浏览全部资源
扫码关注微信
1.深圳大学 材料学院, AIE研究中心, 广东 深圳 518000
2.香港中文大学(深圳) 理工学院, 深圳分子聚集体科学与工程研究院, 广东 深圳 518172
Published:05 February 2023,
Received:30 July 2022,
Revised:17 August 2022,
扫 描 看 全 文
桂一雄,陈可瑶,罗文帅等.近红外二区聚集诱导发光探针在生物医学中的应用[J].发光学报,2023,44(02):356-373.
GUI Yixiong,CHEN Keyao,LUO Wenshuai,et al.Near-Infrared-Ⅱ AIE Probes for Biomedical Applications[J].Chinese Journal of Luminescence,2023,44(02):356-373.
桂一雄,陈可瑶,罗文帅等.近红外二区聚集诱导发光探针在生物医学中的应用[J].发光学报,2023,44(02):356-373. DOI: 10.37188/CJL.20220284.
GUI Yixiong,CHEN Keyao,LUO Wenshuai,et al.Near-Infrared-Ⅱ AIE Probes for Biomedical Applications[J].Chinese Journal of Luminescence,2023,44(02):356-373. DOI: 10.37188/CJL.20220284.
近红外二区聚集诱导发光探针在生物医学中的应用是一个新兴的研究领域。近红外二区聚集诱导发光探针突破了传统荧光探针穿透深度浅、光损伤小以及聚集态荧光效率低下的限制,为深层组织的高分辨率荧光成像提供了可能。研究表明,通过合理的分子设计可实现近红外二区聚集诱导发光探针激发态能量辐射跃迁与非辐射跃迁之间的可控调节,即单一近红外二区聚集诱导发光探针可同时兼具荧光、光声和光热三模态成像能力,以及多模成像指导的光热和光动力治疗。目前,近红外二区聚集诱导发光探针已发展为构建疾病诊疗一体化平台的重要选择之一。基于此,本综述系统总结了近红外二区聚集诱导发光探针的最新研究进展,主要包括分子设计及其在生物医学中的应用。最后提出目前的发展瓶颈,并对其未来的发展方向与前景进行了展望。
The biomedical application of aggregation-induced emission(AIE) nanoprobes that emit fluorescence in the second near-infrared(NIR-Ⅱ) optical window is an emerging research area. In comparison with traditional fluorescent materials, NIR-Ⅱ AIE nanoprobes have been established to show superiority in deeper tissue penetration ability, minimized light damage, and good quantum yield in aggregated state. It has been proven that rational molecular engineering could realize the controllable regulation between the radiative and nonradiative dispersion of the excited state energy of the NIR-Ⅱ AIE chromophores. The unique propeller-like conformation of AIE luminogens determines its easily modulable attribute between radiative decay which can be used for fluorescence imaging(FLI) and nonradiative decay which can be harnessed to conduct photothermal imaging(PTI)/photoacoustic imaging(PAI)/photothermal therapy(PTT)/photodynamic therapy(PDT). At present, AIE luminogens have developed into an alternative candidate to build integrated “one-for-all” theranostic platform. Herein, this review systematically summarizes the latest research advancements of NIR-Ⅱ AIE probes, on the aspects of molecular design and biomedical applications. Besides, the current challenges and future research directions of NIR-Ⅱ AIE nanoprobes are briefly discussed in the end.
近红外二区聚集诱导发光探针生物医学应用疾病诊疗一体化
near-infrared-Ⅱ probes showing aggregation-induced emission characteristicsbiomedical applicationsdisease theranostics
DAY R N, DAVIDSON M W. The fluorescent protein palette: tools for cellular imaging [J]. Chem. Soc. Rev., 2009, 38(10): 2887-2921. doi: 10.1039/b901966ahttp://dx.doi.org/10.1039/b901966a
ZHANG R R, SCHROEDER A B, GRUDZINSKI J J, et al. Beyond the margins: real-time detection of cancer using targeted fluorophores [J]. Nat. Rev. Clin. Oncol., 2017, 14(6): 347-364. doi: 10.1038/nrclinonc.2016.212http://dx.doi.org/10.1038/nrclinonc.2016.212
LAVIS L D. Chemistry is dead. Long live chemistry! [J]. Biochemistry, 2017, 56(39): 5165-5170. doi: 10.1021/acs.biochem.7b00529http://dx.doi.org/10.1021/acs.biochem.7b00529
ZHU S J, HU Z B, TIAN R, et al. Repurposing cyanine NIR-Ⅰ dyes accelerates clinical translation of near-infrared-Ⅱ (NIR-Ⅱ) bioimaging [J]. Adv. Mater., 2018, 30(34): 1802546-1-9. doi: 10.1002/adma.201802546http://dx.doi.org/10.1002/adma.201802546
KENRY, DUAN Y K, LIU B. Recent advances of optical imaging in the second near-infrared window [J]. Adv. Mater., 2018, 30(47): 1802394-1-19. doi: 10.1002/adma.201802394http://dx.doi.org/10.1002/adma.201802394
DING F, ZHAN Y B, LU X J, et al. Recent advances in near-infrared Ⅱ fluorophores for multifunctional biomedical imaging [J]. Chem. Sci., 2018, 9(19): 4370-4380. doi: 10.1039/c8sc01153bhttp://dx.doi.org/10.1039/c8sc01153b
HONG G S, ANTARIS A L, DAI H J. Near-infrared fluorophores for biomedical imaging [J]. Nat. Biomed. Eng., 2017, 1(1): 0010-1-22. doi: 10.1038/s41551-016-0010http://dx.doi.org/10.1038/s41551-016-0010
DIAO S, HONG G S, ROBINSON J T, et al. Chirality enriched (12,1) and (11,3) single-walled carbon nanotubes for biological imaging [J]. J. Am. Chem. Soc., 2012, 134(41): 16971-16974. doi: 10.1021/ja307966uhttp://dx.doi.org/10.1021/ja307966u
ROBINSON J T, HONG G S, LIANG Y Y, et al. In vivo fluorescence imaging in the second near-infrared window with long circulating carbon nanotubes capable of ultrahigh tumor uptake [J]. J. Am. Chem. Soc., 2012, 134(25): 10664-10669. doi: 10.1021/ja303737ahttp://dx.doi.org/10.1021/ja303737a
HO Y P, LEONG K W. Quantum dot-based theranostics [J]. Nanoscale, 2010, 2(1): 60-68. doi: 10.1039/b9nr00178fhttp://dx.doi.org/10.1039/b9nr00178f
ZHANG W S, HUANG T, LI J W, et al. Facial control intramolecular charge transfer of quinoid conjugated polymers for efficient in vivo NIR-Ⅱ imaging [J]. ACS Appl. Mater. Interfaces, 2019, 11(18): 16311-16319. doi: 10.1021/acsami.9b02597http://dx.doi.org/10.1021/acsami.9b02597
SUN Y, DING M M, ZENG X D, et al. Novel bright-emission small-molecule NIR-Ⅱ fluorophores for in vivo tumor imaging and image-guided surgery [J]. Chem. Sci., 2017, 8(5): 3489-3493. doi: 10.1039/c7sc00251chttp://dx.doi.org/10.1039/c7sc00251c
YAN D Y, WU Q, WANG D, et al. Innovative synthetic procedures for luminogens showing aggregation-induced emission [J]. Angew. Chem. Int. Ed., 2021, 60(29): 15724-15742. doi: 10.1002/anie.202006191http://dx.doi.org/10.1002/anie.202006191
WANG S W, LIU J, GOH C C, et al. NIR-Ⅱ-excited intravital two-photon microscopy distinguishes deep cerebral and tumor vasculatures with an ultrabright NIR-Ⅰ AIE luminogen [J]. Adv. Mater., 2019, 31(44): 1904447-1-10. doi: 10.1002/adma.201904447http://dx.doi.org/10.1002/adma.201904447
LIU S J, LI Y Y, KWOK R T K, et al. Structural and process controls of AIEgens for NIR-Ⅱ theranostics [J]. Chem. Sci., 2021, 12(10): 3427-3436. doi: 10.1039/d0sc02911dhttp://dx.doi.org/10.1039/d0sc02911d
YANG Q L, HU Z B, ZHU S J, et al. Donor engineering for NIR-Ⅱ molecular fluorophores with enhanced fluorescent performance [J]. J. Am. Chem. Soc., 2018, 140(5): 1715-1724. doi: 10.1021/jacs.7b10334http://dx.doi.org/10.1021/jacs.7b10334
WEISS J. Fluorescence of organic molecules [J]. Nature, 1943, 152(3850): 176-178. doi: 10.1038/152176a0http://dx.doi.org/10.1038/152176a0
WATSON W F, LIVINGSTON R. Concentration quenching of fluorescence in chlorophyll solutions [J]. Nature, 1948, 162(4116): 452-453. doi: 10.1038/162452a0http://dx.doi.org/10.1038/162452a0
LUO J D, XIE Z L, LAM J W Y, et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole [J]. Chem. Commun., 2001(18): 1740-1741. doi: 10.1039/b105159hhttp://dx.doi.org/10.1039/b105159h
MEI J, LEUNG N L C, KWOK R T K, et al. Aggregation-induced emission: together we shine, united we soar! [J]. Chem. Rev., 2015, 115(21): 11718-11940. doi: 10.1021/acs.chemrev.5b00263http://dx.doi.org/10.1021/acs.chemrev.5b00263
张志军, 康苗苗, 王媛玮, 等. 聚集诱导发光材料在光学诊疗中的研究进展 [J]. 发光学报, 2021, 42(3): 361-378. doi: 10.37188/CJL.20210029http://dx.doi.org/10.37188/CJL.20210029
ZHANG Z J, KANG M M, WANG Y W, et al. Recent advances of aggregation-induced emission materials in phototheranostics [J]. Chin. J. Lumin., 2021, 42(3): 361-378. (in Chinese). doi: 10.37188/CJL.20210029http://dx.doi.org/10.37188/CJL.20210029
KANG M M, ZHANG Z J, SONG N, et al. Aggregation-enhanced theranostics: AIE sparkles in biomedical field [J]. Aggregate, 2020, 1(1): 80-106. doi: 10.1002/agt2.7http://dx.doi.org/10.1002/agt2.7
ZHANG Z J, KANG M M, TAN H, et al. The fast-growing field of photo-driven theranostics based on aggregation-induced emission [J]. Chem. Soc. Rev., 2022, 51(6): 1983-2030. doi: 10.1039/d1cs01138chttp://dx.doi.org/10.1039/d1cs01138c
SHENG Z H, GUO B, HU D H, et al. Photoacoustic imaging: bright aggregation-induced-emission dots for targeted synergetic NIR-Ⅱ fluorescence and NIR-Ⅰ photoacoustic imaging of orthotopic brain tumors [J]. Adv. Mater., 2018, 30(29): 1870214. doi: 10.1002/adma.201870214http://dx.doi.org/10.1002/adma.201870214
XU W H, WANG D, TANG B Z. NIR-Ⅱ AIEgens: a win‐win integration towards bioapplications [J]. Angew. Chem. Int. Ed., 2021, 60(14): 7476-7487. doi: 10.1002/anie.202005899http://dx.doi.org/10.1002/anie.202005899
SHI T Y, HUANG C C, LI Y, et al. NIR-Ⅱ phototherapy agents with aggregation-induced emission characteristics for tumor imaging and therapy [J]. Biomaterials, 2022, 285: 121535. doi: 10.1016/j.biomaterials.2022.121535http://dx.doi.org/10.1016/j.biomaterials.2022.121535
DENG Z M, LI X L, XUE Z L, et al. A high performance Sc-based nanoprobe for through-skull fluorescence imaging of brain vessels beyond 1 500 nm [J]. Nanoscale, 2018, 10(19): 9393-9400. doi: 10.1039/c8nr00305jhttp://dx.doi.org/10.1039/c8nr00305j
MA Z R, ZHANG M X, YUE J Y, et al. Near-infrared IIb fluorescence imaging of vascular regeneration with dynamic tissue perfusion measurement and high spatial resolution [J]. Adv. Funct. Mater., 2018, 28(36): 1803417-1-9. doi: 10.1002/adfm.201803417http://dx.doi.org/10.1002/adfm.201803417
XUE Z L, ZENG S J, HAO J H. Non-invasive through-skull brain vascular imaging and small tumor diagnosis based on NIR-Ⅱ emissive lanthanide nanoprobes beyond 1 500 nm [J]. Biomaterials, 2018, 171: 153-163. doi: 10.1016/j.biomaterials.2018.04.037http://dx.doi.org/10.1016/j.biomaterials.2018.04.037
YANG Z C, FAN X X, LIU X L, et al. Aggregation-induced emission fluorophores based on strong electron-acceptor 2,2′-(anthracene-9,10-diylidene) dimalononitrile for biological imaging in the NIR-Ⅱ window [J]. Chem. Commun., 2021, 57(25): 3099-3102. doi: 10.1039/d1cc00742dhttp://dx.doi.org/10.1039/d1cc00742d
SHENG Z H, LI Y X, HU D H, et al. Centimeter-deep NIR-Ⅱ fluorescence imaging with nontoxic AIE probes in nonhuman primates [J]. Research, 2020, 2020: 4074593-1-14. doi: 10.34133/2020/4074593http://dx.doi.org/10.34133/2020/4074593
LIU S J, CHEN R Z, ZHANG J Q, et al. Incorporation of planar blocks into twisted skeletons: boosting brightness of fluorophores for bioimaging beyond 1 500 nanometer [J]. ACS Nano, 2020, 14(10): 14228-14239. doi: 10.1021/acsnano.0c07527http://dx.doi.org/10.1021/acsnano.0c07527
FENG Z, BAI S Y, QI J, et al. Biologically excretable aggregation-induced emission dots for visualizing through the marmosets intravitally: horizons in future clinical nanomedicine [J]. Adv. Mater., 2021, 33(17): 2008123-1-12. doi: 10.1002/adma.202008123http://dx.doi.org/10.1002/adma.202008123
LI Y Y, FAN X X, LI Y R, et al. Molecular crystal engineering of organic chromophores for NIR-Ⅱ fluorescence quantification of cerebrovascular function [J]. ACS Nano, 2022, 16(2): 3323-3331. doi: 10.1021/acsnano.1c11424http://dx.doi.org/10.1021/acsnano.1c11424
WU W, YANG Y Q, YANG Y, et al. Molecular engineering of an organic NIR-Ⅱ fluorophore with aggregation-induced emission characteristics for in vivo imaging [J]. Small, 2019, 15(20): 1805549-1-10. doi: 10.1002/smll.201805549http://dx.doi.org/10.1002/smll.201805549
QI J, SUN C W, ZEBIBULA A, et al. Real-time and high-resolution bioimaging with bright aggregation-induced emission dots in short-wave infrared region [J]. Adv. Mater., 2018, 30(12): 1706856-1-9. doi: 10.1002/adma.201706856http://dx.doi.org/10.1002/adma.201706856
QI J, ALIFU N, ZEBIBULA A, et al. Highly stable and bright AIE dots for NIR-Ⅱ deciphering of living rats [J]. Nano Today, 2020, 34: 100893-1-10. doi: 10.1016/j.nantod.2020.100893http://dx.doi.org/10.1016/j.nantod.2020.100893
YU W B, GUO B, ZHANG H Q, et al. NIR-Ⅱ fluorescence in vivo confocal microscopy with aggregation-induced emission dots [J]. Sci. Bull., 2019, 64(6): 410-416. doi: 10.1016/j.scib.2019.02.019http://dx.doi.org/10.1016/j.scib.2019.02.019
WANG C L, DONG H L, HU W P, et al. Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics [J]. Chem. Rev., 2012, 112(4): 2208-2267. doi: 10.1021/cr100380zhttp://dx.doi.org/10.1021/cr100380z
LI Y Y, CAI Z C, LIU S J, et al. Design of AIEgens for near-infrared IIb imaging through structural modulation at molecular and morphological levels [J]. Nat. Commun., 2020, 11(1): 1255-1-10. doi: 10.1038/s41467-020-15095-1http://dx.doi.org/10.1038/s41467-020-15095-1
DU J, LIU S J, ZHANG P F, et al. Highly stable and bright NIR-Ⅱ AIE dots for intraoperative identification of ureter [J]. ACS Appl. Mater. Interfaces, 2020, 12(7): 8040-8049. doi: 10.1021/acsami.9b22957http://dx.doi.org/10.1021/acsami.9b22957
ZHANG Y M, JEON M, RICH L J, et al. Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines [J]. Nat. Nanotechnol., 2014, 9(8): 631-638. doi: 10.1038/nnano.2014.130http://dx.doi.org/10.1038/nnano.2014.130
LIN J C, ZENG X D, XIAO Y L, et al. Novel near-infrared II aggregation-induced emission dots for in vivo bioimaging [J]. Chem. Sci., 2019, 10(4): 1219-1226. doi: 10.1039/c8sc04363ahttp://dx.doi.org/10.1039/c8sc04363a
ZHOU X B, LIU Q Y, YUAN W, et al. Ultrabright NIR-Ⅱ emissive polymer dots for metastatic ovarian cancer detection [J]. Adv. Sci., 2021, 8(4): 2000441-1-10. doi: 10.1002/advs.202000441http://dx.doi.org/10.1002/advs.202000441
ZHU S J, TIAN R, ANTARIS A L, et al. Near-infrared-Ⅱ molecular dyes for cancer imaging and surgery [J]. Adv. Mater., 2019, 31(24): 1900321-1-25.
WEBER J, BEARD P C, BOHNDIEK S E. Contrast agents for molecular photoacoustic imaging [J]. Nat. Methods, 2016, 13(8): 639-650. doi: 10.1038/nmeth.3929http://dx.doi.org/10.1038/nmeth.3929
LIU S J, OU H L, LI Y Y, et al. Planar and twisted molecular structure leads to the high brightness of semiconducting polymer nanoparticles for NIR-Ⅱa fluorescence imaging [J]. J. Am. Chem. Soc., 2020, 142(35): 15146-15156. doi: 10.1021/jacs.0c07193http://dx.doi.org/10.1021/jacs.0c07193
STEEG P S. Tumor metastasis: mechanistic insights and clinical challenges [J]. Nat. Med., 2006, 12(8): 895-904. doi: 10.1038/nm1469http://dx.doi.org/10.1038/nm1469
LAMBERT A W, PATTABIRAMAN D R, WEINBERG R A. Emerging biological principles of metastasis [J]. Cell, 2017, 168(4): 670-691. doi: 10.1016/j.cell.2016.11.037http://dx.doi.org/10.1016/j.cell.2016.11.037
SONG S L, WANG Y J, ZHAO Y, et al. Molecular engineering of AIE luminogens for NIR-Ⅱ/Ⅱb bioimaging and surgical navigation of lymph nodes [J]. Matter, 2022, 5(9): 2847-2863. doi: 10.1016/j.matt.2022.06.030http://dx.doi.org/10.1016/j.matt.2022.06.030
SONG Z G, MAO D, SUNG S H P, et al. Activatable fluorescent nanoprobe with aggregation-induced emission characteristics for selective in vivo imaging of elevated peroxynitrite generation [J]. Adv. Mater., 2016, 28(33): 7249-7256. doi: 10.1002/adma.201601214http://dx.doi.org/10.1002/adma.201601214
FAN X X, XIA Q M, ZHANG Y Y, et al. Aggregation-induced emission (AIE) nanoparticles-assisted NIR-Ⅱ fluorescence imaging-guided diagnosis and surgery for inflammatory bowel disease (IBD) [J]. Adv. Healthc. Mater., 2021, 10(24): 2101043. doi: 10.1002/adhm.202101043http://dx.doi.org/10.1002/adhm.202101043
CHEN J J, CHEN L Q, WU Y L, et al. A H2O2-activatable nanoprobe for diagnosing interstitial cystitis and liver ischemia-reperfusion injury via multispectral optoacoustic tomography and NIR-Ⅱ fluorescent imaging [J]. Nat. Commun., 2021, 12(1): 6870-1-15. doi: 10.1038/s41467-021-27233-4http://dx.doi.org/10.1038/s41467-021-27233-4
LI Y X, ZHA M L, YANG G, et al. NIR-Ⅱ fluorescent brightness promoted by “ring fusion” for the detection of intestinal inflammation [J]. Chem. Eur. J., 2021, 27(51): 13085-13091. doi: 10.1002/chem.202101767http://dx.doi.org/10.1002/chem.202101767
ZHANG Q S, YU P, FAN Y, et al. Bright and stable NIR-Ⅱ J-aggregated AIE dibodipy-based fluorescent probe for dynamic in vivo bioimaging [J]. Angew. Chem. Int. Ed., 2021, 60(8): 3967-3973. doi: 10.1002/anie.202012427http://dx.doi.org/10.1002/anie.202012427
LI D, CHEN X H, WANG D L, et al. Synchronously boosting type-I photodynamic and photothermal efficacies via molecular manipulation for pancreatic cancer theranostics in the NIR-Ⅱ window [J]. Biomaterials, 2022, 283: 121476-1-13. doi: 10.1016/j.biomaterials.2022.121476http://dx.doi.org/10.1016/j.biomaterials.2022.121476
WU W, YANG Y Q, YANG Y, et al. An organic NIR-Ⅱ nanofluorophore with aggregation-induced emission characteristics for in vivo fluorescence imaging [J]. Int. J. Nanomedicine, 2019, 14: 3571-3582. doi: 10.2147/ijn.s198587http://dx.doi.org/10.2147/ijn.s198587
LIU S J, CHEN C, LI Y Y, et al. Constitutional isomerization enables bright NIR-Ⅱ AIEgen for brain-inflammation imaging [J]. Adv. Funct. Mater., 2020, 30(7): 1908125-1-10. doi: 10.1002/adfm.201908125http://dx.doi.org/10.1002/adfm.201908125
LAMMERS T, AIME S, HENNINK W E, et al. Theranostic nanomedicine [J]. Acc. Chem. Res., 2011, 44(10): 1029-1038. doi: 10.1021/ar200019chttp://dx.doi.org/10.1021/ar200019c
LI X S, LEE S, YOON J. Supramolecular photosensitizers rejuvenate photodynamic therapy [J]. Chem. Soc. Rev., 2018, 47(4): 1174-1188. doi: 10.1039/c7cs00594fhttp://dx.doi.org/10.1039/c7cs00594f
DOLMANS D E J G J, FUKUMURA D, JAIN R K. Photodynamic therapy for cancer [J]. Nat. Rev. Cancer, 2003, 3(5): 380-387. doi: 10.1038/nrc1071http://dx.doi.org/10.1038/nrc1071
CASTANO A P, MROZ P, HAMBLIN M R. Photodynamic therapy and anti-tumour immunity [J]. Nat. Rev. Cancer, 2006, 6(7): 535-545. doi: 10.1038/nrc1894http://dx.doi.org/10.1038/nrc1894
SHI X J, SUNG S H P, CHAU J H C, et al. Killing G(+) or G(-) bacteria? The important role of molecular charge in AIE-active photosensitizers [J]. Small Methods, 2020, 4(7): 2000046-1-13. doi: 10.1002/smtd.202000046http://dx.doi.org/10.1002/smtd.202000046
HAMBLIN M R, HASAN T. Photodynamic therapy: a new antimicrobial approach to infectious disease? [J]. Photochem. Photobiol. Sci., 2004, 3(5): 436-450. doi: 10.1039/b311900ahttp://dx.doi.org/10.1039/b311900a
ALAM P, KACHWAL V, LASKAR I R. A multi-stimuli responsive “AIE” active salicylaldehyde-based schiff base for sensitive detection of fluoride [J]. Sens. Actuators B: Chem., 2016, 228: 539-550. doi: 10.1016/j.snb.2016.01.024http://dx.doi.org/10.1016/j.snb.2016.01.024
WANG Q, DAI Y N, XU J Z, et al. All-in-one phototheranostics: single laser triggers NIR-Ⅱ fluorescence/photoacoustic imaging guided photothermal/photodynamic/chemo combination therapy [J]. Adv. Funct. Mater., 2019, 29(31): 1901480-1-12. doi: 10.1002/adfm.201901480http://dx.doi.org/10.1002/adfm.201901480
YANG J, XIE R, FENG L L, et al. Hyperthermia and controllable free radical coenhanced synergistic therapy in hypoxia enabled by near-infrared-Ⅱ light irradiation [J]. ACS Nano, 2019, 13(11): 13144-13160. doi: 10.1021/acsnano.9b05985http://dx.doi.org/10.1021/acsnano.9b05985
WANG Z, JIA T, SUN Q Q, et al. Construction of Bi/phthalocyanine manganese nanocomposite for trimodal imaging directed photodynamic and photothermal therapy mediated by 808 nm light [J]. Biomaterials, 2020, 228: 119569-1-15. doi: 10.1016/j.biomaterials.2019.119569http://dx.doi.org/10.1016/j.biomaterials.2019.119569
GAO S, YU S, ZHANG Y M, et al. Molecular engineering of near-infrared-Ⅱ photosensitizers with steric-hindrance effect for image-guided cancer photodynamic therapy [J]. Adv. Funct. Mater., 2021, 31(14): 2008356-1-14. doi: 10.1002/adfm.202008356http://dx.doi.org/10.1002/adfm.202008356
LI S L, DENG Q Y, LI X, et al. Bis-diketopyrrolopyrrole conjugated polymer nanoparticles as photothermic nanoagonist for specific and synergistic glioblastoma therapy [J]. Biomaterials, 2019, 216: 119252-1-8. doi: 10.1016/j.biomaterials.2019.119252http://dx.doi.org/10.1016/j.biomaterials.2019.119252
THARIAT J, ALUWINI S, PAN Q, et al. Image-guided radiation therapy for muscle-invasive bladder cancer [J]. Nat. Rev. Urol., 2012, 9(1): 23-29. doi: 10.1038/nrurol.2011.173http://dx.doi.org/10.1038/nrurol.2011.173
HUANG Y, LI D, WANG D L, et al. A NIR-Ⅱ emissive polymer AIEgen for imaging-guided photothermal elimination of bacterial infection [J]. Biomaterials, 2022, 286: 121579-1-10. doi: 10.1016/j.biomaterials.2022.121579http://dx.doi.org/10.1016/j.biomaterials.2022.121579
WANG D, LEE M M S, XU W H, et al. Theranostics based on AIEgens [J]. Theranostics, 2018, 8(18): 4925-4956. doi: 10.7150/thno.27787http://dx.doi.org/10.7150/thno.27787
ZHAO Z, CHEN C, WU W T, et al. Highly efficient photothermal nanoagent achieved by harvesting energy via excited-state intramolecular motion within nanoparticles [J]. Nat. Commun., 2019, 10(1): 768-1-11. doi: 10.1038/s41467-019-08722-zhttp://dx.doi.org/10.1038/s41467-019-08722-z
CASPAR J V, KOBER E M, SULLIVAN B P, et al. Application of the energy gap law to the decay of charge-transfer excited states [J]. J. Am. Chem. Soc., 1982, 104(2): 630-632. doi: 10.1021/ja00366a051http://dx.doi.org/10.1021/ja00366a051
CASPAR J V, MEYER T J. Application of the energy gap law to nonradiative, excited-state decay [J]. J. Phys. Chem., 1983, 87(6): 952-957. doi: 10.1021/j100229a010http://dx.doi.org/10.1021/j100229a010
LI Y R, FAN X X, LI Y Y, et al. Biologically excretable AIE nanoparticles wear tumor cell-derived “exosome caps” for efficient NIR-Ⅱ fluorescence imaging-guided photothermal therapy [J]. Nano Today, 2021, 41: 101333-1-16. doi: 10.1016/j.nantod.2021.101333http://dx.doi.org/10.1016/j.nantod.2021.101333
WANG J F, LIU Y S, MORSCH M, et al. Brain-targeted aggregation-induced-emission nanoparticles with near-infrared imaging at 1 550 nm boosts orthotopic glioblastoma theranostics [J]. Adv. Mater., 2022, 34(5): 2106082-1-9. doi: 10.1002/adma.202106082http://dx.doi.org/10.1002/adma.202106082
WATKINS S, ROBEL S, KIMBROUGH I F, et al. Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cells [J]. Nat. Commun., 2014, 5: 4196-1-8. doi: 10.1038/ncomms5196http://dx.doi.org/10.1038/ncomms5196
YANG J Y, WANG L R, HUANG L W, et al. Receptor-targeting nanomaterials alleviate binge drinking-induced neurodegeneration as artificial neurotrophins [J]. Exploration, 2021, 1(1): 61-74. doi: 10.1002/exp.20210004http://dx.doi.org/10.1002/exp.20210004
OLLER-SALVIA B, SÁNCHEZ-NAVARRO M, GIRALT E, et al. Blood-brain barrier shuttle peptides: an emerging paradigm for brain delivery [J]. Chem. Soc. Rev., 2016, 45(17): 4690-4707. doi: 10.1039/c6cs00076bhttp://dx.doi.org/10.1039/c6cs00076b
LOVELL J F, JIN C S, HUYNH E, et al. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents [J]. Nat. Mater., 2011, 10(4): 324-332. doi: 10.1038/nmat2986http://dx.doi.org/10.1038/nmat2986
CHEN C, OU H L, LIU R H, et al. Regulating the photophysical property of organic/polymer optical agents for promoted cancer phototheranostics [J]. Adv. Mater., 2020, 32(3): 1806331-1-6. doi: 10.1002/adma.201806331http://dx.doi.org/10.1002/adma.201806331
ANTARIS A L, CHEN H, CHENG K, et al. A small-molecule dye for NIR-Ⅱ imaging [J]. Nat. Mater., 2016, 15(2): 235-242. doi: 10.1038/nmat4476http://dx.doi.org/10.1038/nmat4476
LI X S, YU S, LEE Y, et al. In vivo albumin traps photosensitizer monomers from self-assembled phthalocyanine nanovesicles: a facile and switchable theranostic approach [J]. J. Am. Chem. Soc., 2019, 141(3): 1366-1372. doi: 10.1021/jacs.8b12167http://dx.doi.org/10.1021/jacs.8b12167
KANG M M, ZHOU C C, WU S M, et al. Evaluation of structure‐function relationships of aggregation-induced emission luminogens for simultaneous dual applications of specific discrimination and efficient photodynamic killing of gram-positive bacteria [J]. J. Am. Chem. Soc., 2019, 141(42): 16781-16789. doi: 10.1021/jacs.9b07162http://dx.doi.org/10.1021/jacs.9b07162
XU W H, LEE M M S, NIE J J, et al. Three-pronged attack by homologous far-red/NIR AIEgens to achieve 1+1+1>3 synergistic enhanced photodynamic therapy [J]. Angew. Chem. Int. Ed., 2020, 59(24): 9610-9616. doi: 10.1002/anie.202000740http://dx.doi.org/10.1002/anie.202000740
ZHU W, KANG M M, WU Q, et al. Zwitterionic AIEgens: rational molecular design for NIR-Ⅱ fluorescence imaging-guided synergistic phototherapy [J]. Adv. Funct. Mater., 2021, 31(3): 2007026-1-11. doi: 10.1002/adfm.202007026http://dx.doi.org/10.1002/adfm.202007026
ZHANG Z J, XU W H, KANG M M, et al. An all-round athlete on the track of phototheranostics: subtly regulating the balance between radiative and nonradiative decays for multimodal imaging-guided synergistic therapy [J]. Adv. Mater., 2020, 32(36): 2003210-1-11.
XU W H, ZHANG Z J, KANG M M, et al. Making the best use of excited-state energy: multimodality theranostic systems based on second near-infrared (NIR-Ⅱ) aggregation-induced emission luminogens (AIEgens) [J]. ACS Mater. Lett., 2020, 2(8): 1033-1040. doi: 10.1021/acsmaterialslett.0c00263http://dx.doi.org/10.1021/acsmaterialslett.0c00263
WEN H F, ZHANG Z J, KANG M M, et al. One-for-all phototheranostics: single component AIE dots as multi-modality theranostic agent for fluorescence-photoacoustic imaging-guided synergistic cancer therapy [J]. Biomaterials, 2021, 274: 120892-1-10. doi: 10.1016/j.biomaterials.2021.120892http://dx.doi.org/10.1016/j.biomaterials.2021.120892
XU Y L, ZHANG Y, LI J, et al. NIR-Ⅱ emissive multifunctional AIEgen with single laser-activated synergistic photodynamic/photothermal therapy of cancers and pathogens [J]. Biomaterials, 2020, 259: 120315-1-8. doi: 10.1016/j.biomaterials.2020.120315http://dx.doi.org/10.1016/j.biomaterials.2020.120315
YAN D Y, XIE W, ZHANG J Y, et al. Donor/π-bridge manipulation for constructing a stable NIR-Ⅱ aggregation-induced emission luminogen with balanced phototheranostic performance [J]. Angew. Chem. Int. Ed., 2021, 60(51): 26769-26776. doi: 10.1002/anie.202111767http://dx.doi.org/10.1002/anie.202111767
YAN D Y, WANG M, WU Q, et al. Multimodal imaging-guided photothermal immunotherapy based on a versatile NIR-Ⅱ aggregation-induced emission luminogen [J]. Angew. Chem. Int. Ed., 2022, 61(27): e202202614-1-9. doi: 10.1002/anie.202202614http://dx.doi.org/10.1002/anie.202202614
QIN Y, CHEN X H, GUI Y X, et al. Self-assembled metallacage with second near-infrared aggregation-induced emission for enhanced multimodal theranostics [J]. J. Am. Chem. Soc., 2022, 144(28): 12825-12833. doi: 10.1021/jacs.2c03895http://dx.doi.org/10.1021/jacs.2c03895
WANG M, YAN D Y, WANG M, et al. A versatile 980 nm absorbing aggregation-induced emission luminogen for NIR-Ⅱ imaging-guided synergistic photo-immunotherapy against advanced pancreatic cancer [J]. Adv. Funct. Mater., 2022, 32(36): 2205371-1-11. doi: 10.1002/adfm.202205371http://dx.doi.org/10.1002/adfm.202205371
ZHANG T F, ZHANG J Y, WANG F B, et al. Mitochondria-targeting phototheranostics by aggregation-induced NIR-Ⅱ emission luminogens: modulating intramolecular motion by electron acceptor engineering for multi-modal synergistic therapy [J]. Adv. Funct. Mater., 2022, 32(16): 2110526-1-10. doi: 10.1002/adfm.202110526http://dx.doi.org/10.1002/adfm.202110526
0
Views
368
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution