dx.doi.org/10.1016/0009-2614(89)85118-8
SMITH W, FORESTER T R. DL_POLY_2.0: a general-purpose parallel molecular dynamics simulation package [J]. J. Mol. Graph., 1996, 14(3): 136-141. doi: 10.1016/s0263-7855(96)00043-4http://dx.doi.org/10.1016/s0263-7855(96)00043-4
GAO X, BAI S M, FAZZI D, et al. Evaluation of spin-orbit couplings with linear-response time-dependent density functional methods [J]. J. Chem. Theory Comput., 2017, 13(2): 515-524. doi: 10.1021/acs.jctc.6b00915http://dx.doi.org/10.1021/acs.jctc.6b00915
NEESE F. The orca program system [J]. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2012, 2(1): 73-78. doi: 10.1002/wcms.81http://dx.doi.org/10.1002/wcms.81
NIU Y L, LI W Q, PENG Q, et al. Molecular Materials Property Prediction Package (MOMAP) 1.0: a software package for predicting the luminescent properties and mobility of organic functional materials [J]. Mol. Phys., 2018, 116(7-8): 1078-1090. doi: 10.1080/00268976.2017.1402966http://dx.doi.org/10.1080/00268976.2017.1402966
ZHANG T, JIANG Y Q, NIU Y L, et al. Aggregation effects on the optical emission of 1, 1, 2, 3, 4, 5-hexaphenylsilole (HPS): a QM/MM study [J]. J. Phys. Chem. A, 2014, 118(39): 9094-9104. doi: 10.1021/jp5021017http://dx.doi.org/10.1021/jp5021017
BU F, DUAN R H, XIE Y J, et al. Unusual aggregation-induced emission of a coumarin derivative as a result of the restriction of an intramolecular twisting motion [J]. Angew. Chem. Int. Ed. Engl., 2015, 54(48): 14492-14497. doi: 10.1002/anie.201506782http://dx.doi.org/10.1002/anie.201506782
ZHAO Z, ZHENG X Y, DU L L, et al. Non-aromatic annulene-based aggregation-induced emission system via aromaticity reversal process [J]. Nat. Commun., 2019, 10(1): 2952-1-10. doi: 10.1038/s41467-019-10818-5http://dx.doi.org/10.1038/s41467-019-10818-5
ZHANG T, PENG Q, QUAN C Y, et al. Using the isotope effect to probe an aggregation induced emission mechanism: theoretical prediction and experimental validation [J]. Chem. Sci., 2016, 7(8): 5573-5580. doi: 10.1039/c6sc00839ahttp://dx.doi.org/10.1039/c6sc00839a
MAO M, LAM T L, TO W P, et al. Stable, high-efficiency voltage-dependent color-tunable organic light-emitting diodes with a single tetradentate platinum(Ⅱ) emitter having long operational lifetime [J]. Adv. Mater., 2021, 33(2): 2004873-1-8. doi: 10.1002/adma.202004873http://dx.doi.org/10.1002/adma.202004873
OMAE I. Application of the five-membered ring blue light-emitting iridium products of cyclometalation reactions as OLEDs [J]. Coord. Chem. Rev., 2016, 310: 154-169. doi: 10.1016/j.ccr.2015.08.009http://dx.doi.org/10.1016/j.ccr.2015.08.009
LI K, WAN Q Y, YANG C, et al. Air-stable blue phosphorescent tetradentate platinum(Ⅱ) complexes as strong photo-reductant [J]. Angew. Chem. Int. Ed. Engl., 2018, 57(43): 14129-14133. doi: 10.1002/anie.201808642http://dx.doi.org/10.1002/anie.201808642
HANG X C, FLEETHAM T, TURNER E, et al. Highly efficient blue-emitting cyclometalated platinum(Ⅱ) complexes by judicious molecular design [J]. Angew. Chem. Int. Ed. Engl., 2013, 52(26): 6753-6756. doi: 10.1002/anie.201302541http://dx.doi.org/10.1002/anie.201302541
CHEN W C, SUKPATTANACHAROEN C, CHAN W H, et al. Modulation of solid‐state aggregation of square‐planar Pt(Ⅱ) based emitters: enabling highly efficient deep‐red/near infrared electroluminescence [J]. Adv. Funct. Mater., 2020, 30(25): 2002494-1-12. doi: 10.1002/adfm.202002494http://dx.doi.org/10.1002/adfm.202002494
CHENG G, KWAK Y, TO W P, et al. High-efficiency solution-processed organic light-emitting diodes with tetradentate platinum(Ⅱ) emitters [J]. ACS Appl. Mater. Interfaces, 2019, 11(48): 45161-45170. doi: 10.1021/acsami.9b11715http://dx.doi.org/10.1021/acsami.9b11715
WANG X, PENG T, NGUYEN C, et al. Highly efficient deep-blue electrophosphorescent Pt(Ⅱ) compounds with non-distorted flat geometry: tetradentate versus macrocyclic chelate ligands [J]. Adv. Funct. Mater., 2017, 27(4): 1604318-1-13. doi: 10.1002/adfm.201604318http://dx.doi.org/10.1002/adfm.201604318
ZHANG W J, MA J, LIU G J, et al. Efficient sky-blue emitting Pt(Ⅱ) complexes based on imidazo[1,2-f]phenanthridine-containing tetradentate ligands [J]. J. Mater. Chem. C, 2017, 5(36): 9496-9503. doi: 10.1039/c7tc02622fhttp://dx.doi.org/10.1039/c7tc02622f
ZHU L, XIE W T, QIAN C Y, et al. Tetradentate Pt(Ⅱ) complexes for spectrum‐stable deep‐blue and white electroluminescence [J]. Adv. Opt. Mater., 2020, 8(19): 2000406. doi: 10.1002/adom.202000406http://dx.doi.org/10.1002/adom.202000406
YU F L, SHENG Y J, WU D D, et al. Blue-phosphorescent Pt(Ⅱ) complexes of tetradentate pyridyl-carbolinyl ligands: synthesis, structure, photophysics, and electroluminescence [J]. Inorg. Chem., 2020, 59(19): 14493-14500. doi: 10.1021/acs.inorgchem.0c02244http://dx.doi.org/10.1021/acs.inorgchem.0c02244
LI G J, ZHAO X D, FLEETHAM T, et al. Tetradentate platinum(Ⅱ) complexes for highly efficient phosphorescent emitters and sky blue OLEDs [J]. Chem. Mater., 2020, 32(1): 537-548. doi: 10.1021/acs.chemmater.9b04263http://dx.doi.org/10.1021/acs.chemmater.9b04263
LI G J, WOLFE A, BROOKS J, et al. Modifying emission spectral bandwidth of phosphorescent platinum(Ⅱ) complexes through synthetic control [J]. Inorg. Chem., 2017, 56(14): 8244-8256. doi: 10.1021/acs.inorgchem.7b00961http://dx.doi.org/10.1021/acs.inorgchem.7b00961
ETHERINGTON M K. Thermally activated delayed fluorescence: beyond the single molecule [J]. Front. Chem., 2020, 8: 716. doi: 10.3389/fchem.2020.00716http://dx.doi.org/10.3389/fchem.2020.00716
ZHANG Q S, LI B, HUANG S P, et al. Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence [J]. Nat. Photonics, 2014, 8(4): 326-332. doi: 10.1038/nphoton.2014.12http://dx.doi.org/10.1038/nphoton.2014.12
WU T L, HUANG M J, LIN C C, et al. Diboron compound-based organic light-emitting diodes with high efficiency and reduced efficiency roll-off [J]. Nat. Photonics, 2018, 12(4): 235-240. doi: 10.1038/s41566-018-0112-9http://dx.doi.org/10.1038/s41566-018-0112-9
LI T Y, MUTHIAH RAVINSON D S, HAIGES R, et al. Enhancement of the luminescent efficiency in carbene-au(I)-aryl complexes by the restriction of renner-teller distortion and bond rotation [J]. J. Am. Chem. Soc., 2020, 142(13): 6158-6172. doi: 10.1021/jacs.9b13755http://dx.doi.org/10.1021/jacs.9b13755
RAVINSON D S M, THOMPSON M E. Thermally assisted delayed fluorescence (TADF): fluorescence delayed is fluorescence denied [J]. Mater. Horiz., 2020, 7(5): 1210-1217. doi: 10.1039/d0mh00276chttp://dx.doi.org/10.1039/d0mh00276c
HAMZE R, PELTIER J L, SYLVINSON D, et al. Eliminating nonradiative decay in Cu(Ⅰ) emitters: > 99% quantum efficiency and microsecond lifetime [J]. Science, 2019, 363(6427): 601-606. doi: 10.1126/science.aav2865http://dx.doi.org/10.1126/science.aav2865
TO W P, ZHOU D L, TONG G S M, et al. Highly luminescent pincer Gold(Ⅲ) aryl emitters: thermally activated delayed fluorescence and solution-processed oleds [J]. Angew. Chem. Int. Ed. Engl, 2017, 56(45): 14036-14041. doi: 10.1002/anie.201707193http://dx.doi.org/10.1002/anie.201707193
ZHOU D L, TO W P, TONG G S M, et al. Tetradentate Gold(Ⅲ) complexes as thermally activated delayed fluorescence (TADF) emitters: microwave-assisted synthesis and high-performance OLEDs with long operational lifetime [J]. Angew. Chem. Int. Ed. Engl., 2020, 59(16): 6375-6382. doi: 10.1002/anie.201914661http://dx.doi.org/10.1002/anie.201914661
XIA G Q, QU C, ZHU Y L, et al. A TADF emitter featuring linearly arranged spiro-donor and spiro-acceptor groups: efficient nondoped and doped deep-blue OLEDs with CIEy <0.1 [J]. Angew. Chem. Int. Ed. Engl., 2021, 60(17): 9598-9603. doi: 10.1002/anie.202100423http://dx.doi.org/10.1002/anie.202100423
BARNES B. Reflected phonons reveal strong coupling [J]. Nat. Photonics, 2021, 15(3): 169-170. doi: 10.1038/s41566-021-00773-3http://dx.doi.org/10.1038/s41566-021-00773-3
LI Z, YANG D Z, HAN C M, et al. Optimizing charge transfer and out-coupling of a quasi-planar deep-red TADF emitter: towards rec.2020 gamut and external quantum efficiency beyond 30 [J]. Angew. Chem. Int. Ed. Engl., 2021, 60(27): 14846-14851. doi: 10.1002/anie.202103070http://dx.doi.org/10.1002/anie.202103070
ZHENG X J, HUANG R J, ZHONG C, et al. Achieving 21% external quantum efficiency for nondoped solution-processed sky-blue thermally activated delayed fluorescence OLEDs by means of multi-(donor/acceptor) emitter with through-space/-bond charge transfer [J]. Adv. Sci. (Weinh.), 2020, 7(7): 1902087-1-7. doi: 10.1002/advs.201902087http://dx.doi.org/10.1002/advs.201902087
SUN L J, HUA W J, LIU Y, et al. Thermally activated delayed fluorescence in an organic cocrystal: narrowing the singlet-triplet energy gap via charge transfer [J]. Angew. Chem. Int. Ed. Engl., 2019, 58(33): 11311-11316. doi: 10.1002/anie.201904427http://dx.doi.org/10.1002/anie.201904427
SUN J N, ZHANG J, LIANG Q Q, et al. Charge‐transfer exciton manipulation based on hydrogen bond for efficient white thermally activated delayed fluorescence [J]. Adv. Funct. Mater., 2020, 30(9): 1908568-1-13. doi: 10.1002/adfm.201908568http://dx.doi.org/10.1002/adfm.201908568
TSUJIMOTO H, HA D G, MARKOPOULOS G, et al. Thermally activated delayed fluorescence and aggregation induced emission with through-space charge transfer [J]. J. Am. Chem. Soc., 2017, 139(13): 4894-4900. doi: 10.1021/jacs.7b00873http://dx.doi.org/10.1021/jacs.7b00873
HUANG J, NIE H, ZENG J J, et al. Highly efficient nondoped OLEDs with negligible efficiency roll-off fabricated from aggregation-induced delayed fluorescence luminogens [J]. Angew. Chem. Int. Ed. Engl., 2017, 56(42): 12971-12976. doi: 10.1002/anie.201706752http://dx.doi.org/10.1002/anie.201706752
LI W J, PAN Y Y, YAO L, et al. A hybridized local and charge-transfer excited state for highly efficient fluorescent OLEDs: molecular design, spectral character, and full exciton utilization [J]. Adv. Opt. Mater., 2014, 2(9): 892-901. doi: 10.1002/adom.201400154http://dx.doi.org/10.1002/adom.201400154
WONG M Y, ZYSMAN-COLMAN E. Purely organic thermally activated delayed fluorescence materials for organic light-emitting diodes [J]. Adv. Mater., 2017, 29(22): 1605444-1-54. doi: 10.1002/adma.201605444http://dx.doi.org/10.1002/adma.201605444
SUTTON C, TUMMALA N R, BELJONNE D, et al. Singlet fission in rubrene derivatives: impact of molecular packing [J]. Chem. Mater., 2017, 29(7): 2777-2787. doi: 10.1021/acs.chemmater.6b04633http://dx.doi.org/10.1021/acs.chemmater.6b04633
KONDO Y, YOSHIURA K, KITERA S, et al. Narrowband deep-blue organic light-emitting diode featuring an organoboron-based emitter [J]. Nat. Photonics, 2019, 13(10): 678-682. doi: 10.1038/s41566-019-0476-5http://dx.doi.org/10.1038/s41566-019-0476-5
KIM D H, D’ALÉO A, CHEN X K, et al. High-efficiency electroluminescence and amplified spontaneous emission from a thermally activated delayed fluorescent near-infrared emitter [J]. Nat. Photonics, 2018, 12(2): 98-104. doi: 10.1038/s41566-017-0087-yhttp://dx.doi.org/10.1038/s41566-017-0087-y
XUE J, LIANG Q X, WANG R, et al. Highly efficient thermally activated delayed fluorescence via J-aggregates with strong intermolecular charge transfer [J]. Adv. Mater., 2019, 31(28): 1808242-1-9. doi: 10.1002/adma.201808242http://dx.doi.org/10.1002/adma.201808242
LI W J, PAN Y Y, XIAO R, et al. Employing ∼100% excitons in OLEDs by utilizing a fluorescent molecule with hybridized local and charge-transfer excited state [J]. Adv. Funct. Mater., 2014, 24(11): 1609-1614. doi: 10.1002/adfm.201301750http://dx.doi.org/10.1002/adfm.201301750
YU Z Y, WU Y S, XIAO L, et al. Organic phosphorescence nanowire lasers [J]. J. Am. Chem. Soc., 2017, 139(18): 6376-6381. doi: 10.1021/jacs.7b01574http://dx.doi.org/10.1021/jacs.7b01574
PENG Q, FAN D, DUAN R H, et al. Theoretical study of conversion and decay processes of excited triplet and singlet states in a thermally activated delayed fluorescence molecule [J]. J. Phys. Chem. C, 2017, 121(25): 13448-13456. doi: 10.1021/acs.jpcc.7b00692http://dx.doi.org/10.1021/acs.jpcc.7b00692
GENG Y, D'ALEO A, INADA K, et al. Donor-σ-acceptor motifs: thermally activated delayed fluorescence emitters with dual upconversion [J]. Angew. Chem. Int. Ed. Engl., 2017, 56(52): 16536-16540. doi: 10.1002/anie.201708876http://dx.doi.org/10.1002/anie.201708876
XIAO X X, LI S, GENG H, et al. Thermally activated delayed fluorescence from locally excited state: theoretical prediction and experimental validation [J]. ChemRxiv, 2020, doi: 10.26434/chemrxiv.12727649.v1http://dx.doi.org/10.26434/chemrxiv.12727649.v1.
SCHLEPER A L, GOUSHI K, BANNWARTH C, et al. Hot exciplexes in U-shaped TADF molecules with emission from locally excited states [J]. Nat. Commun., 2021, 12(1): 6179-1-9. doi: 10.1038/s41467-021-26439-whttp://dx.doi.org/10.1038/s41467-021-26439-w
0
Views
1045
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution