浏览全部资源
扫码关注微信
深圳大学 材料科学与工程学院, 深圳市新型信息显示与存储材料重点实验室, 广东 深圳 518055
Published:05 January 2023,
Received:26 August 2022,
Revised:19 September 2022,
移动端阅览
张靖羚,李凯,杨楚罗.过渡金属配合物TADF发光材料研究进展[J].发光学报,2023,44(01):12-25.
ZHANG Jingling,LI Kai,YANG Chuluo.Advances in Thermally Activated Delayed Fluorescence of Transition Metal Complexes[J].Chinese Journal of Luminescence,2023,44(01):12-25.
张靖羚,李凯,杨楚罗.过渡金属配合物TADF发光材料研究进展[J].发光学报,2023,44(01):12-25. DOI: 10.37188/CJL.20220308.
ZHANG Jingling,LI Kai,YANG Chuluo.Advances in Thermally Activated Delayed Fluorescence of Transition Metal Complexes[J].Chinese Journal of Luminescence,2023,44(01):12-25. DOI: 10.37188/CJL.20220308.
高效率利用三重态激子发光是制备高性能有机发光二极管(OLED)的关键。除磷光过渡金属配合物外,具有热活化延迟荧光(TADF)特性的过渡金属配合物能够将三重态激子上转换为单重态激子,进而通过单重态激子辐射发光,为开发金属配合物发光材料提供了新的途径。然而,过去十年来OLED发光材料的研究主要聚焦在纯有机TADF体系上,过渡金属配合物TADF材料的研究投入相对偏少。但是,已有研究表明金属配合物能够利用金属的重原子效应促进反向系间窜越(RISC)过程,提升TADF发光效率并缩短TADF寿命,有利于制备高效率、低滚降的OLED。本文根据金属中心不同的d电子构型分类筛选了TADF金属配合物研究领域中代表性的材料体系,对其激发态属性、光物理和器件性能进行了概括和讨论。通过对不同类型的TADF金属配合物发光性能的归纳和比较,揭示了金属中心和配体结构对配合物发光性质的影响规律,对进一步开发高性能的金属配合物TADF材料,尤其是基于廉价金属元素的TADF配合物具有重要的指导意义。
Efficient harvesting of triplet excitons is crucial to the development of high-performance organic light-emitting diodes(OLEDs). Other than phosphorescence, the thermally activated delayed fluorescence(TADF) mechanism enables the upconversion of triplet excitons to singlet ones
via
reverse intersystem crossing(RISC), followed by fluorescent radiation from the spin-allowed singlet excited states, providing another pathway to transition metal complexes for utilizing triplet excitons. However, the past decade has witnessed a blooming research interest in the purely organic TADF materials while the TADF metal complexes has only received much less attentions. Whereas, it has been shown that the presence of metal atom can boost the RISC rate through its heavy atom effect, leading to improved TADF emissions with high efficiencies and short lifetimes. Therefore, TADF metal complexes hold advantageous for the fabrication of high-performance OLEDs in terms of high-efficiency and small efficiency roll-off. This article summarizes the advances in TADF metal complexes by focusing on the excited state nature related to different electronic configurations, the photophysical and electroluminescence performance of representative TADF metal complexes. The structure-property relationship has been discussed which is conceived to provide useful guidelines for further design of TADF metal complexes, particularly those based on inexpensive metal elements.
热活化延迟荧光金属配合物有机发光二极管发光材料廉价金属
thermally activated delayed fluorescence of metal complexesorganic light-emitting diodesluminescent materialsnon-precious metal
TANG C W, VANSLYKE S A. Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51(12): 913-915. doi: 10.1063/1.98799http://dx.doi.org/10.1063/1.98799
马东阁. OLEDs中的激子及其高效利用 [J]. 发光学报, 2023, doi: 10.37188/CJL.20220259http://dx.doi.org/10.37188/CJL.20220259.
MA D G. Excitons and their efficient utilization in OLEDs [J]. Chin. J. Lumin., 2023, doi: 10.37188/CJL.20220259.http://dx.doi.org/10.37188/CJL.20220259.(in Chinese)
BALDO M A, O'BRIEN D F, YOU Y, et al. Highly efficient phosphorescent emission from organic electroluminescent devices [J]. Nature, 1998, 395(6698): 151-154. doi: 10.1038/25954http://dx.doi.org/10.1038/25954
MA Y G, ZHANG H Y, SHEN J C, et al. Electroluminescence from triplet metal-ligand charge-transfer excited state of transition metal complexes [J]. Synth. Met., 1998, 94(3): 245-248. doi: 10.1016/s0379-6779(97)04166-0http://dx.doi.org/10.1016/s0379-6779(97)04166-0
UOYAMA H, GOUSHI K, SHIZU K, et al. Highly efficient organic light-emitting diodes from delayed fluorescence [J]. Nature, 2012, 492(7428): 234-238. doi: 10.1038/nature11687http://dx.doi.org/10.1038/nature11687
JEON S K, LEE H L, YOOK K S, et al. Recent progress of the lifetime of organic light-emitting diodes based on thermally activated delayed fluorescent material [J]. Adv. Mater., 2019, 31(34): 1803524-1-20. doi: 10.1002/adma.201803524http://dx.doi.org/10.1002/adma.201803524
KIRCHHOFF J R, GAMACHE JR R E, BLASKIE M W, et al. Temperature dependence of luminescence from Cu⁃(NN)2+ systems in fluid solution. Evidence for the participation of two excited states [J]. Inorg. Chem., 1983, 22(17): 2380-2384. doi: 10.1021/ic00159a008http://dx.doi.org/10.1021/ic00159a008
BLASSE G, MCMILLIN D R. On the luminescence of bis (triphenylphosphine) phenanthroline copper (Ⅰ) [J]. Chem. Phys. Lett., 1980, 70(1): 1-3. doi: 10.1016/0009-2614(80)80047-9http://dx.doi.org/10.1016/0009-2614(80)80047-9
DEATON J C, SWITALSKI S C, KONDAKOV D Y, et al. E-type delayed fluorescence of a phosphine-supported Cu2⁃ (µ-NAr2)2 diamond core: harvesting singlet and triplet excitons in OLEDs [J]. J. Am. Chem. Soc., 2010, 132(27): 9499-9508. doi: 10.1021/ja1004575http://dx.doi.org/10.1021/ja1004575
CZERWIENIEC R, YU J B, YERSIN H. Blue-light emission of Cu(Ⅰ) complexes and singlet harvesting [J]. Inorg. Chem., 2011, 50(17): 8293-8301. doi: 10.1021/ic200811ahttp://dx.doi.org/10.1021/ic200811a
CZERWIENIEC R, LEITL M J, HOMEIER H H H, et al. Cu(Ⅰ) complexes—Thermally activated delayed fluorescence. Photophysical approach and material design [J]. Coord. Chem. Rev., 2016, 325: 2-28. doi: 10.1016/j.ccr.2016.06.016http://dx.doi.org/10.1016/j.ccr.2016.06.016
YERSIN H, CZERWIENIEC R, SHAFIKOV M Z, et al. TADF material design: photophysical background and case studies focusing on CuI and AgI complexes [J]. ChemPhysChem, 2017, 18(24): 3508-3535. doi: 10.1002/cphc.201700872http://dx.doi.org/10.1002/cphc.201700872
WANG J L, CHEN H Y, XU S X, et al. Highly effective luminescence stemmed from thermally activated delayed fluorescence (TADF) and phosphorescence for the new four-coordinate copper(Ⅰ) complexes containing N-heterocyclic carbene (NHC) ligands [J]. J. Photochem. Photobiol. A: Chem., 2020, 387: 112104-1-7. doi: 10.1016/j.jphotochem.2019.112104http://dx.doi.org/10.1016/j.jphotochem.2019.112104
CHEN J, TENG T, KANG L J, et al. Highly efficient thermally activated delayed fluorescence in dinuclear Ag(Ⅰ) complexes with a bis-bidentate tetraphosphane bridging ligand [J]. Inorg. Chem., 2016, 55(19): 9528-9536. doi: 10.1021/acs.inorgchem.6b00068http://dx.doi.org/10.1021/acs.inorgchem.6b00068
LI G J, ZHU Z Q, CHEN Q D, et al. Metal complex based delayed fluorescence materials [J]. Organ. Electron., 2019, 69: 135-152. doi: 10.1016/j.orgel.2019.02.022http://dx.doi.org/10.1016/j.orgel.2019.02.022
HAN Z, DONG X Y, ZANG S Q. Crystalline metal-organic materials with thermally activated delayed fluorescence [J]. Adv. Opt. Mater., 2021, 9(23): 2100081-1-46. doi: 10.1002/adom.202100081http://dx.doi.org/10.1002/adom.202100081
LI K, CHEN Y, WANG J, et al. Diverse emission properties of transition metal complexes beyond exclusive single phosphorescence and their wide applications [J]. Coord. Chem. Rev., 2021, 433: 213755-1-15. doi: 10.1016/j.ccr.2020.213755http://dx.doi.org/10.1016/j.ccr.2020.213755
MAHORO G U, FERNANDEZ-CESTAU J, RENAUD J L, et al. Recent advances in solid-state lighting devices using transition metal complexes exhibiting thermally activated delayed fluorescent emission mechanism [J]. Adv. Opt. Mater., 2020, 8(16): 2000260-1-36. doi: 10.1002/adom.202000260http://dx.doi.org/10.1002/adom.202000260
TO W P, CHENG G, TONG G S M, et al. Recent advances in metal-TADF emitters and their application in organic light-emitting diodes [J]. Front. Chem., 2020, 8: 653-1-7. doi: 10.3389/fchem.2020.00653http://dx.doi.org/10.3389/fchem.2020.00653
CHENG G, SO G K M, TO W P, et al. Luminescent zinc(Ⅱ) and copper(Ⅰ) complexes for high-performance solution-processed monochromic and white organic light-emitting devices [J]. Chem. Sci., 2015, 6(8): 4623-4635. doi: 10.1039/c4sc03161jhttp://dx.doi.org/10.1039/c4sc03161j
SHAFIKOV M Z, SULEYMANOVA A F, CZERWIENIEC R, et al. Design strategy for Ag(Ⅰ)-based thermally activated delayed fluorescence reaching an efficiency breakthrough [J]. Chem. Mater., 2017, 29(4): 1708-1715. doi: 10.1021/acs.chemmater.6b05175http://dx.doi.org/10.1021/acs.chemmater.6b05175
DI D W, ROMANOV A S, YANG L, et al. High-performance light-emitting diodes based on carbene-metal-amides [J]. Science, 2017, 356(6334): 159-163. doi: 10.1126/science.aah4345http://dx.doi.org/10.1126/science.aah4345
HAMZE R, PELTIER J L, SYLVINSON D, et al. Eliminating nonradiative decay in Cu(Ⅰ) emitters: >99% quantum efficiency and microsecond lifetime [J]. Science, 2019, 363(6427): 601-606. doi: 10.1126/science.aav2865http://dx.doi.org/10.1126/science.aav2865
SHI S Y, JUNG M C, COBURN C, et al. Highly efficient photo- and electroluminescence from two-coordinate Cu(Ⅰ) complexes featuring nonconventional N-heterocyclic carbenes [J]. J. Am. Chem. Soc., 2019, 141(8): 3576-3588. doi: 10.1021/jacs.8b12397http://dx.doi.org/10.1021/jacs.8b12397
HAMZE R, SHI S Y, KAPPER S C, et al. “Quick-silver” from a systematic study of highly luminescent, two-coordinate, d10 coinage metal complexes [J]. J. Am. Chem. Soc., 2019, 141(21): 8616-8626.
ROMANOV A S, JONES S T E, GU Q Y, et al. Carbene metal amide photoemitters: tailoring conformationally flexible amides for full color range emissions including white-emitting OLED [J]. Chem. Sci., 2020, 11(2): 435-446. doi: 10.1039/c9sc04589ahttp://dx.doi.org/10.1039/c9sc04589a
YING A, HUANG Y H, LU C H, et al. High-efficiency red electroluminescence based on a carbene-Cu(Ⅰ)-acridine complex [J]. ACS Appl. Mater. Interfaces, 2021, 13(11): 13478-13486. doi: 10.1021/acsami.0c22109http://dx.doi.org/10.1021/acsami.0c22109
YANG J G, SONG X F, WANG J, et al. Highly efficient thermally activated delayed fluorescence from pyrazine-fused carbene Au(Ⅰ) emitters [J]. Chem. Eur. J., 2021, 27(71): 17834-17842. doi: 10.1002/chem.202102969http://dx.doi.org/10.1002/chem.202102969
YANG J G, SONG X F, CHENG G, et al. Conformational engineering of two-coordinate Gold(Ⅰ) complexes: regulation of excited-state dynamics for efficient delayed fluorescence [J]. ACS Appl. Mater. Interfaces, 2022, 14(11): 13539-13549. doi: 10.1021/acsami.2c01776http://dx.doi.org/10.1021/acsami.2c01776
TANG R, XU S, LAM T L, et al. Highly robust CuI-TADF emitters for vacuum-deposited OLEDs with luminance up to 222 200 cd·m-2 and device lifetimes (LT90) up to 1 300 hours at an initial luminance of 1 000 cd·m -2 [J]. Angew. Chem. Int. Ed., 2022, 61(33): e202203982. doi: 10.1002/anie.202203982http://dx.doi.org/10.1002/anie.202203982
FENG X Y, YANG J G, MIAO J S, et al. Au⋅⋅⋅H-C interactions support a robust thermally activated delayed fluorescence (TADF) Gold(Ⅰ) complex for OLEDs with little efficiency roll-off and good stability [J]. Angew. Chem. Int. Ed., 2022, 61(40): e202209451. doi: 10.1002/anie.202209451http://dx.doi.org/10.1002/anie.202209451
LIANG D, CHEN X L, LIAO J Z, et al. Highly efficient cuprous complexes with thermally activated delayed fluorescence for solution-processed organic light-emitting devices [J]. Inorg. Chem., 2016, 55(15): 7467-7475. doi: 10.1021/acs.inorgchem.6b00763http://dx.doi.org/10.1021/acs.inorgchem.6b00763
JIA J H, LIANG D, YU R M, et al. Coordination-induced thermally activated delayed fluorescence: from non-TADF donor-acceptor-type ligand to TADF-active Ag-based complexes [J]. Chem. Mater., 2020, 32(1): 620-629. doi: 10.1021/acs.chemmater.9b04585http://dx.doi.org/10.1021/acs.chemmater.9b04585
TENG T, LI K, CHENG G, et al. Lighting silver(Ⅰ) complexes for solution-processed organic light-emitting diodes and biological applications via thermally activated delayed fluorescence [J]. Inorg. Chem., 2020, 59(17): 12122-12131. doi: 10.1021/acs.inorgchem.0c01054http://dx.doi.org/10.1021/acs.inorgchem.0c01054
ZHU Z Q, FLEETHAM T, TURNER E, et al. Harvesting all electrogenerated excitons through metal assisted delayed fluorescent materials [J]. Adv. Mater., 2015, 27(15): 2533-2537. doi: 10.1002/adma.201401772http://dx.doi.org/10.1002/adma.201401772
ZACH P W, FREUNBERGER S A, KLIMANT I, et al. Electron-deficient near-infrared Pt(Ⅱ) and Pd(Ⅱ) benzoporphyrins with dual phosphorescence and unusually efficient thermally activated delayed fluorescence: first demonstration of simultaneous oxygen and temperature sensing with a single emitter [J]. ACS Appl. Mater. Interfaces, 2017, 9(43): 38008-38023. doi: 10.1021/acsami.7b10669http://dx.doi.org/10.1021/acsami.7b10669
PANDER P, DANIELS R, ZAYTSEV A V, et al. Exceptionally fast radiative decay of a dinuclear platinum complex through thermally activated delayed fluorescence [J]. Chem. Sci., 2021, 12(17): 6172-6180. doi: 10.1039/d1sc00160dhttp://dx.doi.org/10.1039/d1sc00160d
TO W P, ZHOU D L, TONG G S M, et al. Highly luminescent pincer Gold(Ⅲ) aryl emitters: thermally activated delayed fluorescence and solution-processed OLEDs [J]. Angew. Chem. Int. Ed., 2017, 56(45): 14036-14041. doi: 10.1002/anie.201707193http://dx.doi.org/10.1002/anie.201707193
ZHOU D L, TO W P, KWAK Y, et al. Thermally stable donor-acceptor type (alkynyl)gold(Ⅲ) TADF emitters achieved EQEs and luminance of up to 23.4% and 70 300 cd·m-2 in vacuum-deposited OLEDs [J]. Adv. Sci., 2019, 6(18): 1802297-1-10. doi: 10.1002/advs.201802297http://dx.doi.org/10.1002/advs.201802297
ZHOU D L, TO W P, TONG G S M, et al. Tetradentate gold(Ⅲ) complexes as thermally activated delayed fluorescence (TADF) emitters: microwave-assisted synthesis and high-performance OLEDs with long operational lifetime [J]. Angew. Chem. Int. Ed., 2020, 59(16): 6375-6382. doi: 10.1002/anie.201914661http://dx.doi.org/10.1002/anie.201914661
WONG C Y, TANG M C, LI L K, et al. Carbazolylgold(ⅲ) complexes with thermally activated delayed fluorescence switched on by ligand manipulation as high efficiency organic light-emitting devices with small efficiency roll-offs [J]. Chem. Sci., 2022, 13(34): 10129-10140. doi: 10.1039/d2sc03037chttp://dx.doi.org/10.1039/d2sc03037c
CHAN K T, LAM T L, YU D H, et al. Strongly luminescent tungsten emitters with emission quantum yields of up to 84%: TADF and high-efficiency molecular tungsten OLEDs [J]. Angew. Chem. Int. Ed., 2019, 58(42): 14896-14900. doi: 10.1002/anie.201906698http://dx.doi.org/10.1002/anie.201906698
ZHANG Y, LEE T S, FAVALE J M, et al. Delayed fluorescence from a zirconium(Ⅳ) photosensitizer with ligand-to-metal charge-transfer excited states [J]. Nat. Chem., 2020, 12(4): 345-352. doi: 10.1038/s41557-020-0430-7http://dx.doi.org/10.1038/s41557-020-0430-7
ZHANG Y, SCHULZ M, WÄCHTLER M, et al. Heteroleptic diimine⁃diphosphine Cu(Ⅰ) complexes as an alternative towards noble-metal based photosensitizers: design strategies, photophysical properties and perspective applications [J]. Coord. Chem. Rev., 2018, 356: 127-146. doi: 10.1016/j.ccr.2017.10.016http://dx.doi.org/10.1016/j.ccr.2017.10.016
ROMANOV A S, JONES S T E, YANG L, et al. Mononuclear silver complexes for efficient solution and vacuum-processed OLEDs [J]. Adv. Opt. Mater., 2018, 6(24): 1801347-1-5. doi: 10.1002/adom.201801347http://dx.doi.org/10.1002/adom.201801347
LI T Y, RAVINSON D S M, HAIGES R, et al. Enhancement of the luminescent efficiency in carbene-Au(Ⅰ)-aryl complexes by the restriction of renner-teller distortion and bond rotation [J]. J. Am. Chem. Soc., 2020, 142(13): 6158-6172. doi: 10.1021/jacs.9b13755http://dx.doi.org/10.1021/jacs.9b13755
KIM H J, YASUDA T. Narrowband emissive thermally activated delayed fluorescence materials [J]. Adv. Opt. Mater., 2022, 10(22): 2201714. doi: 10.1002/adom.202201714http://dx.doi.org/10.1002/adom.202201714
SATTLER W, ENER M E, BLAKEMORE J D, et al. Generation of powerful tungsten reductants by visible light excitation [J]. J. Am. Chem. Soc., 2013, 135(29): 10614-10617. doi: 10.1021/ja4047119http://dx.doi.org/10.1021/ja4047119
SATTLER W, HENLING L M, WINKLER J R, et al. Bespoke photoreductants: tungsten arylisocyanides [J]. J. Am. Chem. Soc., 2015, 137(3): 1198-1205. doi: 10.1021/ja510973hhttp://dx.doi.org/10.1021/ja510973h
ZHANG Y, PETERSEN J L, MILSMANN C. A luminescent zirconium(Ⅳ) complex as a molecular photosensitizer for visible light photoredox catalysis [J]. J. Am. Chem. Soc., 2016, 138(40): 13115-13118. doi: 10.1021/jacs.6b05934http://dx.doi.org/10.1021/jacs.6b05934
ZHANG Y, LEE T S, PETERSEN J L, et al. A zirconium photosensitizer with a long-lived excited state: mechanistic insight into photoinduced single-electron transfer [J]. J. Am. Chem. Soc., 2018, 140(18): 5934-5947. doi: 10.1021/jacs.8b00742http://dx.doi.org/10.1021/jacs.8b00742
0
Views
1095
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution