浏览全部资源
扫码关注微信
1.中国科学院长春光学精密机械与物理研究所 发光学及应用国家重点实验室, 吉林 长春 130033
2.中国科学院大学, 北京 100049
Published:05 February 2023,
Received:22 August 2022,
Revised:06 September 2022,
扫 描 看 全 文
宫玉祥,张卓,张建伟等.增益腔模大失配型垂直外腔面发射激光器侧向激射抑制[J].发光学报,2023,44(02):314-320.
GONG Yuxiang,ZHANG Zhuo,ZHANG Jianwei,et al.Restraining Lateral Lasing Invertical External Cavity Surface Emitting Laser with Large Mismatch Between Gain and Cavity Mode[J].Chinese Journal of Luminescence,2023,44(02):314-320.
宫玉祥,张卓,张建伟等.增益腔模大失配型垂直外腔面发射激光器侧向激射抑制[J].发光学报,2023,44(02):314-320. DOI: 10.37188/CJL.20220304.
GONG Yuxiang,ZHANG Zhuo,ZHANG Jianwei,et al.Restraining Lateral Lasing Invertical External Cavity Surface Emitting Laser with Large Mismatch Between Gain and Cavity Mode[J].Chinese Journal of Luminescence,2023,44(02):314-320. DOI: 10.37188/CJL.20220304.
垂直外腔面发射激光器(Vertical external cavity surface emitting laser,VECSEL)的侧向激射是制约其高性能工作的关键。我们设计了室温下量子阱增益峰与表面腔模大失配(30 nm)的增益芯片结构,并证实该结构可以有效抑制泵浦功率增加时VECSEL的侧向激射增强问题。增益芯片基底温度为20 ℃时,VECSEL正向激射波长位于980 nm,侧向激射波长位于950 nm,当泵浦功率逐步增加时,侧向激射强度随着正向激射的出现而迅速降低。这是因为激光正向激射时量子阱的受激辐射能级与正向激射激光模式匹配,正向激射的激光模式可以获取更高的模式增益,在与侧向模式的竞争中处于优势地位。当基底温度控制在0 ℃与10 ℃时,量子阱本征增益峰值与表面腔模失配度增大,此时VECSEL仍然表现出稳定的侧向激射抑制效果。
The lateral lasing of vertical external cavity surface emitting laser(VECSEL) is the key to restrict its high performance. We designed a gain chip structure with a large mismatch(30 nm) between the quantum well gain peak and the surface cavity mode at room temperature, and confirmed that this structure can effectively suppress the lateral lasing enhancement of VECSEL when the pump power increases. When the substrate temperature of the gain chip is 20 ℃, the longitudinal lasing wavelength of VECSEL is 980 nm and the lateral lasing wavelength is 950 nm. As the pump power increases gradually, the lateral lasing intensity decreases rapidly with the emergence of longitudinal lasing. This is because the stimulated radiation level of the quantum well matches the longitudinal lasing laser mode when the laser is longitudinal lasing. The longitudinal lasing laser mode can obtain higher mode gain and have an advantage in the competition with the lateral mode. When the substrate temperature is controlled at 0 ℃ and 10 ℃, the mismatch between the quantum well intrinsic gain peak and the surface cavity mode increases. At this time, VECSEL still shows a stable lateral lasing suppression effect.
垂直外腔面发射激光器侧向激射增益失谐模式竞争
vertical external cavity surface emitting lasers(VECSELs)lateral lasinggain detuningmode competition
GUINA M, RANTAMÄKI A, HÄRKÖNEN A. Optically pumped VECSELs: review of technology and progress [J]. J. Phys. D: Appl. Phys., 2017, 50(38): 383001-1-37. doi: 10.1088/1361-6463/aa7bfdhttp://dx.doi.org/10.1088/1361-6463/aa7bfd
张继业, 李雪, 张建伟, 等. 垂直腔面发射激光器研究进展 [J]. 发光学报, 2020, 41(12): 1443-1459. doi: 10.37188/CJL.20200339http://dx.doi.org/10.37188/CJL.20200339
ZHANG J Y, LI X, ZHANG J W, et al. Research progress of vertical-cavity surface-emitting laser [J]. Chin. J. Lumin., 2020, 41(12): 1443-1459. (in Chinese). doi: 10.37188/CJL.20200339http://dx.doi.org/10.37188/CJL.20200339
刘畅, 肖垚, 刘恒, 等. 多结级联垂直腔面发射激光器失效分析 [J]. 发光学报, 2022, 43(3): 388-395. doi: 10.37188/cjl.20210396http://dx.doi.org/10.37188/cjl.20210396
LIU C, XIAO Y, LIU H, et al. Failure analysis of multi-junction cascade vertical cavity surface emitting laser [J]. Chin. J. Lumin., 2022, 43(3): 388-395. (in Chinese). doi: 10.37188/cjl.20210396http://dx.doi.org/10.37188/cjl.20210396
KAHLE H, BEK R, HELDMAIER M, et al. High optical output power in the UVA range of a frequency-doubled, strain-compensated AlGaInP-VECSEL [J]. Appl. Phys. Express, 2014, 7(9): 092705-1-4. doi: 10.7567/apex.7.092705http://dx.doi.org/10.7567/apex.7.092705
HEINEN B, ZHANG F, SPARENBERG M, et al. On the measurement of the thermal resistance of vertical-external-cavity surface-emitting lasers (VECSELs) [J]. IEEE J. Quantum Electron., 2012, 48(7): 934-940. doi: 10.1109/jqe.2012.2196678http://dx.doi.org/10.1109/jqe.2012.2196678
RANTAMÄKI A, RAUTIAINEN J, SIRBU A, et al. 1.56 µm 1 watt single frequency semiconductor disk laser [J]. Opt. Express, 2013, 21(2): 2355-2360. doi: 10.1364/oe.21.002355http://dx.doi.org/10.1364/oe.21.002355
伍瑜, 倪演海, 戴特力, 等. 基质刻蚀的高功率外腔面发射激光器 [J]. 激光技术, 2012, 36(2): 200-203. doi: 10.3969/j.issn.1001-3806.2012.02.014http://dx.doi.org/10.3969/j.issn.1001-3806.2012.02.014
WU Y, NI Y H, DAI T L, et al. Substrate-etched high power external-cavity surface-emitting lasers [J]. Laser Technol., 2012, 36(2): 200-203. (in Chinese). doi: 10.3969/j.issn.1001-3806.2012.02.014http://dx.doi.org/10.3969/j.issn.1001-3806.2012.02.014
乔闯, 苏瑞巩, 李翔, 等. 980 nm高功率DBR半导体激光器的设计及工艺 [J]. 中国激光, 2019, 46(7): 0701002-1-5. doi: 10.3788/CJL201946.0701002http://dx.doi.org/10.3788/CJL201946.0701002
QIAO C, SU R G, LI X, et al. Design and fabrication of 980 nm distributed Bragg reflection semiconductor laser with high power [J]. Chin. J. Lasers, 2019, 46(7): 0701002-1-5. (in Chinese). doi: 10.3788/CJL201946.0701002http://dx.doi.org/10.3788/CJL201946.0701002
RAHIMI-IMAN A. Recent advances in VECSELs [J]. J. Opt., 2016, 18(9): 093003. doi: 10.1088/2040-8978/18/9/093003http://dx.doi.org/10.1088/2040-8978/18/9/093003
BEDFORD R G, KOLESIK M, CHILLA J L A, et al. Power-limiting mechanisms in VECSELs [C]. Proceedings of SPIE 5814, Enabling Photonics Technologies for Defense, Security, and Aerospace Applications, Orlando, 2005: 199-208. doi: 10.1117/12.607428http://dx.doi.org/10.1117/12.607428
WANG C G, MALLOY K, SHEIK-BAHAE M. Influence of coulomb screening on lateral lasing in VECSELs [J]. Opt. Express, 2015, 23(25): 32548-32554. doi: 10.1364/oe.23.032548http://dx.doi.org/10.1364/oe.23.032548
ALIAS M S, LIU Z, AL-ATAWI A, et al. Continuous-wave optically pumped lasing of hybrid perovskite VCSEL at green wavelength [C]. CLEO: Science and Innovations, San Jose, 2017: SM4N. 3. doi: 10.1364/cleo_si.2017.sm4n.3http://dx.doi.org/10.1364/cleo_si.2017.sm4n.3
HESSENIUS C, FALLAHI M, MOLONEY J, et al. Lateral lasing and ASE reduction in VECSELs [C]. Vertical External Cavity Surface Emitting Lasers (VECSELs), San Francisco, 2011: 53-60. doi: 10.1117/12.875595http://dx.doi.org/10.1117/12.875595
KASPAR S, RATTUNDE M, TÖPPER T, et al. Recent advances in 2-μm GaSb-based semiconductor disk laser-power scaling, narrow-linewidth and short-pulse operation [J]. IEEE J. Sel. Top. Quantum Electron., 2013, 19(4): 1501908-1-8. doi: 10.1109/jstqe.2013.2244568http://dx.doi.org/10.1109/jstqe.2013.2244568
KHURGIN J. Theoretical and experimental investigation of amplified spontaneous emission in electron-beam-pumped semiconductor lasers [J]. IEEE J. Quantum Electron., 1987, 23(2): 194-204. doi: 10.1109/jqe.1987.1073304http://dx.doi.org/10.1109/jqe.1987.1073304
TÖPPER T, RATTUNDE M, KASPAR S, et al. High-power 2.0 µm semiconductor disk laser-Influence of lateral lasing [J]. Appl. Phys. Lett., 2012, 100(19): 192107-1-3. doi: 10.1063/1.4714512http://dx.doi.org/10.1063/1.4714512
孙春明, 苏建, 郑兆河, 等. 一种通过侧向吸收区来抑制侧向激射的宽条形大功率半导体激光器及其制备方法: 中国, 114512897A [P]. 2022-05-17.
SUN C M, SU J, ZHENG Z H, et al. A wide-stripe high-power semiconductor laser with lateral lasing suppressed by lateral absorption region and its fabrication method: CN, 114512897A [P]. 2022-05-17. (in Chinese)
张建伟, 宁永强, 张星, 等. 增益-腔模失配型高温工作垂直腔面发射半导体激光器 [J]. 中国激光, 2013, 40(5): 0502001-1-8. doi: 10.3788/cjl201340.0502001http://dx.doi.org/10.3788/cjl201340.0502001
ZHANG J W, NING Y Q, ZHANG X, et al. Gain-cavity mode detuning vertical cavity surface emitting laser operating at the high temperature [J]. Chin. J. Lasers, 2013, 40(5): 0502001-1-8. (in Chinese). doi: 10.3788/cjl201340.0502001http://dx.doi.org/10.3788/cjl201340.0502001
ZHUO Z, ZHANG J W, ZHANG J Y, et al. Switchable two-wavelength emission using vertical external-cavity surface-emitting laser [J]. Optik, 2022, 264: 169409-1-5. doi: 10.1016/j.ijleo.2022.169409http://dx.doi.org/10.1016/j.ijleo.2022.169409
张志军, 陈贺, 张建伟, 等. 单片双波长输出垂直外腔面发射激光器 [J]. 发光学报, 2022, 43(8): 1266-1272. doi: 10.37188/CJL.20220195http://dx.doi.org/10.37188/CJL.20220195
ZHANG Z J, CHEN H, ZHANG J W, et al. Dual-wavelength emission of vertical external cavity surface emitting laser with single gain chip [J]. Chin. J. Lumin., 2022, 43(8): 1266-1272. (in Chinese). doi: 10.37188/CJL.20220195http://dx.doi.org/10.37188/CJL.20220195
吴顺华, 刘国军, 王贞福, 等. 低温808 nm高效率半导体激光器 [J]. 发光学报, 2022, 43(5): 786-795. doi: 10.37188/CJL.20220025http://dx.doi.org/10.37188/CJL.20220025
WU S H, LIU G J, WANG Z F, et al. Low temperature 808 nm high efficiency semiconductor laser [J]. Chin. J. Lumin., 2022, 43(5): 786-795. (in Chinese). doi: 10.37188/CJL.20220025http://dx.doi.org/10.37188/CJL.20220025
KANTOLA E, PENTTINEN J P, RANTA S, et al. 72 W vertical-external-cavity surface-emitting laser with 1 180 nm emission for laser guide star adaptive optics [J]. Electron. Lett., 2018, 54(19): 1135-1137. doi: 10.1049/el.2018.6225http://dx.doi.org/10.1049/el.2018.6225
PIPREK J, TROGER T, SCHROTER B, et al. Thermal conductivity reduction in GaAs-AlAs distributed Bragg reflectors [J]. IEEE Photon. Technol. Lett., 1998, 10(1): 81-83. doi: 10.1109/68.651113http://dx.doi.org/10.1109/68.651113
KUZNETSOV M, HAKIMI F, SPRAGUE R, et al. High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM/sub 00/beams [J]. IEEE Photon. Technol. Lett., 1997, 9(8): 1063-1065. doi: 10.1109/68.605500http://dx.doi.org/10.1109/68.605500
KANTOLA E, LEINONEN T, RANTA S, et al. 1 180 nm VECSEL with 50 W output power [C]. Proceedings of the SPIE 9349, Vertical External Cavity Surface Emitting Lasers (VECSELs) Ⅴ, San Francisco, 2015: 93490U. doi: 10.1117/12.2079480http://dx.doi.org/10.1117/12.2079480
AHIRWAR P, ROTTER T J, SHIMA D, et al. Growth and optimization of 2 μm InGaSb/AlGaSb quantum-well-based VECSELs on GaAs/AlGaAs DBRs [J]. IEEE J. Sel. Top. Quantum Electron., 2013, 19(4): 1700611-1-11. doi: 10.1109/jstqe.2013.2239615http://dx.doi.org/10.1109/jstqe.2013.2239615
TROPPER A C, HOOGLAND S. Extended cavity surface-emitting semiconductor lasers [J]. Prog. Quantum Electron., 2006, 30(1): 1-43. doi: 10.1016/j.pquantelec.2005.10.002http://dx.doi.org/10.1016/j.pquantelec.2005.10.002
SLIPCHENKO S O, PODOSKIN A A, PIKHTIN N A, et al. Electroluminescence and absorption spectra of low-optical-loss semiconductor lasers based on InGaAs/AlGaAs/GaAs QW heterostructures [J]. Semiconductors, 2011, 45(5): 673-678. doi: 10.1134/s1063782611050277http://dx.doi.org/10.1134/s1063782611050277
GENG P J, LI W G, ZHANG X Y, et al. Effects of temperature and redshift on the refractive index of semiconductors [J]. J. Appl. Phys., 2018, 124(3): 035703-1-6. doi: 10.1063/1.5027771http://dx.doi.org/10.1063/1.5027771
0
Views
194
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution