浏览全部资源
扫码关注微信
南京邮电大学 彼得·格林贝格尔研究中心, 江苏 南京 210003
Published:05 February 2023,
Received:24 August 2022,
Revised:10 September 2022,
扫 描 看 全 文
严嘉彬,孙志航,房力等.基于外延层转移的超薄垂直结构深紫外LED[J].发光学报,2023,44(02):321-327.
YAN Jiabin,SUN Zhihang,FANG Li,et al.An Ultra-thin Vertical Deep Ultraviolet LED Realized by Epilayer Transfer[J].Chinese Journal of Luminescence,2023,44(02):321-327.
严嘉彬,孙志航,房力等.基于外延层转移的超薄垂直结构深紫外LED[J].发光学报,2023,44(02):321-327. DOI: 10.37188/CJL.20220305.
YAN Jiabin,SUN Zhihang,FANG Li,et al.An Ultra-thin Vertical Deep Ultraviolet LED Realized by Epilayer Transfer[J].Chinese Journal of Luminescence,2023,44(02):321-327. DOI: 10.37188/CJL.20220305.
AlGaN 基深紫外(Deep ultraviolet,DUV)发光二极管(Light⁃emitting diode,LED)可用于杀菌、水体净化、光疗、固化、传感和非视距通信等场合,在生物、环境、工业、医疗和军事等领域具有广阔的应用前景。针对现阶段 DUV LED 外量子效率较低的问题,本文提出了一种超薄垂直结构的 DUV LED 方案。该方案基于蓝宝石‐硅晶圆键合和物理减薄工艺实现了高质量 DUV LED 外延层从蓝宝石衬底到高导热硅基板的转移,并采用转移后亚微米厚度的超薄外延层制备出垂直结构的 AlGaN DUV LED。器件的出光面在减薄工艺后无需特殊的化学处理便可实现纳米级的粗化,配合超薄外延层结构具备显著的失谐微腔效应,有助于破坏高阶波导模式,从而增加 TM 波的出光并提升器件的出光效率。测试表明,转移后的外延层厚度约为 710 nm,制备出的 DUV LED 发光光谱峰值波长约为 271 nm。该垂直结构 DUV LED 制备方案为实现高效 DUV 光源提供了可行路径。
AlGaN-based deep ultraviolet(DUV) light-emitting diodes(LEDs) are deemed as the alternative of traditional mercury lamp used for sterilization, water purification, phototherapy, polymer curing, sensing, and non-line-of-sight communication, which own broad application prospects in biological, environmental, industrial, medical, and military fields. To improve the low external quantum efficiency of DUV LEDs, this work proposes a DUV LED scheme with ultra-thin vertical structure. Based on the sapphire-silicon wafer bonding and physical thinning processes, high-quality DUV LED epitaxial layers are transferred from sapphire substrate to high thermal conductivity silicon substrate. Subsequently the fabrication of DUV LED is successfully realized using the ultra-thin epitaxial layers. The light-emitting surface of the device can be roughened at the nanometer level without special chemical treatment after the thinning process. The combination of rough surface and ultra-thin epitaxial layers have serious detuned micro-cavity effect, which helps to destroy the high-order waveguide mode, thereby increasing the light extraction efficiency. The measured thickness of the epitaxial layers after transfer is about 710 nm. The peak wavelength of the fabricated DUV LED electroluminescent spectrum is about 271 nm. The vertical DUV LED fabrication scheme provides a feasible path for realizing a high-efficiency DUV light source.
深紫外发光二极管外延层转移晶圆键合减薄工艺
DUV LEDepilayer transferwafer bondingthinning process
王军喜, 闫建昌, 郭亚楠, 等. 氮化物深紫外LED研究新进展 [J]. 中国科学: 物理学 力学 天文学, 2015, 45(6): 067303-1-20. doi: 10.1360/sspma2015-00026http://dx.doi.org/10.1360/sspma2015-00026
WANG J X, YAN J C, GUO Y N, et al. Recent progress of research on Ⅲ-nitride deep ultraviolet light-emiting diode [J]. Sci. Sinica Phys. Mech. Astron., 2015, 45(6): 067303-1-20. (in Chinese). doi: 10.1360/sspma2015-00026http://dx.doi.org/10.1360/sspma2015-00026
KNEISSL M, SEONG T Y, HAN J, et al. The emergence and prospects of deep-ultraviolet light-emitting diode technologies [J]. Nat. Photonics, 2019, 13(4): 233-244. doi: 10.1038/s41566-019-0359-9http://dx.doi.org/10.1038/s41566-019-0359-9
KNEISSL M, KOLBE T, CHUA C, et al. Advances in group Ⅲ-nitride-based deep UV light-emitting diode technology [J]. Semicond. Sci. Technol., 2011, 26(1): 014036-1-6. doi: 10.1088/0268-1242/26/1/014036http://dx.doi.org/10.1088/0268-1242/26/1/014036
彭洋, 陈明祥, 罗小兵. 深紫外LED封装技术现状与展望 [J]. 发光学报, 2021, 42(4): 542-559. doi: 10.37188/CJL.20200394http://dx.doi.org/10.37188/CJL.20200394
PENG Y, CHEN M X, LUO X B. Status and perspectives of deep ultraviolet LED packaging technology [J]. Chin. J. Lumin., 2021, 42(4): 542-559. (in Chinese). doi: 10.37188/CJL.20200394http://dx.doi.org/10.37188/CJL.20200394
郭亮, 郭亚楠, 羊建坤, 等. 量子垒高度对深紫外LED调制带宽的影响 [J]. 发光学报, 2022, 43(1): 1-7. doi: 10.37188/CJL.20210331http://dx.doi.org/10.37188/CJL.20210331
GUO L, GUO Y N, YANG J K, et al. Effect of barrier height on modulation characteristics of AlGaN-based deep ultraviolet light-emitting diodes [J]. Chin. J. Lumin., 2022, 43(1): 1-7. (in Chinese). doi: 10.37188/CJL.20210331http://dx.doi.org/10.37188/CJL.20210331
TAKANO T, MINO T, SAKAI J, et al. Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency [J]. Appl. Phys. Express, 2017, 10(3): 031002-1-4. doi: 10.7567/apex.10.031002http://dx.doi.org/10.7567/apex.10.031002
LI D B, JIANG K, SUN X J, et al. AlGaN photonics: recent advances in materials and ultraviolet devices [J]. Adv. Opt. Photonics, 2018, 10(1): 43-110. doi: 10.1364/aop.10.000043http://dx.doi.org/10.1364/aop.10.000043
LANG J, XU F J, GE W K, et al. High performance of AlGaN deep-ultraviolet light emitting diodes due to improved vertical carrier transport by delta-accelerating quantum barriers [J]. Appl. Phys. Lett., 2019, 114(17): 172105-1-5. doi: 10.1063/1.5093160http://dx.doi.org/10.1063/1.5093160
吴峰, 戴江南, 陈长清. AlGaN基深紫外发光二极管研究进展 [J]. 人工晶体学报, 2020, 49(11): 2079-2097. doi: 10.3969/j.issn.1000-985X.2020.11.010http://dx.doi.org/10.3969/j.issn.1000-985X.2020.11.010
WU F, DAI J N, CHEN C Q. Research progress of AlGaN based deep ultraviolet light emitting diodes [J]. J. Synth. Cryst., 2020, 49(11): 2079-2097. (in Chinese). doi: 10.3969/j.issn.1000-985X.2020.11.010http://dx.doi.org/10.3969/j.issn.1000-985X.2020.11.010
RYU H Y, CHOI I G, CHOI H S, et al. Investigation of light extraction efficiency in AlGaN deep-ultraviolet light-emitting diodes [J]. Appl. Phys. Express, 2013, 6(6): 062101-1-4. doi: 10.7567/apex.6.062101http://dx.doi.org/10.7567/apex.6.062101
SAIFADDIN B K, ALMOGBEL A S, ZOLLNER C J, et al. AlGaN deep-ultraviolet light-emitting diodes grown on SiC substrates [J]. ACS Photonics, 2020, 7(3): 554-561. doi: 10.1021/acsphotonics.9b00600http://dx.doi.org/10.1021/acsphotonics.9b00600
ZHANG W, NIKIFOROV A Y, THOMIDIS C, et al. Molecular beam epitaxy growth of AlGaN quantum wells on 6H-SiC substrates with high internal quantum efficiency [J]. J. Vac. Sci. Technol. B, 2012, 30(2): 02B119-1-5. doi: 10.1116/1.3678208http://dx.doi.org/10.1116/1.3678208
MOE C G, MASUI H, SCHMIDT M C, et al. Milliwatt power deep ultraviolet light emitting diodes grown on silicon carbide [J]. Jpn. J. Appl. Phys., 2005, 44(4L): L502-L504. doi: 10.1143/jjap.44.l502http://dx.doi.org/10.1143/jjap.44.l502
ADIVARAHAN V, HEIDARI A, ZHANG B, et al. Vertical injection thin film deep ultraviolet light emitting diodes with AlGaN multiple-quantum wells active region [J]. Appl. Phys. Express, 2009, 2(9): 092102-1-3. doi: 10.1143/apex.2.092102http://dx.doi.org/10.1143/apex.2.092102
TAKEUCHI M, MAEGAWA T, SHIMIZU H, et al. AlN/AlGaN short-period superlattice sacrificial layers in laser lift-off for vertical-type AlGaN-based deep ultraviolet light emitting diodes [J]. Appl. Phys. Lett., 2009, 94(6): 061117-1-3. doi: 10.1063/1.3081060http://dx.doi.org/10.1063/1.3081060
KAEDING J F, WU Y, FUJII T, et al. Growth and laser-assisted liftoff of low dislocation density AlN thin films for deep-UV light-emitting diodes [J]. J. Cryst. Growth, 2004, 272(1-4): 257-263. doi: 10.1016/j.jcrysgro.2004.08.132http://dx.doi.org/10.1016/j.jcrysgro.2004.08.132
INOUE S I, TAMARI N, TANIGUCHI M. 150 mW deep-ultraviolet light-emitting diodes with large-area AlN nanophotonic light-extraction structure emitting at 265 nm [J]. Appl. Phys. Lett., 2017, 110(14): 141106-1-5. doi: 10.1063/1.4978855http://dx.doi.org/10.1063/1.4978855
SUNG Y J, KIM M S, KIM H, et al. Light extraction enhancement of AlGaN-based vertical type deep-ultraviolet light-emitting-diodes by using highly reflective ITO/Al electrode and surface roughening [J]. Opt. Express, 2019, 27(21): 29930-29937. doi: 10.1364/oe.27.029930http://dx.doi.org/10.1364/oe.27.029930
LACHAB M, ASIF F, ZHANG B, et al. Enhancement of light extraction efficiency in sub-300 nm nitride thin-film flip-chip light-emitting diodes [J]. Solid‐State Electron., 2013, 89: 156-160. doi: 10.1016/j.sse.2013.07.010http://dx.doi.org/10.1016/j.sse.2013.07.010
ZHU C Y, FENG L F, WANG C D, et al. Negative capacitance in light-emitting devices [J]. Solid‐State Electron., 2009, 53(3): 324-328. doi: 10.1016/j.sse.2009.01.002http://dx.doi.org/10.1016/j.sse.2009.01.002
0
Views
299
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution