浏览全部资源
扫码关注微信
华南理工大学 材料科学与工程学院, 广东 广州 510640
Published:05 January 2023,
Received:31 August 2022,
Revised:19 September 2022,
移动端阅览
娄敬丽,黎刚刚,王志明等.紫外/深蓝OLED发光材料研究进展[J].发光学报,2023,44(01):37-60.
LOU Jingli,LI Ganggang,WANG Zhiming,et al.Progress of Ultraviolet/Deep-blue OLED Luminescent Materials[J].Chinese Journal of Luminescence,2023,44(01):37-60.
娄敬丽,黎刚刚,王志明等.紫外/深蓝OLED发光材料研究进展[J].发光学报,2023,44(01):37-60. DOI: 10.37188/CJL.20220318.
LOU Jingli,LI Ganggang,WANG Zhiming,et al.Progress of Ultraviolet/Deep-blue OLED Luminescent Materials[J].Chinese Journal of Luminescence,2023,44(01):37-60. DOI: 10.37188/CJL.20220318.
有机电致发光材料和器件(OLED)经过三十余年的发展已经基本完成了从基础科学研究到产业化商品的蜕变过程,而由于蓝紫发光材料的分子禁带(
>
3.0 eV)与器件运行中载流子注入/传输平衡之间的固有矛盾,加之人眼在蓝光区域的敏感度降低等问题,蓝光器件的整体性能远远落后于其他光色。因此,综合性能优异的紫外/深蓝光材料和相关分子设计理论已成为实现OLED独领“新一代显示照明技术”的关键突破点。本文主要介绍了近十年来紫外/深蓝OLED发光材料(
λ
EL
<
430 nm)的研究进展,并从材料结构与机制等方面进行了归纳,旨在推动更多宽禁带发光材料的设计和相关理论的完善和发展。
After more than 30 years of development, organic electroluminescent materials and organic light-emitting diodes (OLEDs) have almost completed the transformation process from basic scientific research to commercialization products. However, due to the inherent contradiction between the wide band-gap (exceed 3.0 eV) of ultraviolet and deep-blue luminescent materials and the carrier-injection ability and transport balance during device operation, with the decreasing sensitivity of human eyes in blue light area, the overall performance of ultraviolet and deep-blue light-emitting devices lag far behind other colors light-emitting devices. Therefore, the ultraviolet and deep-blue materials with excellent comprehensive performance and related molecular design theories have become the key breakthrough points for OLED to take the only place to lead the “New generation of display and lighting technology”. In this review, the ultraviolet and deep-blue luminescent materials (
λ
EL
below 430 nm) which were applied for organic light-emitting diodes in recent ten years are introduced briefly and summarized from the points of material structure and luminescence mechanism, hoping to promote the development of more and more excellent electroluminescent materials with wide band-gap and the improvement of the relevant theories.
OLED紫外光深蓝光分子设计理论
organic light-emitting diodesultravioletdeep-bulemolecular design theory
黄维, 密保秀, 高志强. 有机电子学 [M]. 北京: 科学出版社, 2011.
HUANG W, MI B X, GAO Z Q. Organic Electrionics [M]. Beijing: Science Press, 2011. (in Chinese)
WU Z B, MA D G. Recent advances in white organic light-emitting diodes [J]. Mater. Sci. Eng.: R: Rep., 2016, 107: 1-42. doi: 10.1016/j.mser.2016.06.001http://dx.doi.org/10.1016/j.mser.2016.06.001
YANG D Z, MA D G. Development of organic semiconductor photodetectors: from mechanism to applications [J]. Adv. Opt. Mater., 2019, 7(1): 1800522-1-23. doi: 10.1002/adom.201800522http://dx.doi.org/10.1002/adom.201800522
ZHAO F C, MA D G. Approaches to high performance white organic light-emitting diodes for general lighting [J]. Mater. Chem. Front., 2017, 1(10): 1933-1950. doi: 10.1039/c6qm00365fhttp://dx.doi.org/10.1039/c6qm00365f
CHEN M Y, LIAO Y J, LIN Y, et al. Progress on ultraviolet organic electroluminescence and lasing [J]. J. Mater. Chem. C, 2020, 8(42): 14665-14694. doi: 10.1039/d0tc03631ehttp://dx.doi.org/10.1039/d0tc03631e
SHIMIZU M, SAKURAI T. Organic fluorophores that emit ultraviolet light in the aggregated state [J]. Aggregate, 2022, 3(2): e144-1-11. doi: 10.1002/agt2.144http://dx.doi.org/10.1002/agt2.144
JEON S O, LEE K H, KIM J S, et al. High-efficiency, long-lifetime deep-blue organic light-emitting diodes [J]. Nat. Photonics, 2021, 15(3): 208-215. doi: 10.1038/s41566-021-00763-5http://dx.doi.org/10.1038/s41566-021-00763-5
NAKANOTANI H, HIGUCHI T, FURUKAWA T, et al. High-efficiency organic light-emitting diodes with fluorescent emitters [J]. Nat. Commun., 2014, 5: 4016-1-7. doi: 10.1038/ncomms5016http://dx.doi.org/10.1038/ncomms5016
CHEN L F, ZHANG S T, LI H, et al. Breaking the efficiency limit of fluorescent OLEDs by hybridized local and charge-transfer host materials [J]. J. Phys. Chem. Lett., 2018, 9(18): 5240-5245. doi: 10.1021/acs.jpclett.8b02138http://dx.doi.org/10.1021/acs.jpclett.8b02138
KIM K H, KIM J J. Origin and control of orientation of phosphorescent and TADF dyes for high-efficiency OLEDs [J]. Adv. Mater., 2018, 30(42): 1705600-1-19. doi: 10.1002/adma.201705600http://dx.doi.org/10.1002/adma.201705600
LUO K J, XIE Y, XU L L, et al. Cyclometalated platinum(Ⅱ) complexes with sterically bulky camphor-derived groups as β-diketonate ancillary ligand: a new route to efficiently reducing π⁃π interactions and Pt-Pt interactions [J]. Sci. China Chem., 2010, 53(1): 167-172. doi: 10.1007/s11426-010-0018-yhttp://dx.doi.org/10.1007/s11426-010-0018-y
LIN H X, LIN Z X, ZHENG K H, et al. Near‐infrared‐Ⅱ nanomaterials for fluorescence imaging and photodynamic therapy [J]. Adv. Opt. Mater., 2021, 9(9): 2002177-1-21. doi: 10.1002/adom.202002177http://dx.doi.org/10.1002/adom.202002177
MA Y G. Violating the Aufbau principle: an efficient way to improve the stability of luminescent radicals [J]. Sci. China Chem., 2019, 62(12): 1551-1552. doi: 10.1007/s11426-019-9607-0http://dx.doi.org/10.1007/s11426-019-9607-0
马东阁. OLEDs中的激子及其高效利用 [J]. 发光学报, 2023, doi: 10.37188/CJL.20220259http://dx.doi.org/10.37188/CJL.20220259.
MA D G. Excitons and their efficient utilization in OLEDs [J]. Chin. J. Lumin., 2023, doi: 10.37188/CJL.20220259.http://dx.doi.org/10.37188/CJL.20220259.(in Chinese)
YAO L, YANG B, MA Y G. Progress in next-generation organic electroluminescent materials: material design beyond exciton statistics [J]. Sci. China Chem., 2014, 57(3): 335-345. doi: 10.1007/s11426-013-5046-yhttp://dx.doi.org/10.1007/s11426-013-5046-y
XU Z, TANG B Z, WANG Y, et al. Recent advances in high performance blue organic light-emitting diodes based on fluorescence emitters [J]. J. Mater. Chem. C, 2020, 8(8): 2614-2642. doi: 10.1039/c9tc06441ahttp://dx.doi.org/10.1039/c9tc06441a
SAMAEIFAR F, AZIZ H. The root causes of the limited electroluminescence stability of solution-coated versus vacuum-deposited small-molecule OLEDs: a mini-review [J]. Front. Chem., 2022, 10: 857551-1-10. doi: 10.3389/fchem.2022.857551http://dx.doi.org/10.3389/fchem.2022.857551
SURESH S M, HALL D, BELJONNE D, et al. Multiresonant thermally activated delayed fluorescence emitters based on heteroatom‐doped nanographenes: recent advances and prospects for organic light‐emitting diodes [J]. Adv. Funct. Mater., 2020, 30(33): 1908677-1-25. doi: 10.1002/adfm.201908677http://dx.doi.org/10.1002/adfm.201908677
WANG Q, MA D G. Management of charges and excitons for high-performance white organic light-emitting diodes [J]. Chem. Soc. Rev., 2010, 39(7): 2387-2398. doi: 10.1039/b909057fhttp://dx.doi.org/10.1039/b909057f
ZHONG C. The driving forces for twisted or planar intramolecular charge transfer [J]. Phys. Chem. Chem. Phys., 2015, 17(14): 9248-9257. doi: 10.1039/c4cp02381ahttp://dx.doi.org/10.1039/c4cp02381a
唐振宇, 郭浩清, 肖静, 等. OLED电子传输材料研究进展 [J]. 发光学报, 2023, doi: 10.37188/CJL.20220253http://dx.doi.org/10.37188/CJL.20220253.
TANG Z Y, GUO H Q, XIAO J, et al. Recent advances on electronic transport materials in OLEDs [J]. Chin. J. Lumin., 2023, doi: 10.37188/CJL.20220253.http://dx.doi.org/10.37188/CJL.20220253.(in Chinese)
WANG D, CHENG C, TSUBOI T, et al. Degradation mechanisms in blue organic light-emitting diodes [J]. CCS Chem., 2020, 2(4): 1278-1296. doi: 10.31635/ccschem.020.202000271http://dx.doi.org/10.31635/ccschem.020.202000271
SUN J, AHN H, KANG S, et al. Exceptionally stable blue phosphorescent organic light-emitting diodes [J]. Nat. Photonics, 2022, 16(3): 212-218. doi: 10.1038/s41566-022-00958-4http://dx.doi.org/10.1038/s41566-022-00958-4
KAMATA T, SASABE H, WATANABE Y, et al. A series of fluorinated phenylpyridine-based electron-transporters for blue phosphorescent OLEDs [J]. J. Mater. Chem. C, 2016, 4(5): 1104-1110. doi: 10.1039/c5tc03879khttp://dx.doi.org/10.1039/c5tc03879k
JEON S K, LEE H L, YOOK K S, et al. Recent progress of the lifetime of organic light-emitting diodes based on thermally activated delayed fluorescent material [J]. Adv. Mater., 2019, 31(34): 1803524-1-20. doi: 10.1002/adma.201803524http://dx.doi.org/10.1002/adma.201803524
HOLMES R J, FORREST S R, SAJOTO T, et al. Saturated deep blue organic electrophosphorescence using a fluorine-free emitter [J]. Appl. Phys. Lett., 2005, 87(24): 243507-1-3. doi: 10.1063/1.2143128http://dx.doi.org/10.1063/1.2143128
BIRKS J B, APPLEYARD J H, POPE R. The photo-dtmers of anthracene, tetracene and pentacene [J]. Photochem. Photobiol., 1963, 2(4): 493-495. doi: 10.1111/j.1751-1097.1963.tb08906.xhttp://dx.doi.org/10.1111/j.1751-1097.1963.tb08906.x
WANG Z Q, ZHENG C J, LIU H, et al. Efficient and stable non-doped deep-blue organic light emitting diode based on an anthracene derivative [J]. Sci. China Chem., 2011, 54(4): 666-670. doi: 10.1007/s11426-011-4243-9http://dx.doi.org/10.1007/s11426-011-4243-9
KIM R, LEE S, KIM K H, et al. Extremely deep blue and highly efficient non-doped organic light emitting diodes using an asymmetric anthracene derivative with a xylene unit [J]. Chem. Commun., 2013, 49(41): 4664-4666. doi: 10.1039/c3cc41441hhttp://dx.doi.org/10.1039/c3cc41441h
LI L, JIAO B, YU Y, et al. Fluorinated anthracene derivatives as deep-blue emitters and host materials for highly efficient organic light-emitting devices [J]. RSC Adv., 2015, 5(73): 59027-59036. doi: 10.1039/c5ra02357bhttp://dx.doi.org/10.1039/c5ra02357b
WINNIK F M. Photophysics of preassociated pyrenes in aqueous polymer solutions and in other organized media [J]. Chem. Rev., 1993, 93(2): 587-614. doi: 10.1021/cr00018a001http://dx.doi.org/10.1021/cr00018a001
FIGUEIRA-DUARTE T M, MÜLLEN K. Pyrene-based materials for organic electronics [J]. Chem. Rev., 2011, 111(11): 7260-7314. doi: 10.1021/cr100428ahttp://dx.doi.org/10.1021/cr100428a
KAAFARANI B R, EL-BALLOULI A O, TRATTNIG R, et al. Bis(carbazolyl) derivatives of pyrene and tetrahydropyrene: synthesis, structures, optical properties, electrochemistry, and electroluminescence [J]. J. Mater. Chem. C, 2013, 1(8): 1638-1650. doi: 10.1039/c2tc00474ghttp://dx.doi.org/10.1039/c2tc00474g
WANG Z Q, LIU C L, ZHENG C J, et al. Efficient violet non-doped organic light-emitting device based on a pyrene derivative with novel molecular structure [J]. Org. Electron., 2015, 23: 179-185. doi: 10.1016/j.orgel.2015.04.024http://dx.doi.org/10.1016/j.orgel.2015.04.024
ZOU S N, CHEN X, YANG S Y, et al. Efficient violet organic light-emitting diodes with CIEy of 0.02 based on spiro skeleton [J]. Adv. Opt. Mater., 2020, 8(24): 2001074. doi: 10.1002/adom.202001074http://dx.doi.org/10.1002/adom.202001074
OKUMOTO K, SHIROTA Y. New class of hole-blocking amorphous molecular materials and their application in blue-violet-emitting fluorescent and green-emitting phosphorescent organic electroluminescent devices [J]. Chem. Mater., 2003, 15(3): 699-707. doi: 10.1021/cm020849+http://dx.doi.org/10.1021/cm020849+
TANG S, LIU M R, LU P, et al. Fluorene trimers with various 9,9'-substituents: the synthesis, characteristics, condensed state structures, and electroluminescence properties [J]. Org. Electron., 2008, 9(2): 241-252. doi: 10.1016/j.orgel.2007.10.010http://dx.doi.org/10.1016/j.orgel.2007.10.010
JOU J H, KUMAR S, FANG P H, et al. Highly efficient ultra-deep blue organic light-emitting diodes with a wet- and dry-process feasible cyanofluorene acetylene based emitter [J]. J. Mater. Chem. C, 2015, 3(10): 2182-2194. doi: 10.1039/c4tc02547dhttp://dx.doi.org/10.1039/c4tc02547d
CHAO T C, LIN Y T, YANG C Y, et al. Highly efficient UV organic light-emitting devices based on Bi(9,9-diarylfluorene)s [J]. Adv. Mater., 2005, 17(8): 992-996. doi: 10.1002/adma.200401476http://dx.doi.org/10.1002/adma.200401476
ETORI H, JIN X L, YASUDA T, et al. Spirobifluorene derivatives for ultraviolet organic light-emitting diodes [J]. Synth. Met., 2006, 156(16-17): 1090-1096. doi: 10.1016/j.synthmet.2006.07.003http://dx.doi.org/10.1016/j.synthmet.2006.07.003
COCHEREL N, PORIEL C, VIGNAU L, et al. Dispiroxanthene-indenofluorene: a new blue emitter for nondoped organic light emitting diode applications [J]. Org. Lett., 2010, 12(3): 452-455. doi: 10.1021/ol9025952http://dx.doi.org/10.1021/ol9025952
TANG S, LIU M R, LU P, et al. A molecular glass for deep-blue organic light-emitting diodes comprising a 9,9'-spirobifluorene core and peripheral carbazole groups [J]. Adv. Funct. Mater., 2007, 17(15): 2869-2877. doi: 10.1002/adfm.200700175http://dx.doi.org/10.1002/adfm.200700175
YU D H, ZHAO F C, ZHANG Z, et al. Insulated donor-π-acceptor systems based on fluorene-phosphine oxide hybrids for non-doped deep-blue electroluminescent devices [J]. Chem. Commun., 2012, 48(49): 6157-6159. doi: 10.1039/c2cc31066jhttp://dx.doi.org/10.1039/c2cc31066j
BAN X X, XU H G, YUAN G L, et al. Spirobifluorene/sulfone hybrid: highly efficient solution-processable material for UV-violet electrofluorescence, blue and green phosphorescent OLEDs [J]. Org. Electron., 2014, 15(7): 1678-1686. doi: 10.1016/j.orgel.2014.03.035http://dx.doi.org/10.1016/j.orgel.2014.03.035
LI Y C, WANG Z H, LI X L, et al. Highly efficient spiro[fluorene-9, 9'-thioxanthene] core derived blue emitters and fluorescent/phosphorescent hybrid white organic light-emitting diodes [J]. Chem. Mater., 2015, 27(3): 1100-1109. doi: 10.1021/cm504441vhttp://dx.doi.org/10.1021/cm504441v
LIU Q D, LU J, DING J, et al. Monodisperse starburst oligofluorene-functionalized 4,4',4''-tris(carbazol-9-yl)-triphenylamines: their synthesis and deep-blue fluorescent properties for organic light-emitting diode applications [J]. Adv. Funct. Mater., 2007, 17(6): 1028-1036. doi: 10.1002/adfm.200600104http://dx.doi.org/10.1002/adfm.200600104
LEI T, LUO J, WANG L, et al. Highly stable blue light-emitting materials with a three-dimensional architecture: improvement of charge injection and electroluminescence performance [J]. New J. Chem., 2010, 34(4): 699-707. doi: 10.1039/b9nj00723ghttp://dx.doi.org/10.1039/b9nj00723g
THERDKATANYUPHONG P, KAIYASUAN C, CHASING P, et al. Highly efficient all solution-processed non-doped deep-blue electroluminescent devices from oligocarbazole-end-capped spirobifluorenes [J]. Mater. Chem. Front., 2020, 4(10): 2943-2953. doi: 10.1039/d0qm00531bhttp://dx.doi.org/10.1039/d0qm00531b
XIANG H F, XU Z X, ROY V A L, et al. Star-configured carbazole as an efficient near-ultraviolet emitter and hole-transporting material for organic light-emitting devices [J]. Appl. Phys. Lett., 2008, 92(7): 073305-1-3. doi: 10.1063/1.2841063http://dx.doi.org/10.1063/1.2841063
LIAN J R, NIU F F, LIU Y W, et al. Efficient near ultraviolet organic light-emitting devices based on star-configured carbazole emitters [J]. Curr. Appl. Phys., 2011, 11(3): 295-297. doi: 10.1016/j.cap.2010.07.026http://dx.doi.org/10.1016/j.cap.2010.07.026
YANG X H, ZHENG S J, BOTTGER R, et al. Efficient fluorescent deep-blue and hybrid white emitting devices based on carbazole/benzimidazole compound [J]. J. Phys. Chem. C, 2011, 115(29): 14347-14352. doi: 10.1021/jp203115chttp://dx.doi.org/10.1021/jp203115c
FAN S G, YOU J, MIAO Y Q, et al. A bipolar emitting material for high efficient non-doped fluorescent organic light-emitting diode approaching standard deep blue [J]. Dyes Pigm., 2016, 129: 34-42. doi: 10.1016/j.dyepig.2016.02.006http://dx.doi.org/10.1016/j.dyepig.2016.02.006
JOSEPH V, THOMAS K R J, SINGH M, et al. Manipulation of donor-acceptor interactions in carbazole-based emitters by chromophore choice to achieve near-UV emission [J]. Eur. J. Org. Chem., 2017, 2017(45): 6660-6670. doi: 10.1002/ejoc.201701285http://dx.doi.org/10.1002/ejoc.201701285
JOU J H, LI J L, SAHOO S, et al. Enabling a 6.5% external quantum efficiency deep-blue organic light-emitting diode with a solution-processable carbazole-based emitter [J]. J. Phys. Chem. C, 2018, 122(42): 24295-24303. doi: 10.1021/acs.jpcc.8b07641http://dx.doi.org/10.1021/acs.jpcc.8b07641
WANG Z M, LU P, CHEN S M, et al. Phenanthro[9,10-d]imidazole as a new building block for blue light emitting materials [J]. J. Mater. Chem., 2011, 21(14): 5451-5456. doi: 10.1039/c1jm10321khttp://dx.doi.org/10.1039/c1jm10321k
LIU H C, BAI Q, YAO L, et al. Highly efficient near ultraviolet organic light-emitting diode based on a meta-linked donor-acceptor molecule [J]. Chem. Sci., 2015, 6(7): 3797-3804. doi: 10.1039/c5sc01131khttp://dx.doi.org/10.1039/c5sc01131k
GAO Z, LIU Y L, WANG Z M, et al. High-efficiency violet-light-emitting materials based on phenanthro[9,10-d]imidazole [J]. Chem. Eur. J., 2013, 19(8): 2602-2605. doi: 10.1002/chem.201203335http://dx.doi.org/10.1002/chem.201203335
GAO Z, CHENG G, SHEN F Z, et al. Highly efficient deep blue light emitting devices based on triphenylsilane modified phenanthro[9,10-d]imidazole [J]. Laser Photonics Rev., 2014, 8(1): L6-L10. doi: 10.1002/lpor.201300141http://dx.doi.org/10.1002/lpor.201300141
SHAN T, LIU Y L, TANG X Y, et al. Highly efficient deep blue organic light-emitting diodes based on imidazole: significantly enhanced performance by effective energy transfer with negligible efficiency roll-off [J]. ACS Appl. Mater. Interfaces, 2016, 8(42): 28771-28779. doi: 10.1021/acsami.6b10004http://dx.doi.org/10.1021/acsami.6b10004
ZHANG Y, LAI S L, TONG Q X, et al. High efficiency nondoped deep-blue organic light emitting devices based on imidazole-π-triphenylamine derivatives [J]. Chem. Mater., 2012, 24(1): 61-70. doi: 10.1021/cm201789uhttp://dx.doi.org/10.1021/cm201789u
YUAN Y, CHEN J X, LU F, et al. Bipolar phenanthroimidazole derivatives containing bulky polyaromatic hydrocarbons for nondoped blue electroluminescence devices with high efficiency and low efficiency roll-off [J]. Chem. Mater., 2013, 25(24): 4957-4965. doi: 10.1021/cm4030414http://dx.doi.org/10.1021/cm4030414
CHEN W C, YUAN Y, WU G F, et al. Staggered face-to-face molecular stacking as a strategy for designing deep-blue electroluminescent materials with high carrier mobility [J]. Adv. Opt. Mater., 2014, 2(7): 626-631. doi: 10.1002/adom.201400078http://dx.doi.org/10.1002/adom.201400078
CHEN W C, WU G F, YUAN Y, et al. A meta-molecular tailoring strategy towards an efficient violet-blue organic electroluminescent material [J]. RSC Adv., 2015, 5(23): 18067-18074. doi: 10.1039/c4ra16954ahttp://dx.doi.org/10.1039/c4ra16954a
LIU B, ZHAO J W, LUO C Y, et al. A novel bipolar phenanthroimidazole derivative host material for highly efficient green and orange-red phosphorescent OLEDs with low efficiency roll-off at high brightness [J]. J. Mater. Chem. C, 2016, 4(10): 2003-2010. doi: 10.1039/c5tc04393jhttp://dx.doi.org/10.1039/c5tc04393j
HE D, YUAN Y, LIU B, et al. High performance near ultraviolet emitter based on phenanthroimidazole via substitutions at C6- and C9-positions [J]. Dyes Pigm., 2017, 136: 347-353. doi: 10.1016/j.dyepig.2016.08.066http://dx.doi.org/10.1016/j.dyepig.2016.08.066
PARK Y, KIM S, LEE J H, et al. New blue-violet emitters based on an indenopyrazine core for OLEDs: effects of the position of m-terphenyl side group substitution on optical and electroluminescence properties [J]. Org. Electron., 2010, 11(5): 864-871. doi: 10.1016/j.orgel.2010.01.030http://dx.doi.org/10.1016/j.orgel.2010.01.030
LI Z F, WU Z X, FU W, et al. Versatile fluorinated derivatives of triphenylamine as hole-transporters and blue-violet emitters in organic light-emitting devices [J]. J. Phys. Chem. C, 2012, 116(38): 20504-20512. doi: 10.1021/jp3028929http://dx.doi.org/10.1021/jp3028929
YE J, CHEN Z, FUNG M K, et al. Carbazole/sulfone hybrid D-π-A-structured bipolar fluorophores for high-efficiency blue-violet electroluminescence [J]. Chem. Mater., 2013, 25(13): 2630-2637. doi: 10.1021/cm400945hhttp://dx.doi.org/10.1021/cm400945h
TANG X Y, YAO L, LIU H, et al. Novel violet emitting material synthesized by stepwise chemical reactions [J]. J. Mater. Chem. C, 2014, 2(25): 5019-5027. doi: 10.1039/c4tc00456fhttp://dx.doi.org/10.1039/c4tc00456f
GUO K P, ZHANG J H, XU T, et al. High-efficiency near ultraviolet and blue organic light-emitting diodes using star-shaped material as emissive and hosting molecules [J]. J. Disp. Technol., 2014, 10(8): 642-646. doi: 10.1109/jdt.2014.2312318http://dx.doi.org/10.1109/jdt.2014.2312318
CHUNG Y H, SHENG L, XING X, et al. A pure blue emitter (CIEy≈0.08) of chrysene derivative with high thermal stability for OLED [J]. J. Mater. Chem. C, 2015, 3(8): 1794-1798. doi: 10.1039/c4tc02669ahttp://dx.doi.org/10.1039/c4tc02669a
ABDURAHMAN A, OBOLDA A, PENG Q M, et al. Efficient deep blue fluorescent OLEDs with ultra-low efficiency roll-off based on 4H-1,2,4-triazole cored D-A and D-A-D type emitters [J]. Dyes Pigm., 2018, 153: 10-17. doi: 10.1016/j.dyepig.2018.02.002http://dx.doi.org/10.1016/j.dyepig.2018.02.002
SHI J J, DING Q, XU L, et al. A simple D-π-A hybrid mode for highly efficient non-doped true blue OLEDs with CIEy<0.05 and EQE up to 6% [J]. J. Mater. Chem. C, 2018, 6(41): 11063-11070. doi: 10.1039/c8tc03777ahttp://dx.doi.org/10.1039/c8tc03777a
HU J Y, PU Y J, SATOH F, et al. Bisanthracene-based donor-acceptor-type light-emitting dopants: highly efficient deep-blue emission in organic light-emitting devices [J]. Adv. Funct. Mater., 2014, 24(14): 2064-2071. doi: 10.1002/adfm.201302907http://dx.doi.org/10.1002/adfm.201302907
LIU W, YING S A, GUO R D, et al. Nondoped blue fluorescent organic light-emitting diodes based on benzonitrile-anthracene derivative with 10.06% external quantum efficiency and low efficiency roll-off [J]. J. Mater. Chem. C, 2019, 7(4): 1014-1021. doi: 10.1039/c8tc05707ahttp://dx.doi.org/10.1039/c8tc05707a
GUO R D, LIU W, YING S A, et al. Exceptionally efficient deep blue anthracene-based luminogens: design, synthesis, photophysical, and electroluminescent mechanisms [J]. Sci. Bull., 2021, 66(20): 2090-2098. doi: 10.1016/j.scib.2021.06.018http://dx.doi.org/10.1016/j.scib.2021.06.018
XIAO S, QIAO X F, LIN C W, et al. Revealing the evolution processes of excitons on high energy level in anthracene-based OLEDs [J]. Adv. Funct. Mater., 2022, 32(43): 2207123-1-9. doi: 10.1002/adfm.202207123http://dx.doi.org/10.1002/adfm.202207123
ZHANG Q S, LI J, SHIZU K, et al. Design of efficient thermally activated delayed fluorescence materials for pure blue organic light emitting diodes [J]. J. Am. Chem. Soc., 2012, 134(36): 14706-14709. doi: 10.1021/ja306538whttp://dx.doi.org/10.1021/ja306538w
LUO Y J, LI S B, ZHAO Y H, et al. An ultraviolet thermally activated delayed fluorescence OLED with total external quantum efficiency over 9% [J]. Adv. Mater., 2020, 32(32): 2001248-1-5. doi: 10.1002/adma.202001248http://dx.doi.org/10.1002/adma.202001248
LIU H, GUO J J, ZHAO Z J, et al. Aggregation-induced delayed fluorescence [J]. ChemPhotoChem, 2019, 3(10): 993-999. doi: 10.1002/cptc.201900118http://dx.doi.org/10.1002/cptc.201900118
KIM H J, KANG H, JEONG J E, et al. Ultra-deep-blue aggregation-induced delayed fluorescence emitters: achieving nearly 16% EQE in solution-processed nondoped and doped OLEDs with CIEy<0.1 [J]. Adv. Funct. Mater., 2021, 31(33): 2102588. doi: 10.1002/adfm.202102588http://dx.doi.org/10.1002/adfm.202102588
LI W J, PAN Y Y, YAO L, et al. A hybridized local and charge-transfer excited state for highly efficient fluorescent OLEDs: molecular design, spectral character, and full exciton utilization [J]. Adv. Opt. Mater., 2014, 2(9): 892-901. doi: 10.1002/adom.201400154http://dx.doi.org/10.1002/adom.201400154
OUYANG X H, LI X L, ZHANG X Y, et al. Effective management of intramolecular charge transfer to obtain from blue to violet-blue OLEDs based on a couple of phenanthrene isomers [J]. Dyes Pigm., 2015, 122: 264-271. doi: 10.1016/j.dyepig.2015.06.036http://dx.doi.org/10.1016/j.dyepig.2015.06.036
CHEN W C, YUAN Y, NI S F, et al. Achieving efficient violet-blue electroluminescence with CIEy <0.06 and EQE>6% from naphthyl-linked phenanthroimidazole-carbazole hybrid fluorophores [J]. Chem. Sci., 2017, 8(5): 3599-3608. doi: 10.1039/c6sc05619ahttp://dx.doi.org/10.1039/c6sc05619a
LI Z Q, XIE N, XU Y C, et al. Fluorine-substituted phenanthro[9, 10-d]imidazole derivatives with optimized charge-transfer characteristics for efficient deep-blue emitters [J]. Org. Mater., 2020, 2(1): 11-19.
HUANG Z, WANG B, ZHANG Q, et al. Highly twisted bipolar emitter for efficient nondoped deep-blue electroluminescence [J]. Dyes Pigm., 2017, 140: 328-336. doi: 10.1016/j.dyepig.2017.01.028http://dx.doi.org/10.1016/j.dyepig.2017.01.028
ZHENG Y, ZHU X Y, NI Z G, et al. Bipolar molecules with hybridized local and charge-transfer state for highly efficient deep-blue organic light-emitting diodes with EQE of 7.4% and CIEy~0.05 [J]. Adv. Opt. Mater., 2021, 9(21): 2100965-1-11. doi: 10.1002/adom.202100965http://dx.doi.org/10.1002/adom.202100965
ZHENG Y, WANG Z J, WANG X H, et al. Bipolar arylsilane: synthesis, photoelectronic properties, and high-performance deep blue organic light-emitting diodes [J]. ACS Appl. Electron. Mater., 2021, 3(1): 422-429. doi: 10.1021/acsaelm.0c00960http://dx.doi.org/10.1021/acsaelm.0c00960
PENG L, LV J C, HUO Y M, et al. High performance deep-blue organic light emitting diodes via excited state regulation of phenanthroimidazole-triazole derivatives [J]. Dyes Pigm., 2022, 206: 110676. doi: 10.1016/j.dyepig.2022.110676http://dx.doi.org/10.1016/j.dyepig.2022.110676
ZHANG S T, DAI Y X, LUO S Y, et al. Rehybridization of nitrogen atom induced photoluminescence enhancement under pressure stimulation [J]. Adv. Funct. Mater., 2017, 27(1): 1602276-1-9. doi: 10.1002/adfm.201602276http://dx.doi.org/10.1002/adfm.201602276
XUE S F, QIU X, YING S A, et al. Highly efficient nondoped near-ultraviolet electroluminescence with an external quantum efficiency greater than 6.5% based on a carbazole-triazole hybrid molecule with high and balanced charge mobility [J]. Adv. Opt. Mater., 2017, 5(21): 1700747. doi: 10.1002/adom.201700747http://dx.doi.org/10.1002/adom.201700747
CHEN J K, LIU H, GUO J J, et al. Robust luminescent molecules with high-level reverse intersystem crossing for efficient near ultraviolet organic light-emitting diodes [J]. Angew. Chem. Int. Ed. Engl., 2022, 61(10): e202116810. doi: 10.1002/anie.202116810http://dx.doi.org/10.1002/anie.202116810
ZHANG H, ZENG J J, LUO W W, et al. Synergistic tuning of the optical and electrical performance of AIEgens with a hybridized local and charge-transfer excited state [J]. J. Mater. Chem. C, 2019, 7(21): 6359-6368. doi: 10.1039/c9tc01453ehttp://dx.doi.org/10.1039/c9tc01453e
ZHANG H, ZHANG B, ZHANG Y W, et al. A multifunctional blue-emitting material designed via tuning distribution of hybridized excited-state for high‐performance blue and host-sensitized OLEDs [J]. Adv. Funct. Mater., 2020, 30(35): 2002323-1-10. doi: 10.1002/adfm.202002323http://dx.doi.org/10.1002/adfm.202002323
ZHANG H, LI A S, LI G G, et al. Achievement of high-performance nondoped blue OLEDs based on AIEgens via construction of effective high‐lying charge‐transfer state [J]. Adv. Opt. Mater., 2020, 8(14): 1902195-1-8. doi: 10.1002/adom.201902195http://dx.doi.org/10.1002/adom.201902195
ZHANG H, LI G G, GUO X M, et al. High-performance ultraviolet organic light-emitting diode enabled by high-lying reverse intersystem crossing [J]. Angew. Chem. Int. Ed. Engl., 2021, 60(41): 22241-22247. doi: 10.1002/anie.202108540http://dx.doi.org/10.1002/anie.202108540
LI G G, LI B X, ZHANG H, et al. Efficient ultraviolet organic light-emitting diodes with a CIEy of 0.04 and negligible-efficiency roll-off [J]. ACS Appl. Mater. Interfaces, 2022, 14(8): 10627-10636. doi: 10.1021/acsami.1c24285http://dx.doi.org/10.1021/acsami.1c24285
GUO X C, LI G G, LOU J L, et al. New-fashioned universal and functional host-material from a near-ultraviolet organic emitter for high-efficiency organic light-emitting diodes with low efficiency roll-offs [J]. Small, 2022, 18(41): 2204029. doi: 10.1002/smll.202204029http://dx.doi.org/10.1002/smll.202204029
ZHONG Z T, ZHU X Y, WANG X H, et al. High steric-hindrance windmill-type molecules for efficient ultraviolet to pure-blue organic light-emitting diodes via hybridized local and charge-transfer excited-state [J]. Adv. Funct. Mater., 2022, 32(26): 2112969. doi: 10.1002/adfm.202112969http://dx.doi.org/10.1002/adfm.202112969
TANG B Z, ZHAN X W, YU G, et al. Efficient blue emission from siloles [J]. J. Mater. Chem., 2001, 11(12): 2974-2978. doi: 10.1039/b102221khttp://dx.doi.org/10.1039/b102221k
YE C Q, ZHOU L W, FAN C B, et al. Aggregation-induced ultraviolet emission enhancement and the electroluminescence based on new phenanthrene derivatives [J]. ChemistrySelect, 2019, 4(7): 2044-2052. doi: 10.1002/slct.201803048http://dx.doi.org/10.1002/slct.201803048
HAN P B, LIN C W, MA D G, et al. Violet-blue emitters featuring aggregation-enhanced emission characteristics for nondoped OLEDs with CIEy smaller than 0.046 [J]. ACS Appl. Mater. Interfaces, 2020, 12(41): 46366-46372. doi: 10.1021/acsami.0c12722http://dx.doi.org/10.1021/acsami.0c12722
ZHAO J, FENG Z, ZHONG D K, et al. Cyclometalated platinum complexes with aggregation-induced phosphorescence emission behavior and highly efficient electroluminescent ability [J]. Chem. Mater., 2018, 30(3): 929-946. doi: 10.1021/acs.chemmater.7b04708http://dx.doi.org/10.1021/acs.chemmater.7b04708
ODA S, SUGITANI T, TANAKA H, et al. Development of pure green thermally activated delayed fluorescence material by cyano substitution [J]. Adv. Mater., 2022, 34(32): 2201778. doi: 10.1002/adma.202201778http://dx.doi.org/10.1002/adma.202201778
ZHANG Y W, WEI J B, ZHANG D D, et al. Sterically wrapped multiple resonance fluorophors for suppression of concentration quenching and spectrum broadening [J]. Angew. Chem. Int. Ed. Engl., 2022, 61(2): e202113206-1-6. doi: 10.1002/ange.202113206http://dx.doi.org/10.1002/ange.202113206
ZHANG Y W, ZHANG D D, WEI J B, et al. Achieving pure green electroluminescence with CIEy of 0.69 and EQE of 28.2% from an aza-fused multi-resonance emitter [J]. Angew. Chem. Int. Ed. Engl., 2020, 59(40): 17499-17503. doi: 10.1002/anie.202008264http://dx.doi.org/10.1002/anie.202008264
LEE H L, CHUNG W J, LEE J Y. Narrowband and pure violet organic emitter with a full width at half maximum of 14 nm and y color coordinate of below 0.02 [J]. Small, 2020, 16(14): 1907569-1-5. doi: 10.1002/smll.201907569http://dx.doi.org/10.1002/smll.201907569
0
Views
1727
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution