浏览全部资源
扫码关注微信
1.太原理工大学 新材料界面科学与工程教育部重点实验室, 山西 太原 030024
2.山西浙大新材料与化工研究院, 山西 太原 030024
3.兴县经开区铝镁新材料研发有限公司, 山西 兴县 033600
Published:05 February 2023,
Received:14 August 2022,
Revised:31 August 2022,
扫 描 看 全 文
董建华,卢璐,金旭东等.葡萄糖作钝化剂的绿光多晶薄膜钙钛矿发光二极管[J].发光学报,2023,44(02):328-336.
DONG Jianhua,LU Lu,JIN Xudong,et al.Green Polycrystalline Perovskite Films with Glucose as Passivator for Light-emitting Diodes[J].Chinese Journal of Luminescence,2023,44(02):328-336.
董建华,卢璐,金旭东等.葡萄糖作钝化剂的绿光多晶薄膜钙钛矿发光二极管[J].发光学报,2023,44(02):328-336. DOI: 10.37188/CJL.20220297.
DONG Jianhua,LU Lu,JIN Xudong,et al.Green Polycrystalline Perovskite Films with Glucose as Passivator for Light-emitting Diodes[J].Chinese Journal of Luminescence,2023,44(02):328-336. DOI: 10.37188/CJL.20220297.
金属卤化物钙钛矿发光二极管具有颜色可调、色纯度高、光谱稳定性好等优点,成为近年来的研究热点。溶液加工的多晶薄膜钙钛矿发光二极管制备工艺简单且成本低,但结晶过程中容易形成缺陷,进而影响器件性能。本文提出采用低成本的葡萄糖作为钝化剂,制备多晶薄膜钙钛矿发光二极管,葡萄糖的加入有效抑制了器件中缺陷诱导非辐射复合损失。在葡萄糖浓度为0.2 mol·L
-1
时,缺陷钝化效果最佳,器件的最大亮度达到11 840 cd·m
-2
,最大电流效率为7.89 cd·A
-1
,光谱稳定性及色纯度好,且表现出较好的重复性。本文为多晶薄膜钙钛矿发光二极管中缺陷的钝化提供了简单而有效的方法。
Metal-halide perovskite light-emitting diodes have become a research hotspot in recent years, for they have the advantages of tunable emission color, high color purity and excellent spectral stability. Solution processed polycrystalline thin film perovskite light-emitting diodes have simple and low-cost preparation process, but it is easy to form defects in the crystallization process, which will affect the performance of the device. In this work, low-cost glucose is used as passivation agent to prepare polycrystalline thin film perovskite light-emitting diodes. The addition of glucose can effectively inhibit the trap-assisted nonradiative recombination loss in the devices. When the glucose concentration was 0.2 mol·L
-1
, the maximum brightness of the device reached 11 840 cd·m
-2
, the maximum current efficiency was 7.89 cd·A
-1
. Our devices have excellent spectral stability, color purity and repeatability. This work provides a simple and effective method for the passivation of defects in polycrystalline thin film perovskite light-emitting diodes.
钙钛矿发光多晶薄膜葡萄糖缺陷钝化
perovskite light-emittingpolycrystalline thin filmglucosedefects passivation
FAKHARUDDIN A, GANGISHETTY M K, ABDI-JALEBI M, et al. Perovskite light-emitting diodes [J]. Nat. Electron., 2022, 5(4): 203-216. doi: 10.1038/s41928-022-00745-7http://dx.doi.org/10.1038/s41928-022-00745-7
PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut [J]. Nano Lett., 2015, 15(6): 3692-3696. doi: 10.1021/nl5048779http://dx.doi.org/10.1021/nl5048779
SONG J Z, LI J H, XU L M, et al. Room-temperature triple-ligand surface engineering synergistically boosts ink stability, recombination dynamics, and charge injection toward EQE-11.6% perovskite QLEDs [J]. Adv. Mater., 2018, 30(30): 1800764-1-7. doi: 10.1002/adma.201800764http://dx.doi.org/10.1002/adma.201800764
MA D X, LIN K B, DONG Y T, et al. Distribution control enables efficient reduced-dimensional perovskite LEDs [J]. Nature, 2021, 599(7886): 594-598. doi: 10.1038/s41586-021-03997-zhttp://dx.doi.org/10.1038/s41586-021-03997-z
TAN Z K, MOGHADDAM R S, LAI M L, et al. Bright light-emitting diodes based on organometal halide perovskite [J]. Nat. Nanotechnol., 2014, 9(9): 687-692. doi: 10.1038/nnano.2014.149http://dx.doi.org/10.1038/nnano.2014.149
LIU Z, QIU W D, PENG X M, et al. Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation [J]. Adv. Mater., 2021, 33(43): 2103268-1-9. doi: 10.1002/adma.202103268http://dx.doi.org/10.1002/adma.202103268
WANG Y K, YUAN F L, DONG Y T, et al. All-inorganic quantum-dot LEDs based on a phase-stabilized α-CsPbI3 perovskite [J]. Angew. Chem., 2021, 29(60): 16164-16170.
LIU Y, LI Z L, XU J, et al. Wide-bandgap perovskite quantum dots in perovskite matrix for sky-blue light-emitting diodes [J]. J. Am. Chem. Soc., 2022, 144(9): 4009-4016. doi: 10.1021/jacs.1c12556http://dx.doi.org/10.1021/jacs.1c12556
CHEN Z M, LI Z C, CHEN Z, et al. Utilization of trapped optical modes for white perovskite light-emitting diodes with efficiency over 12% [J]. Joule, 2021, 5(2): 456-466. doi: 10.1016/j.joule.2020.12.008http://dx.doi.org/10.1016/j.joule.2020.12.008
XU J W, HUANG W X, LI P Y, et al. Imbedded nanocrystals of CsPbBr3 in Cs4PbBr6: kinetics, enhanced oscillator strength, and application in light-emitting diodes [J]. Adv. Mater., 2017, 29(43): 1703703-1-10. doi: 10.1002/adma.201703703http://dx.doi.org/10.1002/adma.201703703
LIN K B, YAN C Z, SABATINI R P, et al. Dual-phase regulation for high-efficiency perovskite light-emitting diodes [J]. Adv. Funct. Mater., 2022, 32(24): 2200350-1-9. doi: 10.1002/adfm.202200350http://dx.doi.org/10.1002/adfm.202200350
LIN K B, XING J, QUAN L N, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per‐cent [J]. Nature, 2018, 562(7726): 245-248. doi: 10.1038/s41586-018-0575-3http://dx.doi.org/10.1038/s41586-018-0575-3
HAN B N, YUAN S C, CAI B, et al. Green perovskite light-emitting diodes with 200 hours stability and 16% efficiency: cross-linking strategy and mechanism [J]. Adv. Funct. Mater., 2021, 31(26): 2011003-1-12. doi: 10.1002/adfm.202011003http://dx.doi.org/10.1002/adfm.202011003
FENG W J, LIN K B, LI W Q, et al. Efficient all-inorganic perovskite light-emitting diodes enabled by manipulating the crystal orientation [J]. J. Mater. Chem. A, 2021, 9(17): 11064-11072. doi: 10.1039/d1ta00093dhttp://dx.doi.org/10.1039/d1ta00093d
SONG L, GUO X Y, HU Y S, et al. Efficient inorganic perovskite light-emitting diodes with polyethylene glycol passivated ultrathin CsPbBr3 films [J]. J. Phys. Chem. Lett., 2017, 8(17): 4148-4154. doi: 10.1021/acs.jpclett.7b01733http://dx.doi.org/10.1021/acs.jpclett.7b01733
WU C, ZOU Y T, WU T, et al. Improved performance and stability of all-inorganic perovskite light-emitting diodes by antisolvent vapor treatment [J]. Adv. Funct. Mater., 2017, 27(28): 1700338-1-7. doi: 10.1002/adfm.201700338http://dx.doi.org/10.1002/adfm.201700338
JEONG B, HAN H, CHOI Y J, et al. All-inorganic CsPbI3 perovskite phase-stabilized by poly(ethylene oxide) for red-light-emitting diodes [J]. Adv. Funct. Mater., 2018, 28(16): 1706401-1-8. doi: 10.1002/adfm.201706401http://dx.doi.org/10.1002/adfm.201706401
KIM N, SHIN M, JUN S, et al. Highly efficient vacuum-evaporated CsPbBr3 perovskite light-emitting diodes with an electrical conductivity enhanced polymer-assisted passivation layer [J]. ACS Appl. Mater. Interfaces, 2021, 13(31): 37323-37330. doi: 10.1021/acsami.1c05447http://dx.doi.org/10.1021/acsami.1c05447
SONG L, HUANG L X, HU Y S, et al. Synergistic morphology control and non-radiative defect passivation using a crown ether for efficient perovskite light-emitting devices [J]. J. Mater. Chem. C, 2020, 8(29): 9986-9992. doi: 10.1039/d0tc02062ahttp://dx.doi.org/10.1039/d0tc02062a
VELDHUIS S A, NG Y F, AHMAD R, et al. Crown ethers enable room-temperature synthesis of CsPbBr3 quantum dots for light-emitting diodes [J]. ACS Energy Lett., 2018, 3(3): 526-531. doi: 10.1021/acsenergylett.7b01257http://dx.doi.org/10.1021/acsenergylett.7b01257
ZHANG T Y, XIE L Q, CHEN L, et al. In situ fabrication of highly luminescent bifunctional amino acid crosslinked 2D/3D NH3C4H9COO(CH3NH3PbBr3)n perovskite films [J]. Adv. Funct. Mater., 2017, 27(1): 1603568-1-8. doi: 10.1002/adfm.201603568http://dx.doi.org/10.1002/adfm.201603568
WANG N N, CHENG L, SI J J, et al. Morphology control of perovskite light-emitting diodes by using amino acid self-assembled monolayers [J]. Appl. Phys. Lett., 2016, 108(14): 141102-1-5. doi: 10.1063/1.4945330http://dx.doi.org/10.1063/1.4945330
YAN D D, ZHAO S Y, ZHANG Y B, et al. Highly efficient emission and high-CRI warm white light-emitting diodes from ligand-modified CsPbBr3 quantum dots [J]. Opto‐Electron. Adv., 2022, 5(1): 200075-1-14. doi: 10.29026/oea.2022.200075http://dx.doi.org/10.29026/oea.2022.200075
CHU Z M, YE Q F, ZHAO Y, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 22% via small-molecule passivation [J]. Adv. Mater., 2021, 33(18): 2007169-1-9. doi: 10.1002/adma.202007169http://dx.doi.org/10.1002/adma.202007169
LEE S, PARK J H, LEE B R, et al. Amine-based passivating materials for enhanced optical properties and performance of organic-inorganic perovskites in light-emitting diodes [J]. J. Phys. Chem. Lett., 2017, 8(8): 1784-1792. doi: 10.1021/acs.jpclett.7b00372http://dx.doi.org/10.1021/acs.jpclett.7b00372
LEE S, PARK J H, NAM Y S, et al. Growth of nanosized single crystals for efficient perovskite light-emitting diodes [J]. ACS Nano, 2018, 12(4): 3417-3423. doi: 10.1021/acsnano.7b09148http://dx.doi.org/10.1021/acsnano.7b09148
ZOU Y T, BAN M Y, YANG Y G, et al. Boosting perovskite light-emitting diode performance via tailoring interfacial contact [J]. ACS Appl. Mater. Interfaces, 2018, 10(28): 24320-24326. doi: 10.1021/acsami.8b07438http://dx.doi.org/10.1021/acsami.8b07438
YANG X L, ZHANG X W, DENG J X, et al. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation [J]. Nat. Commun., 2018, 9(1): 570-1-8. doi: 10.1038/s41467-018-02978-7http://dx.doi.org/10.1038/s41467-018-02978-7
DEQUILETTES D W, KOCH S, BURKE S, et al. Photoluminescence lifetimes exceeding 8 μs and quantum yields exceeding 30% in hybrid perovskite thin films by ligand passivation [J]. ACS Energy Lett., 2016, 1(2): 438-444. doi: 10.1021/acsenergylett.6b00236http://dx.doi.org/10.1021/acsenergylett.6b00236
LA-PLACA M G, LONGO G, BABAEI A, et al. Photoluminescence quantum yield exceeding 80% in low dimensional perovskite thin-films via passivation control [J]. Chem. Commun., 2017, 53(62): 8707-8710. doi: 10.1039/c7cc04149ghttp://dx.doi.org/10.1039/c7cc04149g
LI M L, ZHAO Y P, QIN X Q, et al. Conductive phosphine oxide passivator enables efficient perovskite light-emitting diodes [J]. Nano Lett., 2022, 22(6): 2490-2496. doi: 10.1021/acs.nanolett.2c00276http://dx.doi.org/10.1021/acs.nanolett.2c00276
VIEZBICKE B D, PATEL S, DAVIS B E, et al. Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system [J]. Phys. Status Solidi B, 2015, 252(8): 1700-1710. doi: 10.1002/pssb.201552007http://dx.doi.org/10.1002/pssb.201552007
欧阳子琳. 有机无机杂化二维钙钛矿设计制备及光电物性研究 [D]. 成都: 电子科技大学, 2021.
OUYANG Z L. Design and Preparation of Organic‐inorganic Hybrid 2D Perovskite and Their Photoelectric Properties [D]. Chengdu: University of Electronic Science and Technology of China, 2021. (in Chinese)
BI C H, YAO Z W, SUN X J, et al. Perovskite quantum dots with ultralow trap density by acid etching-driven ligand exchange for high luminance and stable pure-blue light-emitting diodes [J]. Adv. Funct. Mater., 2021, 33(15): 2006722-1-8. doi: 10.1002/adma.202006722http://dx.doi.org/10.1002/adma.202006722
K 彼得·C 福尔哈特, 尼尔·E 肖尔. 有机化学结构与功能 [M]. 戴立信, 席振峰, 罗三中, 译. 第8版. 北京: 化学工业出版社, 2022.
VOLLHARDT K P C, SCHORE N E. Organic Chemistry: Structure and Function [M]. DAI L X, XI Z F, LUO S Z, trans. 8th ed. Beijing: Chemical Industry Press, 2022. (in Chinese)
ZHANG Y X, CHEN S Q, CHEN H, et al. Highly-improved performance of inverted planar perovskite solar cells by glucose modification [J]. J. Mater. Chem. C, 2020, 8(17): 5894-5903. doi: 10.1039/d0tc00365dhttp://dx.doi.org/10.1039/d0tc00365d
JIANG Y Z, CUI M H, LI S S, et al. Reducing the impact of Auger recombination in quasi-2D perovskite light-emitting diodes [J]. Nat. Commun., 2021, 12(1): 336-1-10. doi: 10.1038/s41467-020-20555-9http://dx.doi.org/10.1038/s41467-020-20555-9
0
Views
238
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution