浏览全部资源
扫码关注微信
广东聚华印刷显示技术有限公司, 广东 广州 510700
Published:05 January 2023,
Received:26 August 2022,
Revised:12 September 2022,
移动端阅览
王士攀,姜毅斌,张凯旋等.喷墨印刷有机电致发光显示材料与器件进展[J].发光学报,2023,44(01):101-114.
WANG Shipan,JIANG Yibin,ZHANG Kaixuan,et al.Progress in Inkjet Printing Organic Electroluminescent Display Materials and Devices[J].Chinese Journal of Luminescence,2023,44(01):101-114.
王士攀,姜毅斌,张凯旋等.喷墨印刷有机电致发光显示材料与器件进展[J].发光学报,2023,44(01):101-114. DOI: 10.37188/CJL.20220309.
WANG Shipan,JIANG Yibin,ZHANG Kaixuan,et al.Progress in Inkjet Printing Organic Electroluminescent Display Materials and Devices[J].Chinese Journal of Luminescence,2023,44(01):101-114. DOI: 10.37188/CJL.20220309.
随着有机电致发光显示(OLED)技术的不断发展,OLED在智能手机、智能手表和电视等市场应用不断扩大。尤其是在小尺寸智能手机市场,OLED已成为主流的显示技术,并有望逐步替代LCD技术。但在中大尺寸显示产品如平板电脑、笔记本、显示器、电视等应用领域,受限于目前真空蒸镀工艺的高成本及可靠性问题,发展较为缓慢,但市场对其需求依然很高。相比于真空蒸镀技术,通过喷墨印刷技术制备显示器件,可极大地提高材料利用率,降低设备成本,且由于其是一种增材制造方式,可减少资源消耗和环境污染,更有利于实现大面积、轻、薄、柔的显示屏制造。本文介绍了用于喷墨印刷OLED的各功能层材料研究进展,并对印刷OLED器件结构、制备工艺及器件性能进行了讨论,最后对印刷OLED的发展前景进行了展望。
With the continuous development of organic light emitting diodes (OLED), the application of OLED in markets such as smartphones, smart watches, and TVs continues to expand. Especially in the small-size smartphone market, OLED has become the mainstream display technology and is expected to gradually replace LCD technology. However, in the application fields of medium and large size display products such as tablets, notebooks, monitors, TVs,
etc
., limited by the high cost and reliability of the current vacuum evaporation process, the development is relatively slow, but the market demand for them is still very high. Compared with vacuum evaporation technology, the preparation of display devices by inkjet printing technology can greatly improve the utilization rate of materials and reduce equipment costs. And because it is additive manufacturing, it can reduce resource consumption and environmental pollution, which is more conducive to the realization of large-size, light, thin and flexible display manufacturing. This paper introduces the research progress of various functional layer materials for inkjet printing OLEDs, and discusses the device structure, preparation process and device performance of current printed OLEDs. Finally, the development trends of printed OLEDs are prospected.
有机电致发光增材制造喷墨印刷技术印刷OLED材料及器件
organic electroluminescenceadditive manufacturinginkjet printing technologyprinted OLED materials and devices
陈金鑫, 黄孝文. OLED有机电致发光材料与器件 [M]. 北京: 清华大学出版社, 2007.
CHEN J X, HUANG X W. OLED Organic Electroluminescent Materials & Devices[ M]. Beijing: Tsinghua University Press, 2007. (in Chinese)
黄春辉, 李富友, 黄维. 有机电致发光材料与器件导论 [M]. 上海: 复旦大学出版社, 2005.
HUANG C H, LI F Y, HUANG W. Introduction to Organic Light⁃emitting Materials and Devices [M]. Shanghai: Fudan University Press, 2005. (in Chinese)
SINGH M, HAVERINEN H M, DHAGAT P, et al. Inkjet printing-process and its applications [J]. Adv. Mater., 2010, 22(6): 673-685. doi: 10.1002/adma.200901141http://dx.doi.org/10.1002/adma.200901141
TEICHLER A, PERELAER J, SCHUBERT U S. Inkjet printing of organic electronics⁃comparison of deposition techniques and state-of-the-art developments [J]. J. Mater. Chem. C, 2013, 1(10): 1910-1925. doi: 10.1039/c2tc00255hhttp://dx.doi.org/10.1039/c2tc00255h
刘会敏, 郑华, 许伟, 等. 喷墨打印有机电致发光显示屏的制作工艺及研究进展 [J]. 中国材料进展, 2014, 33(3): 163-171. doi: 10.7502/j.issn.1674-3962.2014.03.06http://dx.doi.org/10.7502/j.issn.1674-3962.2014.03.06
LIU H M, ZHENG H, XU W, et al. Technology and development of ink-jet printing electroluminescence displays [J]. Mater. China, 2014, 33(3): 163-171. (in Chinese). doi: 10.7502/j.issn.1674-3962.2014.03.06http://dx.doi.org/10.7502/j.issn.1674-3962.2014.03.06
LI C. Inkjet printing for AMOLED technology & market report [R]. IHS Markit, 2019.
闫晓林, 马群刚, 彭俊彪. 柔性显示技术 [M]. 北京: 电子工业出版社, 2022.
YAN X L, MA Q G, PENG J B. Flexible Display Technology [M]. Beijing: Publishing House of Electronics Industry, 2022. (in Chinese)
LEE T W, CHUNG Y, KWON O, et al. Self-organized gradient hole injection to improve the performance of polymer electroluminescent devices [J]. Adv. Funct. Mater., 2007, 17(3): 390-396. doi: 10.1002/adfm.200600278http://dx.doi.org/10.1002/adfm.200600278
ZHENG X P, LIU J, LIU T, et al. Photoactivated p-doping of organic interlayer enables efficient perovskite/silicon tandem solar cells [J]. ACS Energy Lett., 2022, 7(6): 1987-1993. doi: 10.1021/acsenergylett.2c00780http://dx.doi.org/10.1021/acsenergylett.2c00780
HÖFLE S, DO H, MANKEL E, et al. Molybdenum oxide anode buffer layers for solution processed, blue phosphorescent small molecule organic light emitting diodes [J]. Org. Electron., 2013, 14(7): 1820-1824. doi: 10.1016/j.orgel.2013.04.017http://dx.doi.org/10.1016/j.orgel.2013.04.017
HÖFLE S, BRUNS M, STRÄSSLE S, et al. Tungsten oxide buffer layers fabricated in an inert Sol-Gel process at room-temperature for blue organic light-emitting diodes [J]. Adv. Mater., 2013, 25(30): 4113-4116. doi: 10.1002/adma.201301627http://dx.doi.org/10.1002/adma.201301627
KIM J, KANWAT A, KIM H M, et al. Solution processed polymer light emitting diode with vanadium-oxide doped PEDOT∶PSS [J]. Phys. Status Solidi A, 2015, 212(3): 640-645. doi: 10.1002/pssa.201431419http://dx.doi.org/10.1002/pssa.201431419
YANG X, MÜLLER D C, NEHER D, et al. Highly efficient polymeric electrophosphorescent diodes [J]. Adv. Mater., 2006, 18(7): 948-954. doi: 10.1002/adma.200501867http://dx.doi.org/10.1002/adma.200501867
NIU Y H, LIU M S, KA J W, et al. Crosslinkable hole-transport layer on conducting polymer for high-efficiency white polymer light-emitting diodes [J]. Adv. Mater., 2007, 19(2): 300-304. doi: 10.1002/adma.200502769http://dx.doi.org/10.1002/adma.200502769
CHENG Y J, LIU M S, ZHANG Y, et al. Thermally cross-linkable hole-transporting materials on conducting polymer: synthesis, characterization, and applications for polymer light-emitting devices [J]. Chem. Mater., 2008, 20(2): 413-422. doi: 10.1021/cm071828ohttp://dx.doi.org/10.1021/cm071828o
RAPHAEL C J. Crosslinkable compositions comprising addition polymerizable groups: WO2013098113A2 [P]. 2013-07-04.
SCHEIBLE K M, ECKES F, HEIL H, et al. Materials for organic electroluminescent devices: WO2018065357 [P]. 2018-04-12.
CHISAKA J, TANAKA M, CHISAKA J, et al. Material for organic electroluminescence element and use of the same: JP, JP2013155294 [P]. 2013-08-15.
ARCHER R. Organic light-emitting device incorporating a triplet-triplet annihilation promoter and method of forming the same: US, 9548467 [P]. 2017-01-17.
BALDO M A, O'BRIEN D F, YOU Y, et al. Highly efficient phosphorescent emission from organic electroluminescent devices [J]. Nature, 1998, 395(6698): 151-154. doi: 10.1038/25954http://dx.doi.org/10.1038/25954
UOYAMA H, GOUSHI K, SHIZU K, et al. Highly efficient organic light-emitting diodes from delayed fluorescence [J]. Nature, 2012, 492(7428): 234-238. doi: 10.1038/nature11687http://dx.doi.org/10.1038/nature11687
WONG M Y, ZYSMAN-COLMAN E. Purely organic thermally activated delayed fluorescence materials for organic light-emitting diodes [J]. Adv. Mater., 2017, 29(22): 1605444-1-54. doi: 10.1002/adma.201605444http://dx.doi.org/10.1002/adma.201605444
LECLOUX D D, FENNIMORE A, GAO W Y, et al. Deuterated compounds for electronic applications: US, 8890131 [P]. 2014-11-18.
ECKES F, GERHARD A, HAYER A, et al. Deuterated compounds for electronic applications: US, 9644070 [P]. 2017-05-09.
LIU S J, ZHONG C M, DONG S, et al. Novel aminoalkyl-functionalized blue-, green- and red-emitting polyfluorenes [J]. Org. Electron., 2014, 15(4): 850-857. doi: 10.1016/j.orgel.2014.01.016http://dx.doi.org/10.1016/j.orgel.2014.01.016
TOKITO S, SUZUKI M, SATO F, et al. Improvement of emission efficiency in polymer light-emitting devices based on phosphorescent polymers [J]. Thin Solid Films, 2003, 445(2): 353-357. doi: 10.1016/s0040-6090(03)01184-2http://dx.doi.org/10.1016/s0040-6090(03)01184-2
LING Q D, KANG E T, NEOH K G, et al. Synthesis and nearly monochromatic photoluminescence properties of conjugated copolymers containing fluorene and rare earth complexes [J]. Macromolecules, 2003, 36(19): 6995-7003. doi: 10.1021/ma034362dhttp://dx.doi.org/10.1021/ma034362d
MARTINEZ-FERRERO E, GRIGORIAN S, RYAN J W, et al. Influence of the molecular weight and size dispersion of the electroluminescent polymer on the performance of air-stable hybrid light-emitting diodes [J]. ACS Appl. Mater. Interfaces, 2015, 7(2): 1078-1086. doi: 10.1021/am505197bhttp://dx.doi.org/10.1021/am505197b
HELFRICH W, SCHNEIDER W G. Transients of volume-controlled current and of recombination radiation in anthracene [J]. J. Chem. Phys., 1966, 44(8): 2902-2909. doi: 10.1063/1.1727152http://dx.doi.org/10.1063/1.1727152
NISHIMURA K, SAITO H. Organic electroluminescent element and electronic device: US, 10135000 [P]. 2018-11-20.
TAO Y T, YANG C L, QIN J G. Organic host materials for phosphorescent organic light-emitting diodes [J]. Chem. Soc. Rev., 2011, 40(5): 2943-2970. doi: 10.1039/c0cs00160khttp://dx.doi.org/10.1039/c0cs00160k
YOOK K S, LEE J Y. Small molecule host materials for solution processed phosphorescent organic light-emitting diodes [J]. Adv. Mater., 2014, 26(25): 4218-4233. doi: 10.1002/adma.201306266http://dx.doi.org/10.1002/adma.201306266
JATSCH A, PFLUMM C, PARHAM A H, et al. Materials for organic electroluminescent devices: US, 10227528 [P]. 2019-03-12.
KLÄRNER G, DAVEY M H, CHEN W D, et al. Colorfast blue-light-emitting random copolymers derived from di-n-hexylfluorene and anthracene [J]. Adv. Mater., 1998, 10(13): 993-997. doi: 10.1002/(sici)1521-4095(199809)10:13<993::aid-adma993>3.0.co;2-2http://dx.doi.org/10.1002/(sici)1521-4095(199809)10:13<993::aid-adma993>3.0.co;2-2
LEE C L, KANG N G, CHO Y S, et al. Polymer electrophosphorescent device: comparison of phosphorescent dye doped and coordinated systems [J]. Opt. Mater., 2002, 21(1-3): 119-123. doi: 10.1016/s0925-3467(02)00123-4http://dx.doi.org/10.1016/s0925-3467(02)00123-4
CHEN X W, LIAO J L, LIANG Y M, et al. High-efficiency red-light emission from polyfluorenes grafted with cyclometalated iridium complexes and charge transport moiety [J]. J. Am. Chem. Soc., 2003, 125(3): 636-637. doi: 10.1021/ja0211151http://dx.doi.org/10.1021/ja0211151
YANG J H, KWAK J H, LEE C H, et al. A study on plasma-assisted patterning and doubly deposited cathode for improvement of AMOLED common electrode IR drop [C]. IMID/IDMC/ASIA DISPLAY 2008;International Display Manufacturing Conference 2008;International Meeting on Information Display;Asia Display 2008, Ilsan, Korea, 2008: 481-484.
WANG S P, WU Y C, JIAO S B, et al. 80-3: all organic layers inkjet printed OLEDs with a printable electronic transport layer [J]. SID Symp. Dig. Tech. Pap., 2019, 50(1): 1157-1159. doi: 10.1002/sdtp.13135http://dx.doi.org/10.1002/sdtp.13135
KIM S, KANG T, KIM H, et al. 33-1: all-inkjet-printed AMOLED display with improved efficiency and lifetime [J]. SID Symp. Dig. Tech. Pap., 2022, 53(1): 391-394. doi: 10.1002/sdtp.15503http://dx.doi.org/10.1002/sdtp.15503
HUANG F, WU H B, CAO Y. Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices [J]. Chem. Soc. Rev., 2010, 39(7): 2500-2521. doi: 10.1039/b907991mhttp://dx.doi.org/10.1039/b907991m
JIANG W, XU H, BAN X X, et al. Alcohol-soluble electron-transport small molecule for fully solution-processed multilayer white electrophosphorescent devices [J]. Org. Lett., 2014, 16(4): 1140-1143. doi: 10.1021/ol4037727http://dx.doi.org/10.1021/ol4037727
JIA M P, XU X J, PENG J H, et al. Solution-processed double-layer electron-transport layer for conventional blue phosphorescent organic light-emitting diodes [J]. Adv. Opt. Mater., 2016, 4(10): 1635-1641. doi: 10.1002/adom.201600244http://dx.doi.org/10.1002/adom.201600244
HOATH S D, HARLEN O G, HUTCHINGS I M. Jetting behavior of polymer solutions in drop-on-demand inkjet printing [J]. J. Rheol., 2012, 56(5): 1109-1127. doi: 10.1122/1.4724331http://dx.doi.org/10.1122/1.4724331
DE GANS B J, XUE L J, AGARWAL U S, et al. Ink-jet printing of linear and star polymers [J]. Macromol. Rapid Commun., 2005, 26(4): 310-314. doi: 10.1002/marc.200400503http://dx.doi.org/10.1002/marc.200400503
FUKAI J, ISHIZUKA H, SAKAI Y, et al. Effects of droplet size and solute concentration on drying process of polymer solution droplets deposited on homogeneous surfaces [J]. Int. J. Heat Mass Transfer, 2006, 49(19-20): 3561-3567. doi: 10.1016/j.ijheatmasstransfer.2006.02.049http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.02.049
HOATH S D. Fundamentals of Inkjet Printing: The Science of Inkjet and Droplets [M]. Weinheim: John Wiley & Sons, 2016. doi: 10.1002/9783527684724http://dx.doi.org/10.1002/9783527684724
BERNATZ G, BÉALLE G, HAMBURGER M, et al. 80-2: invited paper: ink jet printed film formation and its impact on OLED device performance [J]. SID Symp. Dig. Tech. Pap., 2019, 50(1): 1154-1156. doi: 10.1002/sdtp.13134http://dx.doi.org/10.1002/sdtp.13134
DEEGAN R D, BAKAJIN O, DUPONT T F, et al. Capillary flow as the cause of ring stains from dried liquid drops [J]. Nature, 1997, 389(6653): 827-829. doi: 10.1038/39827http://dx.doi.org/10.1038/39827
DEEGAN R D, BAKAJIN O, DUPONT T F, et al. Contact line deposits in an evaporating drop [J]. Phys. Rev. E, 2000, 62(1): 756-765. doi: 10.1103/physreve.62.756http://dx.doi.org/10.1103/physreve.62.756
SHEN X Y, HO C M, WONG T S. Minimal size of coffee ring structure [J]. J. Phys. Chem. B, 2010, 114(16): 5269-5274. doi: 10.1021/jp912190vhttp://dx.doi.org/10.1021/jp912190v
HU H, LARSON R G. Marangoni effect reverses coffee-ring depositions [J]. J. Phys. Chem. B, 2006, 110(14): 7090-7094. doi: 10.1021/jp0609232http://dx.doi.org/10.1021/jp0609232
SUN J Z, BAO B, HE M, et al. Recent advances in controlling the depositing morphologies of inkjet droplets [J]. ACS Appl. Mater. Interfaces, 2015, 7(51): 28086-28099. doi: 10.1021/acsami.5b07006http://dx.doi.org/10.1021/acsami.5b07006
CHEN P Y, CHEN C C, HSIEH C C, et al. P-56: high resolution organic light-emitting diode panel fabricated by ink jet printing process [J]. SID Symp. Dig. Techn. Pap., 2015, 46(1): 1352-1354. doi: 10.1002/sdtp.10123http://dx.doi.org/10.1002/sdtp.10123
BABATUNDE P O, NANRI N, ONITSUKA K, et al. Factors dominating polymer film morphology formed from droplets using mixed solvents [J]. J. Chem. Eng. Japan, 2012, 45(8): 622-629. doi: 10.1252/jcej.12we085http://dx.doi.org/10.1252/jcej.12we085
WANG J H, DONG T, ZHONG Z M, et al. Uniform inkjet-printed films with single solvent [J]. Thin Solid Films, 2018, 667: 21-27. doi: 10.1016/j.tsf.2018.09.054http://dx.doi.org/10.1016/j.tsf.2018.09.054
AHN D A, LEE S, CHUNG J, et al. Impact of interface mixing on the performance of solution processed organic light emitting diodes-impedance and ultraviolet photoelectron spectroscopy study [J]. ACS Appl. Mater. Interfaces, 2017, 9(27): 22748-22756. doi: 10.1021/acsami.7b03557http://dx.doi.org/10.1021/acsami.7b03557
ZHONG C M, DUAN C H, HUANG F, et al. Materials and devices toward fully solution processable organic light-emitting diodes [J]. Chem. Mater., 2011, 23(3): 326-340. doi: 10.1021/cm101937phttp://dx.doi.org/10.1021/cm101937p
AIZAWA N, PU Y J, WATANABE M, et al. Solution-processed multilayer small-molecule light-emitting devices with high-efficiency white-light emission [J]. Nat. Commun., 2014, 5(1): 5756-1-7. doi: 10.1038/ncomms6756http://dx.doi.org/10.1038/ncomms6756
DERUE L, OLIVIER S, TONDELIER D, et al. All-solution-processed organic light-emitting diodes based on photostable photo-cross-linkable fluorescent small molecules [J]. ACS Appl. Mater. Interfaces, 2016, 8(25): 16207-16217. doi: 10.1021/acsami.6b05197http://dx.doi.org/10.1021/acsami.6b05197
ZUNIGA C A, ABDALLAH J, HASKE W, et al. Crosslinking using rapid thermal processing for the fabrication of efficient solution-processed phosphorescent organic light-emitting diodes [J]. Adv. Mater., 2013, 25(12): 1739-1744. doi: 10.1002/adma.201204518http://dx.doi.org/10.1002/adma.201204518
PARK S R, KANG J H, AHN D A, et al. A cross-linkable hole transport material having improved mobility through a semi-interpenetrating polymer network approach for solution-processed green PHOLEDs [J]. Mater. Chem. C, 2018, 6(29): 7750-7758. doi: 10.1039/c8tc01435chttp://dx.doi.org/10.1039/c8tc01435c
OHISA S, MATSUBA G, YAMADA N L, et al. Precise evaluation of angstrom-ordered mixed interfaces in solution-processed OLEDs by neutron reflectometry [J]. Adv. Mater. Interfaces, 2014, 1(9): 1400097. doi: 10.1002/admi.201400097http://dx.doi.org/10.1002/admi.201400097
LEE S, KANG J H, AHN D A, et al. Sputter depth-profile study of accelerated interface mixing by thermal annealing in solution-processed organic light-emitting diodes [J]. Adv. Mater. Interfaces, 2019, 6(4): 1801627-1-9.
PAN L J, ZHANG M, NAKAYAMA Y. Effect of residual solvent on carrier transport in polysilane [J]. J. Chem. Phys., 1999, 110(21): 10509-10513. doi: 10.1063/1.478981http://dx.doi.org/10.1063/1.478981
AN K, KIM J B, YOON D G, et al. High speed nozzle jet printing for bendable organic light emitting diodes [J]. Print. Electron., 2019, 4(1): 015009-1-7. doi: 10.1088/2058-8585/ab0b9ehttp://dx.doi.org/10.1088/2058-8585/ab0b9e
AN K, YOON D G, KANG K T. Effects of residual solvent in printed phosph orescent emissive thin films as, the origin of limited efficiency in organic light emitting diodes [J]. Prog. Org. Coat., 2020, 147: 105781-1-7. doi: 10.1016/j.porgcoat.2020.105781http://dx.doi.org/10.1016/j.porgcoat.2020.105781
LEE T, SANZOGNI A V, BURN P L, et al. Evolution and morphology of thin films formed by solvent evaporation: an organic semiconductor case study [J]. ACS Appl. Mater. Interfaces, 2020, 12(36): 40548-40557. doi: 10.1021/acsami.0c08454http://dx.doi.org/10.1021/acsami.0c08454
IIDA K, OKABE K, NAGAYAMA K, et al. Latest technology of ink jet printed OLEDs with small molecule based emission layers [C/OL]. Proceedings of the International Display Workshops Volume 28, 2021: 354-357. doi: 10.36463/idw.2021.0354http://dx.doi.org/10.36463/idw.2021.0354
FUKUSHIMA D, TANAKA S, KAKIMOTO H, et al. 27-1: Invited paper: latest development of soluble OLED material for printed display [J]. SID Symp. Dig. Techn. Pap., 2020, 51(1): 387-390. doi: 10.1002/sdtp.13885http://dx.doi.org/10.1002/sdtp.13885
STOLZ S, MEYER S, HAYER A, et al. 22-1: Invited paper: latest evolution of small molecule based emissive layers for ink jet printed OLED displays [J]. SID Symp. Dig. Techn. Pap., 2021, 52(1): 264-266. doi: 10.1002/sdtp.14664http://dx.doi.org/10.1002/sdtp.14664
ZOL科技快讯. 顶级笔记本屏幕TCL华星17英寸IGZO IJP OLED折叠屏亮相 [EB/OL]. (2022-07-18)[2022-08-08]. https://nb.zol.com.cn/796/7969748.htmlhttps://nb.zol.com.cn/796/7969748.html.
Technology NewsZOL. Top notebook screen TCL Huaxing 17-inch IGZO IJP OLED folding screen unveiled [EB/OL]. (2022-07-18)[2022-08-08]. https://nb.zol.com.cn/796/7969748.html.https://nb.zol.com.cn/796/7969748.html.(in Chinese)
TCL华星. TCL华星Oxide TFT技术, 为大尺寸AMOLED而生 [EB/OL]. (2022-07-14)[2022-08-08]. https://mp.weixin.qq.com/s/PTcw753VVlxFJKcQug7QQwhttps://mp.weixin.qq.com/s/PTcw753VVlxFJKcQug7QQw. doi: 10.1158/1538-7445.sabcs21-p3-07-08http://dx.doi.org/10.1158/1538-7445.sabcs21-p3-07-08
HuaxingTCL. TCL Huaxing Oxide TFT technology, born for large size AMOLED [EB/OL]. (2022-07-14)[2022-08-08]. https://mp.weixin.qq.com/s/PTcw753VVlxFJKcQug7QQw.https://mp.weixin.qq.com/s/PTcw753VVlxFJKcQug7QQw.(in Chinese). doi: 10.1158/1538-7445.sabcs21-p3-07-08http://dx.doi.org/10.1158/1538-7445.sabcs21-p3-07-08
快科技. TCL、聚华攻克OLED核心技术: 首发31寸喷墨打印可卷绕柔性面板 [EB/OL]. (2020-01-10)[2022-08-08]. https://baijiahao.baidu.com/s?id=1655269379784224828&wfr=spider&for=pchttps://baijiahao.baidu.com/s?id=1655269379784224828&wfr=spider&for=pc. doi: 10.1002/sdtp.14474http://dx.doi.org/10.1002/sdtp.14474
Fast Technology. TCL and Juhua conquer the core technology of OLED: the first 31-inch inkjet printing rollable flexible panel [EB/OL]. (2020-01-10)[2022-08-08]. https://baijiahao.baidu.com/s?id=1655269379784224828&wfr=spider&for=pc.https://baijiahao.baidu.com/s?id=1655269379784224828&wfr=spider&for=pc.(in Chinese). doi: 10.1002/sdtp.14474http://dx.doi.org/10.1002/sdtp.14474
快科技. 打破韩国垄断!京东方推中国首款55寸打印4K OLED屏幕 [EB/OL]. (2018-11-28)[2022-08-08]. https://baijiahao.baidu.com/s?id=1618368793831375372&wfr=spider&for=pchttps://baijiahao.baidu.com/s?id=1618368793831375372&wfr=spider&for=pc. doi: 10.31695/ijerat.2022.8.8.2http://dx.doi.org/10.31695/ijerat.2022.8.8.2
Fast Technology. Break the Korean monopoly! pushes China's firstBOE 55printed-inch 4K OLED screen [EB/OL]. (2018-11-28)[2022-08-08]. https://baijiahao.baidu.com/s?id=1618368793831375372&wfr=spider&for=pc.https://baijiahao.baidu.com/s?id=1618368793831375372&wfr=spider&for=pc.(in Chinese). doi: 10.31695/ijerat.2022.8.8.2http://dx.doi.org/10.31695/ijerat.2022.8.8.2
搜狐商讯报道. SID2022看点: TCL华星展出全球最大尺寸喷墨打印OLED屏幕, 引领OLED竞争加速度 [EB/OL]. (2020-05-16)[2022-08-08]. https://www.sohu.com/a/547637071_121198369https://www.sohu.com/a/547637071_121198369. doi: 10.4236/ojbm.2020.85119http://dx.doi.org/10.4236/ojbm.2020.85119
Sohu Business News reports. SID2022 highlights: TCL Huaxing exhibited the world's largest inkjet printed OLED screen, leading the acceleration of OLED competition [EB/OL]. (2020-05-16)[2022-08-08]. https://www.sohu.com/a/547637071_121198369.https://www.sohu.com/a/547637071_121198369.(in Chinese). doi: 10.4236/ojbm.2020.85119http://dx.doi.org/10.4236/ojbm.2020.85119
0
Views
503
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution